李佳蔚, 李忠, 邱楠生, 左銀輝, 于靖波, 劉嘉慶
1 中國(guó)科學(xué)院地質(zhì)與地球物理研究所, 北京 100029 2 中國(guó)科學(xué)院大學(xué), 北京 100049 3 中國(guó)石油大學(xué)(北京)盆地與油藏研究中心, 北京 102249 4 成都理工大學(xué)能源學(xué)院, 成都 610059
?
塔里木盆地石炭-二疊紀(jì)異常熱演化及其對(duì)深部構(gòu)造-巖漿活動(dòng)的指示
李佳蔚1, 2, 李忠1*, 邱楠生3, 左銀輝4, 于靖波1, 劉嘉慶1
1 中國(guó)科學(xué)院地質(zhì)與地球物理研究所, 北京 100029 2 中國(guó)科學(xué)院大學(xué), 北京 100049 3 中國(guó)石油大學(xué)(北京)盆地與油藏研究中心, 北京 102249 4 成都理工大學(xué)能源學(xué)院, 成都 610059
本文分析了塔里木盆地大量實(shí)測(cè)鏡質(zhì)體反射率(Ro)數(shù)據(jù),顯示盆地西北部石炭系與二疊系之間Ro值演化不連續(xù),記錄了石炭-二疊紀(jì)間發(fā)生的構(gòu)造-熱事件,是地層抬升剝蝕和高溫?zé)崾录餐饔玫慕Y(jié)果. 熱史模擬得出盆地在石炭紀(jì)末地溫梯度開(kāi)始升高,至~300 Ma達(dá)到峰值,分布在4.8~5.6 ℃/100 m之間,早二疊世迅速降低,隨后進(jìn)入緩慢穩(wěn)定降低階段. 區(qū)域上高溫?zé)嵝?yīng)空間分布與塔里木大火成巖省的分布范圍存在較好的相關(guān)性,但早于大規(guī)模玄武巖噴發(fā)的時(shí)間(290—288 Ma),且后者熱效應(yīng)范圍有限. 因此推斷這種高溫異常是大規(guī)模的深部巖漿活動(dòng),即深部巖漿房相對(duì)長(zhǎng)時(shí)間熱烘烤的結(jié)果. 該研究結(jié)果為塔里木盆地?zé)嵫莼瘷C(jī)制及相關(guān)熱效應(yīng)提供了新的線索.關(guān)鍵詞 塔里木盆地; 鏡質(zhì)體反射率; 古地溫梯度; 異常熱事件
盆地地層熱歷史主要受埋藏和熱體制控制,巖漿活動(dòng)作為非穩(wěn)態(tài)的熱源,其在地球內(nèi)部積聚、上涌以及在近地表噴發(fā)的過(guò)程也是能量釋放的過(guò)程,會(huì)對(duì)盆地內(nèi)有機(jī)質(zhì)的演化產(chǎn)生影響. 研究表明塔里木盆地古地溫梯度自震旦紀(jì)以來(lái)整體呈下降趨勢(shì),其中志留紀(jì)至晚古生代從拉張盆地時(shí)期過(guò)渡到穩(wěn)定地殼熱演化時(shí)期,地溫梯度逐漸降低;中生代地溫梯度較穩(wěn)定;新生代則疊加了盆地邊緣強(qiáng)烈撓曲熱演化過(guò)程(Chang et al., 2014; Li et al., 2010; Qiu et al., 2012; 李成等, 2000; 劉紹文等, 2006; 邱楠生等, 2004; 左銀輝等, 2015). 二疊紀(jì)巖漿巖噴發(fā)于早、中二疊世,約300—275 Ma,其中大規(guī)模玄武巖發(fā)育在290—288 Ma(Li et al., 2012b; Polyakov et al., 2008; Wei et al., 2014; Xu et al., 2014; Yu et al., 2011; Zhang et al., 2010, 2013; 陳漢林等, 1997, 2009; 楊樹(shù)鋒等, 2014),然而目前針對(duì)該期巖漿活動(dòng)對(duì)古地溫的影響范圍和時(shí)間存在明顯爭(zhēng)議. 由于有機(jī)質(zhì)成熟演化的不可逆性,其與非穩(wěn)態(tài)高溫?zé)崾录目赡荜P(guān)系值得關(guān)注. 為此,本文通過(guò)分析塔里木盆地Ro值隨深度的演化規(guī)律,恢復(fù)典型單井熱歷史,探討了石炭-二疊紀(jì)異常熱演化及其成因,這將為進(jìn)一步認(rèn)識(shí)盆地深部構(gòu)造-巖漿活動(dòng)及其石油地質(zhì)意義提供重要基礎(chǔ).
塔里木盆地是中國(guó)最大的沉積盆地,位于天山和昆侖山褶皺帶之間,是在古老基底之上震旦紀(jì)-古生代克拉通疊覆中新生代前陸盆地而成的大型疊合盆地(賈承造, 2004; 賈承造和魏國(guó)齊, 2002),經(jīng)歷了震旦紀(jì)-中泥盆世、晚泥盆世-三疊紀(jì)和侏羅紀(jì)-第四紀(jì)3個(gè)伸展-聚斂演化旋回(何碧竹等, 2011; 何登發(fā)等, 2005),構(gòu)造環(huán)境發(fā)生了多次重大變革. 復(fù)雜的構(gòu)造運(yùn)動(dòng)導(dǎo)致了多期巖漿活動(dòng),盆地內(nèi)主要發(fā)育四期火山巖,分別在震旦-寒武紀(jì)、晚奧陶世-志留紀(jì)、二疊紀(jì)、白堊紀(jì),其中晚古生代火山活動(dòng)強(qiáng)度很大(陳漢林等, 1997; 溫聲明等, 2005; 徐漢林等, 2006; 張水昌等, 2004). 晚古生代是塔里木盆地演化過(guò)程的一個(gè)重要階段,此時(shí)塔里木克拉通處于強(qiáng)烈的拉張狀態(tài),盆地內(nèi)部發(fā)育了大量巖漿巖,以基性巖類(lèi)為主,如玄武巖、輝綠巖、玄武安山巖和超鎂質(zhì)巖類(lèi)等,在滿加爾凹陷西段、塔北隆起西段、塔中隆起、巴楚隆起和塔西南坳陷中段均有分布,面積達(dá)2.5×105km2以上(圖1)(劉曉等, 2011; 潘贅等, 2013; 楊樹(shù)鋒等, 2005, 2014).
