• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      河蜆(Corbicula fluminea)對(duì)霍甫水絲蚓(Limnodrilus hoffmeis?teri)生物擾動(dòng)的抑制效應(yīng)?

      2016-11-24 09:31:46羅旭光寧曉雨蔡永久于謹(jǐn)磊楊桂軍李寬意
      湖泊科學(xué) 2016年6期
      關(guān)鍵詞:藻類湖泊沉積物

      靳 輝,羅旭光,谷 嬌,寧曉雨,蔡永久,何 虎,于謹(jǐn)磊,楊桂軍,李寬意

      (1:江南大學(xué)環(huán)境與土木工程學(xué)院,無錫214122)(2:內(nèi)蒙古農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院,呼和浩特010018)(3:中國(guó)科學(xué)院南京地理與湖泊研究所湖泊與環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京210008)(4:中國(guó)科學(xué)院大學(xué),北京100049)

      河蜆(Corbicula fluminea)對(duì)霍甫水絲蚓(Limnodrilus hoffmeis?teri)生物擾動(dòng)的抑制效應(yīng)?

      靳 輝1,3,羅旭光2,谷 嬌3,4,寧曉雨3,蔡永久3,何 虎3,于謹(jǐn)磊3,楊桂軍1??,李寬意3

      (1:江南大學(xué)環(huán)境與土木工程學(xué)院,無錫214122)(2:內(nèi)蒙古農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院,呼和浩特010018)(3:中國(guó)科學(xué)院南京地理與湖泊研究所湖泊與環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京210008)(4:中國(guó)科學(xué)院大學(xué),北京100049)

      近年來太湖局部區(qū)域水體富營(yíng)養(yǎng)化仍有加劇趨勢(shì),這可能與底棲動(dòng)物生物擾動(dòng)促進(jìn)沉積物營(yíng)養(yǎng)鹽釋放有關(guān).耐污種霍甫水絲蚓(Limnodrilus hoffmeisteri)與常被用于生態(tài)修復(fù)的河蜆(Corbicula fluminea)均為太湖底棲動(dòng)物優(yōu)勢(shì)種類,本文設(shè)計(jì)了雙因素4組處理(對(duì)照組、河蜆組、霍甫水絲蚓組和混合組(霍甫水絲蚓和河蜆))的室外受控實(shí)驗(yàn),研究在太湖2種種群分布交錯(cuò)區(qū),河蜆能否對(duì)霍甫水絲蚓的生物擾動(dòng)產(chǎn)生抑制效應(yīng).結(jié)果表明:霍甫水絲蚓擾動(dòng)能顯著增加水體總氮、總磷濃度,同時(shí)促進(jìn)浮游植物生長(zhǎng);河蜆通過濾食和生物沉降作用顯著降低水體總氮、總磷和懸浮物濃度,抑制浮游植物生長(zhǎng),從而促進(jìn)了底棲藻類的生長(zhǎng);河蜆對(duì)霍甫水絲蚓生物擾動(dòng)效應(yīng)有抑制作用.

      河蜆;霍甫水絲蚓;沉積物;營(yíng)養(yǎng)鹽釋放;太湖

      ?國(guó)家自然科學(xué)基金項(xiàng)目(41571086,31370477,41230744)和中國(guó)科學(xué)院重點(diǎn)項(xiàng)目(KFZD-SW-302-02)聯(lián)合資助. 2015-11-20收稿;2016-08-30收修改稿.靳輝(1990~),男,碩士研究生;E-mail:jinhuihj@163.com.

      ??通信作者;E-mail:yanggj1979@163.com.

