廖秋明,李丹霞
(肇慶學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,廣東 肇慶 526061)
具時(shí)間依賴邊界條件的熱傳導(dǎo)方程的近似解法研究
廖秋明,李丹霞
(肇慶學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,廣東 肇慶 526061)
研究了求解具時(shí)間依賴邊界條件的熱傳導(dǎo)方程的近似解。首先,對(duì)溫度邊界條件為時(shí)間的冪函數(shù)的情況,采用標(biāo)準(zhǔn)的多項(xiàng)式溫度近似函數(shù),結(jié)合熱平衡積分法及改進(jìn)的熱平衡積分法,求得時(shí)間的次數(shù)和溫度近似函數(shù)的指數(shù)之間的關(guān)系,從而確定溫度近似解函數(shù);然后,對(duì)復(fù)雜的時(shí)間依賴的邊界條件,應(yīng)用線性微分方程疊加原理,構(gòu)建近似解表達(dá)式。實(shí)驗(yàn)結(jié)果表明,這種方法既簡(jiǎn)便又具有良好的計(jì)算精度,能較好地模擬傳熱過(guò)程。
時(shí)間依賴邊界條件;熱傳導(dǎo)方程;熱平衡積分解法;疊加原理;近似解
熱平衡積分法(heat balance integral method,HBIM),是1958年由T.R.Goodman[1]提出的求解導(dǎo)熱問(wèn)題的有效方法。由于其計(jì)算簡(jiǎn)便、速度快,且計(jì)算精度較高,從而得到了廣泛應(yīng)用。改進(jìn)的熱平衡積分法(refined integral method,RIM)是N.Sadoun等[2]提出的一種改進(jìn)方法。即通過(guò)對(duì)導(dǎo)熱微分方程關(guān)于空間變量積分2次,并結(jié)合傳統(tǒng)的熱平衡積分方程,得到一個(gè)新的積分方程,所求得的近似解具有更高的精確性。但是,用熱平衡積分法求解具時(shí)間依賴邊界條件的熱傳導(dǎo)問(wèn)題時(shí),往往難以得到計(jì)算精度良好的近似解。為此,人們提出了各種改進(jìn)方法及應(yīng)用[3-9]。如D.Langford[3]采用最小誤差測(cè)量函數(shù)來(lái)確定溫度近似函數(shù),顯示出更高的精確性。T.G.Myers[4-5]利用D.Langford 提出的函數(shù),求得了非整數(shù)形式的HBIM 和RIM 最優(yōu)多項(xiàng)式次數(shù),并將之應(yīng)用到標(biāo)準(zhǔn)的導(dǎo)熱問(wèn)題及相變導(dǎo)熱問(wèn)題中。但標(biāo)準(zhǔn)的多項(xiàng)式溫度近似解,只能解決溫度邊界條件隨著時(shí)間遞增的情況。S.L.Mitchell等[6]提出了用對(duì)數(shù)表達(dá)式表示近似解以及時(shí)間依賴的指數(shù),以解決邊界溫度隨著時(shí)間遞減情況下的導(dǎo)熱近似。Ling Feng等[7]提出了一種優(yōu)化多項(xiàng)式溫度近似解指數(shù)的積分方法。J.Hristov[8-9]改進(jìn)熱平衡積分法,并應(yīng)用于非線性傳熱問(wèn)題。
本文采用標(biāo)準(zhǔn)的多項(xiàng)式溫度近似函數(shù),當(dāng)溫度邊界條件為時(shí)間的冪函數(shù)時(shí),結(jié)合HBIM 和RIM獲得時(shí)間和溫度近似函數(shù)的指數(shù)之間的關(guān)系,從而確定溫度近似解表達(dá)式,并應(yīng)用線性微分方程疊加原理,構(gòu)建近似解,以解決復(fù)雜的時(shí)間依賴邊界條件,以得到簡(jiǎn)便又計(jì)算精度良好的近似解。
一個(gè)半無(wú)限大的平板,當(dāng)時(shí)間t>0時(shí),在邊界(x=0)處的溫度設(shè)為(t) ;在有限的時(shí)間內(nèi),邊界的熱擾動(dòng)將滲透到平板有限厚度范圍內(nèi),即滲透深度記作(t)。半無(wú)限大的平板的熱傳導(dǎo)問(wèn)題無(wú)量綱形式的數(shù)學(xué)模型為
式中:T表示溫度;
x表示空間坐標(biāo);
利用余誤差函數(shù),可得到精確解:
下面結(jié)合熱平衡積分法及改進(jìn)的熱平衡積分法,求時(shí)間t的次數(shù)k和n之間的函數(shù)關(guān)系。
圖1 當(dāng)(t)=1-t時(shí),不同t值下的精確解曲線Fig.1 Exact solution curves under the condition of(t)=1-t with t the variable
對(duì)問(wèn)題(1)關(guān)于空間變量x進(jìn)行積分,得到熱平衡積分
下面以本文方法得到的近似解(12)和精確解以及HBIM,RIM的近似解進(jìn)行實(shí)驗(yàn)對(duì)比,結(jié)果如圖2和圖3所示。其中HBIM,RIM的近似解同樣采用標(biāo)準(zhǔn)的多項(xiàng)式,其指數(shù)n依賴時(shí)間變化[6],這里不失一般性取t=0.8。
圖2 當(dāng)(t)=1-t , t = 0.8時(shí),本文方法,HBIM,RIM近似解與精確解曲線的比較Fig.2 Curves for the approximate solution of HBIM, RIM and the presented approach as contrast to the exact solution curve when(t)=1-t with t = 0.8
圖3 當(dāng)(t)=1-t,t=0.8時(shí),本文方法,HBIM,RIM近似解與精確解之間的絕對(duì)誤差比較Fig.3 Curves for the approximate solution of HBIM,RIM and the presented approach as contrast to the absolute error curve when(t)=1-t with t = 0.8
從圖2和圖3可以看出,采用本文方法得到的近似解和精確解很接近,絕對(duì)誤差小于0.03,計(jì)算精度比HBIM和RIM的近似解更高。
在溫度邊界隨時(shí)間變化的條件下,采用標(biāo)準(zhǔn)的多項(xiàng)式溫度近似函數(shù),首先解決當(dāng)溫度邊界條件為時(shí)間的基本冪函數(shù)時(shí)的近似解,結(jié)合HBIM和RIM,求得時(shí)間的次數(shù)和近似解函數(shù)的指數(shù)之間的關(guān)系,從而確定熱平衡積分溫度近似函數(shù);然后應(yīng)用線性微分方程疊加原理,構(gòu)建近似解。該方法簡(jiǎn)便,得到的近似解精度高。用積分方法求出來(lái)的溫度近似解不是唯一的,只有計(jì)算精度良好的近似解才具實(shí)用價(jià)值。本文的近似解法能較好地模擬當(dāng)邊界溫度隨著時(shí)間遞減情況下傳熱過(guò)程中出現(xiàn)的拐點(diǎn)現(xiàn)象。在本文研究的基礎(chǔ)上,可以解決更復(fù)雜的傳熱問(wèn)題,如相變傳熱問(wèn)題、高維傳熱問(wèn)題等。