石炭-二疊紀(jì)是塔里木盆地內(nèi)部沉積演化的重要時(shí)期. 塔里木盆地經(jīng)歷了震旦紀(jì)-中泥盆世活躍的構(gòu)造變遷之后,在晚泥盆世進(jìn)入了相對(duì)穩(wěn)定的演化階段,發(fā)育了由西南向東北的海侵,并在石炭紀(jì)初急劇擴(kuò)張(何登發(fā)等, 2005). 晚泥盆世-石炭紀(jì)總體上以海平面相對(duì)上升的海侵為主,期間出現(xiàn)兩次快速下降和兩次緩慢小幅度下降(王毅, 1998; 朱如凱等, 2002),海平面的頻繁變化造就了碳酸鹽巖與碎屑巖交互發(fā)育的特點(diǎn),自下而上依次沉積了含礫砂巖段、下泥巖段、生屑灰?guī)r段、上泥巖段、砂泥巖段、頂灰?guī)r段. 前期相對(duì)穩(wěn)定的構(gòu)造環(huán)境使得盆地內(nèi)含礫砂巖段-砂泥巖段保存較完整,直至頂灰?guī)r段在盆地內(nèi)部及周緣地區(qū)出現(xiàn)不同程度的缺失,且向北向西愈加嚴(yán)重(朱如凱等, 2002),上石炭統(tǒng)剝蝕發(fā)生于石炭紀(jì)末小海子組沉積后-二疊紀(jì)初碎屑巖段沉積前,剝蝕量可達(dá)到800 m以上(Li et al., 2014). 本文選取了巖漿巖分布區(qū)中8口井進(jìn)行研究(圖1),自北向南的地層連井剖面顯示石炭系頂剝蝕程度具有北強(qiáng)南弱的趨勢(shì),殘余頂灰?guī)r段向南增厚(圖2). 二疊紀(jì)是塔里木板塊構(gòu)造-沉積演化一個(gè)重要的轉(zhuǎn)折期,早二疊世結(jié)束了海相沉積,進(jìn)入了陸相沉積階段,發(fā)育了以陸相碎屑巖為主的沉積以及火山巖和火山碎屑巖.
3.1 鏡質(zhì)體發(fā)射率Ro數(shù)據(jù)分析
鏡質(zhì)體反射率是目前應(yīng)用最廣泛的古溫標(biāo)之一,是本文研究塔里木盆地晚古生代熱事件的依據(jù).Ro值受控于有機(jī)質(zhì)受熱溫度和受熱時(shí)間,以溫度影響為主(Buchardt and Lewan, 1990; Burnham and Sweeney, 1989; 邱楠生等, 2004),穩(wěn)定沉降的狀態(tài)下Ro與深度(溫度)在對(duì)數(shù)坐標(biāo)中表現(xiàn)出線性關(guān)系(Baker and Pawlewicz, 1986; Baker and Goldstein, 1990; Sweeney and Burnham, 1990);有機(jī)質(zhì)熱演化具有不可逆性,能夠指示如巖漿活動(dòng)異常高溫?zé)崾录?,非穩(wěn)態(tài)高熱源侵入淺部地層引起Ro增大,若后期正常沉積下地層溫度不超過(guò)非穩(wěn)態(tài)熱效應(yīng)對(duì)有機(jī)質(zhì)的影響,Ro演化不連續(xù). 另外,Ro值演化可揭示地層的沉降-抬升信息,在相同的熱狀態(tài)下,地層抬升剝蝕是導(dǎo)致Ro在深度剖面上呈現(xiàn)不連續(xù)演化的主要原因.
圖1 塔里木盆地構(gòu)造單元和研究井位分布圖二疊紀(jì)火山巖分布據(jù)楊樹(shù)鋒等(2005).Fig.1 Sketch map of structural units in the Tarim basin and well locationsThe distribution of Permian igneous rock is drawn according to Yang et al. (2005).
圖2 石炭系-下二疊統(tǒng)連井剖面Fig.2 Stratigraphic profile of Carboniferous and Lower Permian
綜合分析塔里木盆地不同地區(qū)的大量實(shí)測(cè)Ro數(shù)據(jù),多口鉆井的Ro值在深度剖面上的分布具有規(guī)律性. 二疊系與前二疊系(SL1井為泥盆系,其余井為石炭系)中的Ro值不連續(xù),不整合面附近多具零星的極高Ro異常值,記錄了明顯的構(gòu)造-熱事件,揭示出石炭紀(jì)末地層經(jīng)歷了較高的古地溫(表1、圖1和圖3).
表1 塔里木盆地鏡質(zhì)體反射率Table 1 Vitrinite reflectance in Tarim basin
注:Sh1井、BD2井和TC1井來(lái)源于中石化西北分公司,TZ1井?dāng)?shù)據(jù)來(lái)源于王鐵冠等(2011)和肖賢明等(1995).
圖3 塔里木盆地典型井鏡質(zhì)體反射率隨深度的演化關(guān)系Fig.3 Ro versus depth of typical wells in Tarim basin
3.2 單井熱史模擬及分析
本文根據(jù)EasyRo%模型(Burnham and Sweeney, 1989; Sweeney and Burnham, 1990),利用Ro值進(jìn)行熱史反演. 為探討二疊系與石炭系之間Ro值不連續(xù)與古地溫和地層剝蝕量的關(guān)系,選擇不同構(gòu)造單元中4口井為基礎(chǔ)進(jìn)行詳細(xì)模擬. 如巴楚隆起H4井二疊系與石炭系間Ro的差值若僅由地層抬升剝蝕造成的情況下,模擬結(jié)果顯示石炭系頂?shù)膭兾g量需超過(guò)3500 m(圖4a),綜合前人研究成果其剝蝕量為~1000 m(Li et al., 2014;Lin et al., 2012; 齊永安和劉國(guó)臣, 1999; 張一偉等, 2000; 李麗賢等, 2011; 叢培泓等, 2015). 若存在高溫?zé)崾录臈l件下,考慮巖漿上涌釋放充沛熱量烘烤地層,限定剝蝕量為1000 m,模擬結(jié)果顯示石炭紀(jì)末地層溫度顯著升高,達(dá)到峰值,促進(jìn)了有機(jī)質(zhì)的熱演化;而后地層溫度逐漸下降,到中二疊世恢復(fù)到正常熱狀態(tài)(圖4b). Sh1井、HT1井和TB2井模擬亦揭示出相同的結(jié)果:石炭-二疊系間Ro值的不連續(xù)演化是高溫?zé)崾录c抬升剝蝕共同作用的結(jié)果,石炭紀(jì)末地溫出現(xiàn)短暫的高峰;二疊紀(jì)初地層溫度快速降低,之后地層溫度主要受埋藏深度的控制.
塔里木盆地自震旦紀(jì)至今總體上逐漸變冷,前石炭紀(jì)穩(wěn)定演化,邱楠生等(2004)研究成果顯示出地溫梯度逐漸降低的規(guī)律. 研究井熱史模擬顯示石炭紀(jì)末盆地地溫梯度短暫地快速提升,至300 Ma左右達(dá)到高峰值,分布在4.8~5.6 ℃/100 m之間. 距今約285 Ma時(shí)高地溫梯度快速回落至3 ℃/100 m左右,進(jìn)入持續(xù)緩慢降低的階段(圖4). 地溫梯度高峰期在區(qū)域上呈現(xiàn)出西北高東南低的規(guī)律:在塔北地區(qū)(SL1井)最高,巴楚隆起北部(H4井)次之,塔中地區(qū)(TZ1井)最低(圖5). 由于塔里木盆地地質(zhì)歷史復(fù)雜,多期構(gòu)造運(yùn)動(dòng)疊加使得盆地內(nèi)地層遭受了不同程度的剝蝕,東部大部分地區(qū)二疊系缺失,南部二疊系則俯沖至昆侖山下,因此盆地東南部對(duì)石炭-二疊紀(jì)熱事件的記錄缺失,有待進(jìn)一步分析確認(rèn).
4.1 地?zé)釋W(xué)證據(jù)的可靠性
鏡質(zhì)體是由高等植物演化而來(lái),陸生植物大發(fā)展始于晚古生代. 泥盆紀(jì)晚期植物界完成脫離水體的變革,喬木型植物已占相當(dāng)?shù)膬?yōu)勢(shì),并可形成小型森林;石炭紀(jì)陸生植物進(jìn)一步繁榮,地球上首次出現(xiàn)
圖4 H4井、Sh1井、TZ1井和TB2井埋藏史和熱史模擬結(jié)果(a, c, e, g) 分別為H4井、Sh1井、TZ1井和TB2井僅有剝蝕的假設(shè)情況; (b, d, f, h)分別為H4井、Sh1井、TZ1井和TB2井在剝蝕和熱事件控制下的實(shí)際情況.Fig.4 Burial and thermal history of wells H4, Sh1, TZ1 and TB2(a, c, e, g) are simulated results only with erosion for Well H4, Sh1, TZ1 and TB2, respectively. (b, d, f, h) are simulated results controlled by erosion and magmatic activity for wells H4, Sh1, TZ1 and TB2, respectively.
圖5 塔里木盆地石炭紀(jì)末地溫梯度等值線圖剝蝕區(qū)據(jù)Li et al. (2014).Fig.5 Thermal gradient contours at end of Carboniferous in Tarim basin The erosion zone is from Li et al. (2014).
大規(guī)模的森林;晚二疊世開(kāi)始,全球許多地區(qū)裸子植物興起,占主導(dǎo)地位(杜遠(yuǎn)生和童金南, 1998; 劉本培和全秋琦, 1996; 肖傳桃, 2007). 因此晚志留世之后的沉積地層中包含鏡質(zhì)體,可以直接測(cè)量;而晚古生代之前沉積的地層中只含有瀝青、鏡狀體等,這些古溫標(biāo)必須通過(guò)公式轉(zhuǎn)換成等效鏡質(zhì)體反射率,準(zhǔn)確性相對(duì)較差. 在文中重點(diǎn)比較的二疊系、石炭系和上泥盆統(tǒng)中的Ro值是直接測(cè)量的結(jié)果,采用這些測(cè)量值進(jìn)行研究具有較高的可靠性.
4.2 石炭-二疊紀(jì)熱事件對(duì)塔里木盆地地溫場(chǎng)的影響
盆地內(nèi)巖漿活動(dòng)對(duì)地溫場(chǎng)的影響范圍和程度一直有爭(zhēng)議,本文中-下二疊統(tǒng)和上石炭統(tǒng)中零星Ro極高值點(diǎn)和石炭-二疊系Ro值錯(cuò)斷的現(xiàn)象為這一問(wèn)題提供了解釋的切入點(diǎn). 侵入體對(duì)圍巖熱影響的范圍與巖體性質(zhì)和規(guī)模有關(guān). 酸性巖漿的溫度約為700~900 ℃,中性巖漿的溫度約為900~1000 ℃,基性巖漿的溫度約為1000~1300 ℃,高溫熔融物質(zhì)在淺部地層運(yùn)移過(guò)程中冷卻結(jié)晶成巖釋放的熱量作用于圍巖有機(jī)質(zhì)熱成熟演化,導(dǎo)致Ro值急劇上升,可達(dá)6%以上,遠(yuǎn)遠(yuǎn)超出有機(jī)質(zhì)正常熱演化所能達(dá)到的程度(Annen and Sparks, 2002; Fjeldskaar et al., 2008; Galushkin, 1997; 王民, 2010). 巖漿沿構(gòu)造薄弱帶上涌時(shí)以不同形式侵入淺部地層或噴出地表,研究表明受火山巖體熱影響的圍巖厚度約為其厚度的0.3~4倍,通常火山侵入體規(guī)模較小,對(duì)多個(gè)地區(qū)火山侵入體周邊圍巖內(nèi)有機(jī)質(zhì)成熟程度統(tǒng)計(jì)結(jié)果顯示距侵入體數(shù)米至百米范圍內(nèi)的圍巖被嚴(yán)重烘烤,有機(jī)質(zhì)演化程度明顯增高(Fjeldskaar et al., 2008; Galushkin, 1997; Stewart et al., 2005; 陳榮書(shū)等, 1989; 高福紅等, 2009; 朱傳慶等, 2010a). 本文研究井中除TZ1井外均鉆遇了巖漿巖,以玄武巖為主,安山巖、英安巖和輝綠巖也可見(jiàn),厚度范圍在63~429 m之間,巖漿巖附近出現(xiàn)了Ro高值“漂點(diǎn)”(如Sh1井4913 m測(cè)量點(diǎn)為1.70%),離巖漿巖距離越近Ro值越高,但高溫作用范圍有限,距巖漿巖較遠(yuǎn)的有機(jī)質(zhì)演化正常,Ro值不受影響(圖3). 塔里木盆地中鄰近巖漿巖的Ro演化與前人研究規(guī)律一致:圍巖溫度隨與巖體距離的增加急劇降低,導(dǎo)致圍巖內(nèi)Ro值隨著快速下降,呈陡傾狀連續(xù)演化(圖6)(Clayton and Bostick, 1986; Galushkin, 1997; Simoneit et al., 2004; Simonet et al., 1981). 巖漿活動(dòng)難以大范圍提高地層溫度,尤其是在盆地尺度上,僅能作為局部熱源. 塔里木盆地石炭-二疊系之間Ro值不連續(xù),熱史模擬顯示塔里木盆地北部及西部地區(qū)石炭紀(jì)末地層溫度升高,意味著在巖漿噴發(fā)前盆地大范圍地區(qū)處于高地?zé)岜尘跋? 地球內(nèi)部活動(dòng)性大的巖漿易向低壓區(qū)域聚集形成巖漿房,其分布范圍遠(yuǎn)遠(yuǎn)超出巖漿侵入帶的范圍,該階段巖漿熔融形成過(guò)程中積聚的熱量通過(guò)熱傳導(dǎo)作用于上部地層,對(duì)區(qū)域熱演化有一定的影響,且影響時(shí)間超過(guò)巖漿侵入的影響時(shí)間(范桃園等, 1999; 朱傳慶等, 2010a). 塔里木盆地石炭紀(jì)末巖漿自地球深部攜帶熱量上涌的過(guò)程導(dǎo)致了區(qū)域性地溫升高,而二疊紀(jì)巖漿噴發(fā)活動(dòng)對(duì)地溫場(chǎng)的影響局限在巖體周?chē)Ч@著.