[1] GOODMAN T R.The Heat Balance Integral and Its Application to Problems Involving a Change of Phase[J].Trans ASME Journal of Heat Transfer,1958,80(1/2) :335-342.
[2]SADOUN N,SI-AHMEDE K,COLINET P.On the Refined Integral Method for the One-Phase Stefan Problem with Time-Dependent Boundary Conditions[J].Applied Mathematical Modeling,2006,30(6) :531-544.
[3] LANGFORD D.The Heat Balance Integral Method[J].International Journal of Heat and Mass Transfer,1973,16(12) :2424-2428.
[4]MYERS T G.Optimal Exponent Heat Balance and Refined Integral Methods Applied to Stefan Problems[J].International Journal of Heat and Mass Transfer,2010, 53(5/6) :1119-1127.
[5]MYERS T G.Optimizing the Exponentin the Heat Balance and Refined Integral Methods[J]. International Communications in Heat and Mass Transfer,2009,36(2) :143-147.
[6]MITCHELL S L,MYERS T G.Improving the Accuracy of Heat Balance Integral Methods Applied to Thermal Problems with Time Dependent Boundary Conditions[J].International Journal of Heat and Mass Transfer,2010,53(17/18) :3540-3551.
[7]LING Feng,LIAO Qiuming.A Novel Optimal Power Approach in Heat Balance Integral Method and Refined Integral Method[J].Int.J.Pacific Journal of Applied Mathematics,2014,5(3) :41-52.
[8]HRISTOV J.An Approximate Analytical (Integral-Balance)Solution to a Nonlinear Heat Diffusion Equation[J].Thermal Science,2015,19(2) :723-733.
[9]HRISTOV J.Diffusion Models with Weakly Singular Kernels in the Fading Memories: How the Integral-Balance Method can be Applied[J].Thermal Science,2015,19(2) :947-957.
[10]CARSLAW H S,JAEGER J C.Conduction of Heat in Solids[M].Oxford:Clarendon Press,1950 :50-91.
(責(zé)任編輯 :鄧光輝)
On an Approximate Solution of the Heat Equation Under Time-Dependent Boundary Conditions
LIAO Qiuming, LI Danxia
(School of Mathematics and Statistics,Zhaoqing University,Zhaoqing Guangdong 526061,China)
In order to find an approximate solution of the heat equation under time-dependent boundary conditions,a research has been conducted as shown in the following steps.Firstly, with the power function of time being the temperature boundary condition, combined with the heat balance and refined integral methods, the standard polynomial approximation solution to the temperature equation has been adopted so as to obtain the relationship between the power of the approximate solution and the power of the temperature boundary function, thus working out the approximate solution.Secondly, an approximate solution expression will be constructed based on the application of the principle of superposition of linear differential equation, with the complex time dependent boundary condition taken into consideration.The experimental results show that this simple method, characterized with a better calculation accuracy, proves to be very effective in simulating the heat transfer process.
time-dependent boundary condition ;equation of heat conduction ;heat balance integral method ;principle of superposition ;approximate solution
O175.29
A
1673-9833(2016)04-0078-04
10.3969/j.issn.1673-9833.2016.04.015
2016-06-08
廣東省自然科學(xué)基金資助項(xiàng)目(2015A030313704)
廖秋明(1972-),男,廣東肇慶人,肇慶學(xué)院副教授,主要研究方向?yàn)槠⒎址匠汤碚摷皯?yīng)用,E-mail:lqmzqu@163.com