圖6 受巖漿巖影響的Ro值演化剖面圖中實(shí)線為Ro變化趨勢(shì).Fig.6 Vitrinite reflectance profile influenced by igneous rocksSolid line shows changing trend of Ro.
4.3 構(gòu)造-熱事件對(duì)深部構(gòu)造-巖漿活動(dòng)的指示
塔里木早-中二疊世大火成巖省是在我國(guó)繼峨眉山大火成巖省之后相對(duì)比較確認(rèn)的又一個(gè)大火成巖省,隨著研究的深入越來(lái)越多的證據(jù)指出塔里木大火成巖省與地幔柱關(guān)系密切. 朱傳慶等(2010a, 2010b)在恢復(fù)四川盆地?zé)崃餮莼返幕A(chǔ)上,證實(shí)古熱流的時(shí)間演化規(guī)律、空間分布特征與峨眉山巖漿活動(dòng)密切相關(guān),為峨眉山地幔柱在上揚(yáng)子地區(qū)的存在提供地?zé)釋W(xué)依據(jù).塔里木盆地構(gòu)造-熱演化亦具有相似的特征. 通常認(rèn)為地幔柱起源于核幔邊界,地幔柱柱頭直徑最大可達(dá)千米以上,具有異常高的溫度(Campbell, 2001),由于上升地幔柱對(duì)巖石圈的動(dòng)力和能量沖擊,可造成大規(guī)模的地殼抬升和地層溫度升高(Griffiths and Campbell, 1990),有別于一般的巖漿活動(dòng)和地層抬升.塔里木盆地近半?yún)^(qū)域內(nèi)異常的構(gòu)造-熱歷史從地?zé)釋W(xué)角度一定程度地指示出大火成巖省與地幔柱的關(guān)系. 塔里木盆地大火成巖省的巖漿噴出在300—275 Ma(Li et al., 2012b; Polyakov et al., 2008; Wei et al., 2014; Xu et al., 2014; Yu et al., 2011; Zhang et al., 2010, 2013; 陳漢林等, 1997, 2009; 楊樹(shù)鋒等, 2014),大規(guī)模玄武質(zhì)巖漿巖形成于290—288 Ma. 通過(guò)沉積地層學(xué)研究確定塔里木巖漿噴發(fā)前地殼快速大幅度抬升,強(qiáng)烈隆升發(fā)生于~300 Ma(Li et al., 2014),造成石炭-二疊系之間的不整合. 盆地地溫梯度值自石炭紀(jì)末期開(kāi)始迅速升高,最高值出現(xiàn)在~300 Ma,與地層強(qiáng)烈隆升的時(shí)間一致,呼應(yīng)了高溫地幔柱柱頭的上升過(guò)程(圖7b). 熱史模擬顯示石炭紀(jì)末期塔里木盆地地溫受熱效應(yīng)的影響程度自北向南方向減弱(圖5),該時(shí)期地層剝蝕程度亦表現(xiàn)出北強(qiáng)南弱的特點(diǎn),熱史演化和地層剝蝕在空間上相呼應(yīng). 隨后地溫梯度開(kāi)始迅速降低(圖7c),這是由于地幔柱的熱量在與塔里木巖石圈地幔發(fā)生持續(xù)作用和巖漿噴發(fā)的短暫過(guò)程中大量損耗. 由于地幔柱與巖石圈地幔的相互作用,大火成巖省從早期的玄武巖到晚期的侵入巖體現(xiàn)出從富集地幔組分轉(zhuǎn)變?yōu)樘潛p地幔組分的演化趨勢(shì),侵入巖均具有源于虧損地幔源區(qū)的特征(Li et al., 2012a; 勵(lì)音騏, 2013; 余星, 2009). 前人通過(guò)沉積學(xué)、巖石學(xué)和地球化學(xué)方法得出,地幔柱中心柱頭位于盆地北部地區(qū)(Tian et al., 2010; Zhang et al., 2013; 陳漢林等, 2006);值得注意的是天山二疊系玄武巖與塔里木玄武巖具有相似的地球化學(xué)特征,推斷是同一地幔柱的產(chǎn)物,但天山玄武巖低鈦高鎂、高εNd(t)值的特點(diǎn)表明其可能是來(lái)自高程度部分熔融的巖石圈地幔的產(chǎn)物,與地幔柱頭更為鄰近,塔里木盆地玄武巖高鈦低鎂、低εNd(t)值的特點(diǎn)意味著其可能來(lái)自于柱頭邊緣低程度部分熔融的區(qū)域(Qin et al., 2011; 夏林圻等, 2004). 塔里木盆地石炭紀(jì)末地溫梯度自北向南降低,反映出異常熱作用北強(qiáng)南弱的特點(diǎn),這種空間上的分布規(guī)律應(yīng)是對(duì)石炭紀(jì)末地幔柱柱頭烘烤淺部地層的響應(yīng),意味著盆地西北部更靠近熱源中心.
(1) 塔里木盆地西北部多口鉆井顯示二疊系與前二疊系內(nèi)鏡質(zhì)體反射率(Ro)值隨埋深出現(xiàn)不連續(xù)演化,Ro分析和熱史模擬表明,盆地內(nèi)自晚石炭世發(fā)育一期高溫?zé)崾录?,巖漿噴出前巖漿房的烘烤對(duì)盆地地溫場(chǎng)產(chǎn)生了重要影響,導(dǎo)致區(qū)域地溫升高,并在~300 Ma達(dá)到峰值,隨后至早二疊世溫度迅速下降;而二疊紀(jì)大規(guī)模巖漿噴發(fā)過(guò)程(290—288 Ma)的熱效應(yīng)僅能作用有限區(qū)域.
(2) 塔里木盆地石炭紀(jì)末-二疊紀(jì)初的構(gòu)造-熱事件,從地?zé)釋W(xué)角度提供了塔里木地幔柱存在的證據(jù),盆地地溫梯度具有北高南低的特點(diǎn),異常熱事件對(duì)盆地的影響向南部地區(qū)減弱,指示塔里木盆地北部更靠近熱源中心區(qū).
圖7 ~315—285 Ma塔里木盆地古地溫和地幔柱演化示意圖Fig.7 Schematic illustration for ~315—285 Ma evolution of thermal history and mantle plume in Tarim basin
Annen C, Sparks R S J. 2002. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust.Earth&PlanetaryScienceLetters, 203(3-4): 937-955.
Barker C E, Goldstein R H. 1990. Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer.Geology, 18(10): 1003-1006.
Barker C E, Pawlewicz M J. 1986. The correlation of vitrinite reflectance with maximum temperature in humic organic matter.∥ Paleogeothermics. Berlin Heidelberg: Springer, 79-93.
Buchardt B B, Lewan M. 1990. Reflectance of vitrinite-like macerals as a thermal maturity index for Cambrian-Ordovician Alum Shale, Southern Scandinavia.AAPGBulletin, 74(4): 394-406.
Burnham A K, Sweeney J J. 1989. A chemical kinetic model of vitrinite maturation and reflectance.GeochimicaetCosmochimicaActa, 53(10): 2649-2657.Campbell I H. 2001. Identification of ancient mantle plumes.∥ Mantle Plumes: their identification through time.GeologicalSocietyofAmericaSpecialPapers, 352: 5-21.
Chang J, Brown R W, Yuan W M, et al. 2014. Mesozoic cooling history of the “Bachu Uplift” in the Tarim Basin, China: Constraints from zircon fission-track thermochronology.RadiationMeasurements, 67: 5-14.
Chen H L, Yang S F, Dong C W, et al. 1997. Confirmation of Permian basite zone in Tarim Basin and its tectonic significance.Geochimica(in Chinese), 26(6): 77-87. Chen H L, Yang S F, Wang Q H, et al. 2006. Sedimentary response to the Early-Mid Permian basaltic magmatism in the Tarim plate.GeologyinChina(in Chinese), 33(3): 545-552.
Chen H L, Yang S F, Li Z L, et al. 2009. Spatial and temporal characteristics of Permian large igneous province in Tarim Basin.XinjiangPetroleumGeology(in Chinese), 30(2): 179-182.
Chen R S, He S, Wang Q L, et al. 1989. A Preliminary discussion of magma activity on the maturation of organic matter-taking Geyucheng-Wenan area of Hebei Province as an example.PetroleumExplorationandDevelopment(in Chinese), (1): 29-37. Clayton J L, Bostick N H. 1986. Temperature effects on kerogen and on molecular and isotopic composition of organic matter in Pierre Shale near an igneous dike.OrganicGeochemistry, 10(1-3): 135-143.
Cong P H, Wang H F, Qi K B, et al. 2015. Study on strata denudation quantity based on the seismic data. Geophysical Exploration Technology Seminar of CPS (in Chinese), 276-279.
Du Y S, Dong J N. 1998. Paleotology and Geochronic Geology (in Chinese). Wuhan: China University of Geoscience Press.
Fan T Y, Shi Y L, Zhou Y R. 1999. Effect of magma intrusion on the thermal evolution in a sedimentary basin.JournaloftheGraduateSchoolAcademiaSinica(in Chinese), 16(1): 63-69.
Fjeldskaar W, Helset H M, Johansen H, et al. 2008. Thermal modelling of magmatic intrusions in the Gjallar Ridge, Norwegian Sea: implications for vitrinite reflectance and hydrocarbon maturation.BasinResearch, 20(1): 143-159.
Galushkin Y I. 1997. Thermal effects of igneous intrusions on maturity of organic matter: a possible mechanism of intrusion.OrganicGeochemistry, 26(1-2): 645-658. Gao F H, Gao H M, Zhao L. 2009. Effects of volcanic eruptions on characteristics of source rocks: taking Shangkuli Formation of Labudalin basin as an example.ActaPetrologicaSinica(in Chinese), 25(10): 2671-2678. Griffiths R W, Campbell I H. 1990. Stirring and structure in mantle starting plumes.Earth&PlanetaryScienceLetters, 99(1-2): 66-78.
He B Z, Xu Z Q, Jiao C L, et al. 2011. Tectonic unconformities and their forming: implication for hydrocarbon accumulations in Tarim basin.ActaPetrologicaSinica(in Chinese), 27(1): 253-265.
He D F, Jia C Z, Li D S, et al. 2005. Formation and evolution of polycyclic superimposed Tarim Basin.Oil&GasGeology(in Chinese), 26(1): 64-77.
Jia C Z. 2004. Plate Tectonics and Continental Dynamics of Tarim Basin (in Chinese). Beijing: Petroleum Industry Press.
Jia C Z, Wei G Q. 2002. Tectonic characteristics and oil-gas potential of Tarim Basin.ChineseScienceBulletin(in Chinese), 47(S1): 1-8. Li C, Wang L S, Guo S P, et al. 2000. Thermal evolution in Tarim Basin.ActaPetroleiSinica(in Chinese), 21(3): 13-17. Li D X, Yang S F, Chen H L, et al. 2014. Late Carboniferous crustal uplift of the Tarim plate and its constraints on the evolution of the Early Permian Tarim Large Igneous Province.Lithos, 204: 36-46. Li L X, Li Y, Li G H, et al. 2011. Restoration method and application discussion of strata denudation quantity in Kongque river area of Tarim Basin.PetroleumGeologyandEngineering(in Chinese), 25(3): 43-52. Li M J, Wang T G, Chen J F, et al. 2010. Paleo-heat flow evolution of the Tabei Uplift in Tarim Basin, northwest China.JournalofAsianEarthSciences, 37(1): 52-66.
Li Y Q, Li Z L, Chen H L, et al. 2012a. Mineral characteristics and metallogenesis of the Wajilitag layered mafic-ultramafic intrusion and associated Fe-Ti-V oxide deposit in the Tarim large igneous province, northwest China.JournalofAsianEarthSciences, 49: 161-174.
Li Y Q. 2013. Study on magma dynamics and ore potential of the Early Permain Tarim Large Igneous Province [Ph. D. thesis] (in Chinese). Hangzhou: Zhejiang University.
Li Z L, Li Y Q, Chen H L, et al. 2012b. Hf isotopic characteristics of the Tarim Permian large igneous province rocks of NW China: Implication for the magmatic source and evolution.JournalofAsianEarthSciences, 49: 191-202.
Lin C S, Yang H J, Liu J Y, et al. 2012. Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China: Significance for the evolution of paleo-uplifts and tectonic geography during deformation.JournalofAsianEarthSciences, 46: 1-19.
Liu B P, Quan Q Q. 1996. Geochromic Geology. 3rd ed. (in Chinese). Beijing: Geological Publishing House.
Liu S W, Wang L S, Li C, et al. 2006. Lithospheric thermo-rheological structure and Cenozoic thermal regime in the Tarim Basin, Northwest China.ActaGeologicaSinica(in Chinese), 80(3): 344-350. Liu X, Guan P, Pan W Q, et al. 2011. Meticulous characterization of Permian volcanic Rocks′ spatial distribution and its geological significance in the Tarim Basin.ActaScientiarumNaturaliumUniversitatisPekinensis(in Chinese), 47(2): 315-320.Pan Y, Pan M, Tian W, et al. 2013. Redefined distribution of the Permian basalt in the central Tarim area: a new approach based on down hole logging data explanation.ActaGeologicaSinica(in Chinese), 87(10): 1542-1550. Polyakov G V, Izokh A E, Borisenko A S. 2008. Permian ultramafic-mafic magmatism and accompanying Cu-Ni mineralization in the Gobi-Tien Shan belt as a result of the Tarim plume activity.RussianGeologyandGeophysics, 49(7): 455-467.Qi Y A, Liu G C. 1999. Wave process analysis of sedimentary basin and erosion quantity of unconformities.JournalofJiaozuoInstituteofTechnology(in Chinese), 18(3): 161-165.
Qin K Z, Su B X, Sakyi P A, et al. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280 Ma mantle plume.AmericanJournalofScience, 311(3): 237-260. Qiu N S, Hu S B, He L J. 2004. Theory and Application of the Thermal Regime of the Sedimentary Basin (in Chinese). Beijing: Petroleum Industry Press.
Qiu N S, Chang J, Zuo Y H, et al. 2012. Thermal evolution and maturation of lower Paleozoic source rocks in the Tarim Basin, northwest China.AAPGBulletin, 96(5): 789-821.
Simonet B R T, Brenner S, Peters K E, et al. 1981. Thermal alteration of Cretaceous black shale by diabase intrusions in the eastern Atlantic. II-Effects on bitumen and kerogen.GeochimicaetCosmochimicaActa, 45(9): 1581-1602.
Simoneit B R T, Peters K E, Rohrback B G, et al. 2004. Thermal alteration of Cretaceous black shale from the Eastern Atlantic. III: Laboratory simulations.GeochemicalSocietySpecialPublications, 9: 321-340. Stewart A K, Massey M, Padgett P L, et al. 2005. Influence of a basic intrusion on the vitrinite reflectance and chemistry of the Springfield (No.5) coal, Harrisburg, Illinois.InternationalJournalofCoalGeology, 63(1-2): 58-67.
Sweeney J J, Burnham A K. 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics.AAPGBulletin, 74(10): 1559-1570.
Tian W, Campbell I H, Allen C M, et al. 2010. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis.ContributionstoMineralogy&Petrology, 160(3): 407-425. Wang M. 2010. Research on hydrocarbon generation kinetics and thermal effect of volcanism, its application [Ph. D. thesis] (in Chinese). Daqing: Northeast Petroleum University.
Wang T G, Dai S F, Li M J, et al. 2011. Stratigraphic thermohistory and its implications for regional geoevolution in the Tarim Basin, NW China.ScienceChinaEarthScience(in Chinese), 40(10):1331-1341.
Wang Y. 1998. Stratigraphic sequence of Tarim Basin in Neodevonian Carboniferous period.JournalofChinaUniversityofPetroleum(EditionofNaturalSciences) (in Chinese), 22(6):14-20.
Wei X, Xu Y G, Feng Y X, et al. 2014. Plume-lithosphere interaction in the generation of the Tarim large igneous province, NW China: Geochronological and geochemical constraints.AmericanJournalofScience, 314(1): 314-356.
Wen S M, Wang J Z, Wang G Z, et al. 2005. The development characteristic of the igneous rock in the Tarim Basin and its influence on the hydrocarbon accumulation.OilGeophysicalProspecting(in Chinese), 40(Suppl.): 33-39.
Xia L Q, Xia Z C, Xu X Y, et al. 2004. Carboniferous Tianshan igneous megaprovince and mantle plume.GeologicalBulletinofChina(in Chinese), 23(9-10): 903-910.
Xiao C T. 2007. Theories of Paleontology and Historical Geology (in Chinese). Beijing: Petroleum Industry Press.
Xiao X M, Wu Z J, Liu D H, et al. 1995. Evolution of maturity of the Early Paleozoic marine hydrocarbon source rocks on the basis of organic petrology.ActaSedimentologicaSinica(in Chinese), 13(2): 112-119.
Xu H L, Fang L H, Zhang X, et al. 2006. Characteristics of Early Permian magmatic rocks and their impact on hydrocarbon accumulation in Tarim Basin.ActaGeoscienticaSinica(in Chinese), 27(3): 235-240.
Xu Y G, Wei X, Luo Z Y, et al. 2014. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model.Lithos, 204: 20-35.
Yang S F, Chen H L, Ji D W, et al. 2005. Geological process of Early to Middle Permian magmatism in Tarim Basin and its geodynamic significance.GeologicalJournalofChinaUniversities(in Chinese), 11(4): 504-511. Yang S F, Chen H L, Li Z L, et al. 2013. Early Permian Tarim large igneous province in northwest China.ScienceChina:EarthScience, 56(12): 2015-2026.
Yu X. 2009. Magma evolution and deep geological processes of Early Permian Tarim larger igneous province [Ph. D. thesis] (in Chinese). Hangzhou: Zhejiang University.
Yu X, Yang S F, Chen H L, et al. 2011. Permian flood basalts from the Tarim Basin, Northwest China: SHRIMP zircon U-Pb dating and geochemical characteristics.GondwanaResearch, 20(2-3): 485-497. Zhang C L, Xu Y G, Li Z X, et al. 2010. Diverse Permian magmatism in the Tarim Block, NW China: genetically linked to the Permian Tarim mantle plume?Lithos, 119(3-4): 537-552.
Zhang D Y, Zhang Z C, Santosh M, et al. 2013. Perovskite and baddeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume.Earth&PlanetaryScienceLetters, 361: 238-248.
Zhang S C, Liang D G, Zhang B M, et al. 2004. Petroleum Geology and Exploration of Tarim Basin (Vol.7): Generation of Marine Hydrocarbon in Tarim Basin (in Chinese). Beijing: Petroleum Industry Press.
Zhang Y W, Jin Z J, Liu G C, et al. 2000. Study on the formation of unconformaties and the amount of eroded sedimentation in Tarim Basin.EarthScienceFrontiers(in Chinese), 7(4): 449-457.
Zhu C Q, Tian Y T, Xu M, et al. 2010a. The effect of Emeishan supper mantle plume to the thermal evolution of source rocks in the Sichuan basin.ChineseJ.Geophys. (in Chinese), 53(1): 119-127, doi: 10.3969/j.issn.0001-5733.2010.01.013.
Zhu C Q, Xu M, Yuan Y S, et al. 2010b. Palaeogeothermal response and record of the effusing of Emeishan basalts in the Sichuan basin.ChineseScienceBulletin, 55(10): 949-956.
Zhu R K, Luo P, Luo Z. 2002. Lithofacies palaeogeography of the late Devonian and Carboniferous in Tarim Basin.JournalofPalaeogeography(in Chinese), 4(1): 13-24.
Zuo Y H, Li J W, Li W Z, et al. 2015. Mesozoic and Cenozoic “thermal” lithospheric thickness evolution in the Tarim Basin.ProgressinGeophysics(in Chinese), 30(4): 1608-1615, doi: 10.6038/pg20150415.
附中文參考文獻(xiàn)
陳漢林, 楊樹(shù)鋒, 董傳萬(wàn)等. 1997. 塔里木盆地二疊紀(jì)基性巖帶的確定及大地構(gòu)造意義. 地球化學(xué), 26(6): 77-87.
陳漢林, 楊樹(shù)鋒, 王清華等. 2006. 塔里木板塊早-中二疊世玄武質(zhì)巖漿作用的沉積響應(yīng). 中國(guó)地質(zhì), 33(3): 545-552.
陳漢林, 楊樹(shù)鋒, 厲子龍等. 2009. 塔里木盆地二疊紀(jì)大火成巖省發(fā)育的時(shí)空特點(diǎn). 新疆石油地質(zhì), 30(2): 179-182.
陳榮書(shū), 何生, 王青玲等. 1989. 巖漿活動(dòng)對(duì)有機(jī)質(zhì)成熟作用的影響初探——以冀中葛漁城-文安地區(qū)為例. 石油勘探與開(kāi)發(fā), (1): 29-37.
叢培泓, 王海峰, 齊昆博等. 2015. 基于地震數(shù)據(jù)的剝蝕量恢復(fù)方法研究. 中國(guó)石油學(xué)會(huì)2015年物探技術(shù)研討會(huì)論文集, 276-279. 杜遠(yuǎn)生, 童金南. 1998. 古生物地史學(xué)概論. 武漢: 中國(guó)地質(zhì)大學(xué)出版社.
范桃園, 石耀霖, 周炎如. 1999. 沉積盆地?zé)嵫莼^(guò)程中的巖漿作用. 中國(guó)科學(xué)院大學(xué)學(xué)報(bào), 16(1): 63-69.
高福紅, 高紅梅, 趙磊. 2009. 火山噴發(fā)活動(dòng)對(duì)烴源巖的影響: 以拉布達(dá)林盆地上庫(kù)力組為例. 巖石學(xué)報(bào), 25(10): 2671-2678.
何碧竹, 許志琴, 焦存禮等. 2011. 塔里木盆地構(gòu)造不整合成因及對(duì)油氣成藏的影響. 巖石學(xué)報(bào), 27(1): 253-265.
何登發(fā), 賈承造, 李德生等. 2005. 塔里木多旋回疊合盆地的形成與演化. 石油與天然氣地質(zhì), 26(1): 64-77.
賈承造. 2004. 塔里木盆地板塊構(gòu)造與大陸動(dòng)力學(xué). 北京: 石油工業(yè)出版社.
賈承造, 魏國(guó)齊. 2002. 塔里木盆地構(gòu)造特征與含油氣性. 科學(xué)通報(bào), 47(增刊): 1-8.
李成, 王良書(shū), 郭隨平等. 2000. 塔里木盆地?zé)嵫莼? 石油學(xué)報(bào), 21(3): 13-17.
李麗賢, 李延, 李國(guó)輝等. 2011. 塔里木盆地孔雀河地區(qū)地層剝蝕量恢復(fù)方法及應(yīng)用探討. 石油地質(zhì)與工程, 25(3): 43-52.
勵(lì)音騏. 2013. 塔里木早二疊世大火成巖省巖漿動(dòng)力學(xué)及含礦性研究[博士論文]. 杭州: 浙江大學(xué).
劉本培, 全秋琦. 1996. 地史學(xué)教程. 3版. 北京: 地質(zhì)出版社.
劉紹文, 王良書(shū), 李成等. 2006. 塔里木盆地巖石圈熱-流變學(xué)結(jié)構(gòu)和新生代熱體制. 地質(zhì)學(xué)報(bào), 80(3): 344-350.
劉曉, 關(guān)平, 潘文慶等. 2011. 塔里木盆地二疊系火山巖空間展布的精細(xì)刻畫(huà)及其地質(zhì)意義. 北京大學(xué)學(xué)報(bào): 自然科學(xué)版, 47(2): 315-320.
潘贅, 潘懋, 田偉等. 2013. 塔里木中部二疊紀(jì)玄武巖分布的重新厘定: 基于測(cè)井?dāng)?shù)據(jù)的新認(rèn)識(shí). 地質(zhì)學(xué)報(bào), 87(10): 1542-1550.
齊永安, 劉國(guó)臣. 1999. 沉積盆地波動(dòng)分析與不整合剝蝕量研究: 以新疆塔里木盆地為例. 焦作工學(xué)院學(xué)報(bào), 18(3): 161-165.
邱楠生, 胡圣標(biāo), 何麗娟. 2004. 沉積盆地?zé)狍w制研究的理論與應(yīng)用. 北京: 石油工業(yè)出版社.
王民. 2010. 有機(jī)質(zhì)生烴動(dòng)力學(xué)及火山作用的熱效應(yīng)研究與應(yīng)用[博士論文]. 大慶: 東北石油大學(xué).
王鐵冠, 戴世峰, 李美俊等. 2011. 塔里木盆地臺(tái)盆區(qū)地層有機(jī)質(zhì)熱史及其對(duì)區(qū)域地質(zhì)演化研究的啟迪. 中國(guó)科學(xué): 地球科學(xué), 40(10): 1331-1341.
王毅. 1998. 塔里木盆地晚泥盆世與石炭紀(jì)沉積演化. 石油大學(xué)學(xué)報(bào): 自然科學(xué)版, 22(6): 14-20.
溫聲明, 王建忠, 王貴重等. 2005. 塔里木盆地火成巖發(fā)育特征及對(duì)油氣成藏的影響. 石油地球物理勘探, 40(增刊): 33-39.
夏林圻, 夏祖春, 徐學(xué)義等. 2004. 天山石炭紀(jì)大火成巖省與地幔柱. 地質(zhì)通報(bào), 23(9-10): 903-910.
肖傳桃. 2007. 古生物學(xué)與地史學(xué)概論. 北京: 石油工業(yè)出版社.
肖賢明, 吳治君, 劉德漢等. 1995. 早古生代海相烴源巖成熟度的有機(jī)巖石學(xué)評(píng)價(jià)方法. 沉積學(xué)報(bào), 13(2): 112-119.
徐漢林, 方樂(lè)華, 張昕等. 2006. 塔里木盆地早二疊世巖漿特征及其對(duì)油氣成藏關(guān)系初探. 地球?qū)W報(bào), 27(3): 235-240.
楊樹(shù)鋒, 陳漢林, 冀登武等. 2005. 塔里木盆地早-中二疊世巖漿作用過(guò)程及地球動(dòng)力學(xué)意義. 高校地質(zhì)學(xué)報(bào), 11(4): 504-511.
楊樹(shù)鋒, 陳漢林, 厲子龍等. 2014. 塔里木早二疊世大火成巖省. 中國(guó)科學(xué): 地球科學(xué), 44(2): 187-199.
余星. 2009. 塔里木早二疊世大火成巖省的巖漿演化與深部地質(zhì)作用[博士論文]. 杭州: 浙江大學(xué).
張水昌, 梁狄剛, 張寶民等. 2004. 塔里木盆地石油地質(zhì)與勘探叢書(shū)(卷七): 塔里木盆地海相油氣的生成. 北京: 石油工業(yè)出版社, 1-18.
張一偉, 金之鈞, 劉國(guó)臣等. 2000. 塔里木盆地環(huán)滿加爾地區(qū)主要不整合形成過(guò)程及剝蝕量研究. 地學(xué)前緣, 7(4): 449-457.
朱傳慶, 田云濤, 徐明等. 2010a. 峨眉山超級(jí)地幔柱對(duì)四川盆地?zé)N源巖熱演化的影響. 地球物理學(xué)報(bào), 53(1): 119-127, doi: 10.3969/j.issn.0001-5733.2010.01.013.
朱傳慶, 徐明, 袁玉松等. 2010b. 峨眉山玄武巖噴發(fā)在四川盆地的地?zé)釋W(xué)響應(yīng). 科學(xué)通報(bào), 55(6): 474-482.
朱如凱, 羅平, 羅忠. 2002. 塔里木盆地晚泥盆世及石炭紀(jì)巖相古地理. 古地理學(xué)報(bào), 4(1): 13-24.
左銀輝, 李佳蔚, 李文正等. 2015. 塔里木盆地中、新生代“熱”巖石圈厚度演化. 地球物理學(xué)進(jìn)展, 30(4): 1608-1615, doi: 10.6038/pg20150415.
(本文編輯 何燕)
Carboniferous-Permian abnormal thermal evolution of the Tarim basin and its implication for deep structure and magmatic activity
LI Jia-Wei1,2, LI Zhong1*, QIU Nan-Sheng3, ZUO Yin-Hui4, YU Jing-Bo1, LIU Jia-Qing1
1InstituteofGeologyandGeophysics,ChineseAcademyofSciences,Beijing100029,China2UniversityofChineseAcademyofSciences,Beijing100049,China3ResearchCenterofBasinandReservoir,ChinaUniversityofPetroleum,Beijing102249,China4CollegeofEnergyResources,ChengduUniversityofTechnology,Chengdu610059,China
Measured vitrinite reflectance (Ro) data reveal a discontinuous evolution between the Carboniferous and the Permian which resulted from tectonic uplift and erosion and thermal events in the northwestern Tarim basin.Roevolution records a tectono-thermal event during the Permo-Carboniferous. The simulated thermal history suggests that geothermal gradients began to increase from the end of Carboniferous and reached a peak of 4.8~5.6 ℃/100 m at about 300 Ma. Geothermal gradients decreased from the Early Permian. The influenced area of the thermal event is consistent with the distribution of large igneous provinces in Tarim basin while the thermal event significantly affected geotemperature of Tarim basin before major eruption of basalt with limited heating effects during 290—288 Ma. Therefore the abnormal high temperature gradients should be caused by deep igneous activity. This result sheds a light on thermal evolution genesis of the Tarim basin.
Tarim basin; Vitrinite reflectance; Paleogeothermal gradient; Thermal event
10.6038/cjg20160916.
國(guó)家自然科學(xué)基金項(xiàng)目(41372120),國(guó)家重大專(zhuān)項(xiàng)課題(2011ZX05008-003), 國(guó)家杰出青年基金項(xiàng)目(41125010)和國(guó)家自然科學(xué)基金項(xiàng)目(41302084)資助.
李佳蔚,女,1987年生,博士研究生,主要從事盆地構(gòu)造-熱歷史和碳酸鹽巖成巖作用方面的研究. E-mail:ljwsmile@126.com
*通訊作者 李忠,男,1964年生,研究員,主要從事沉積學(xué)與盆地動(dòng)力學(xué)研究工作. E-mail:lizhong@mail.igcas.ac.cn
10.6038/cjg20160916
P314
2016-02-01,2016-04-11收修定稿
李佳蔚, 李忠, 邱楠生等. 2016. 塔里木盆地石炭-二疊紀(jì)異常熱演化及其對(duì)深部構(gòu)造-巖漿活動(dòng)的指示. 地球物理學(xué)報(bào),59(9):3318-3329,
Li J W, Li Z, Qiu N S, et al. 2016. Carboniferous-Permian abnormal thermal evolution of the Tarim basin and its implication for deep structure and magmatic activity.ChineseJ.Geophys. (in Chinese),59(9):3318-3329,doi:10.6038/cjg20160916.