      寡毛類(如霍甫水絲蚓(Limnodrilus hoffmeisteri))是富營(yíng)養(yǎng)水體底棲動(dòng)物典型優(yōu)勢(shì)種,該種類生物能夠通過攝食、匍行、筑穴、鉆孔等形式對(duì)沉積物顆粒產(chǎn)生搬運(yùn)和混合,從而促進(jìn)沉積物中營(yíng)養(yǎng)鹽向上覆水釋放,這些營(yíng)養(yǎng)鹽被浮游植物利用后會(huì)使得水體維持一個(gè)較高的濁度,從而不利于湖泊生態(tài)系統(tǒng)的藻-草型轉(zhuǎn)換[1].河蜆(Corbicula fluminea)屬軟體動(dòng)物雙殼綱,穴居于淡水及咸淡水底沉積物表層[2],廣泛分布在我國(guó)的淡水湖泊、河流、水庫等水體.研究發(fā)現(xiàn)河蜆濾食能顯著降低浮游植物密度,增加水體透明度,進(jìn)而有利于沉水植物恢復(fù)[3].通過放養(yǎng)河蜆或蚌等土著雙殼類濾食動(dòng)物來改善水質(zhì)也是富營(yíng)養(yǎng)湖泊生態(tài)修復(fù)的常用手段之一.到目前為止,對(duì)于寡毛類和雙殼類對(duì)沉積物-水界面的營(yíng)養(yǎng)鹽循環(huán)都已經(jīng)進(jìn)行了大量的研究,結(jié)果顯示寡毛類(如水絲蚓)生物擾動(dòng)對(duì)于沉積物內(nèi)源釋放具有促進(jìn)作用[4-6],而河蜆則具有降低水體葉綠素a濃度、改善水質(zhì)的功能[7-9],但是對(duì)于二者之間是否存在交互作用還有待闡明.河蜆與霍甫水絲蚓均為太湖底棲動(dòng)物優(yōu)勢(shì)種[10],在2個(gè)種群的交錯(cuò)區(qū),二者共同作用會(huì)使?fàn)I養(yǎng)鹽循環(huán)產(chǎn)生何種變化?河蜆能否抑制霍甫水絲蚓生物擾動(dòng)導(dǎo)致的水體營(yíng)養(yǎng)鹽濃度升高?為此,本文設(shè)計(jì)了兩因素的受控實(shí)驗(yàn),以河蜆和霍甫水絲蚓為研究對(duì)象,探討河蜆在“水絲蚓—營(yíng)養(yǎng)鹽釋放”過程中的作用,以期為富營(yíng)養(yǎng)湖泊的生態(tài)修復(fù)提供參考依據(jù).

      1 材料與方法

      實(shí)驗(yàn)容器為封底有機(jī)玻璃柱(內(nèi)徑14 cm,深度50 cm).每柱加入深度為15 cm經(jīng)200 μm篩網(wǎng)過濾且充分混勻的湖泊表層沉積物,隨后沿壁緩緩注入經(jīng)450目篩網(wǎng)過濾后的湖水,盡量避免注水期間對(duì)表層沉積物的擾動(dòng),實(shí)驗(yàn)所用沉積物、湖水均取自太湖梅梁灣.

      實(shí)驗(yàn)設(shè)2個(gè)影響因子共4種處理,分別為對(duì)照組、河蜆組、霍甫水絲蚓組和混合組(霍甫水絲蚓和河蜆),每種處理設(shè)4個(gè)重復(fù),共有機(jī)玻璃柱16個(gè).為了減緩實(shí)驗(yàn)水溫波動(dòng),有機(jī)玻璃柱露天放置于4個(gè)注滿水的藍(lán)色方缸(長(zhǎng)×寬×高為68 cm×53 cm×38.5 cm)內(nèi).2014年9月15日按上述方法往有機(jī)玻璃柱中加入沉積物和水樣,靜置一周后挑選體長(zhǎng)和活性相似的霍甫水絲蚓8份(150條/組),分別加到混合組和水絲蚓組中,同時(shí)稱取殼長(zhǎng)和生物量相近的河蜆8份(4只/組),分別加到混合組和河蜆組中,穩(wěn)定一夜后于2014年9月22日正式開始實(shí)驗(yàn).實(shí)驗(yàn)前一周將采自采泥點(diǎn)的霍甫水絲蚓和河蜆分別暫養(yǎng)于2 L的燒杯和白色方缸(長(zhǎng)×寬×高為122 cm×71 cm×62 cm)中備用.河蜆和霍甫水絲蚓的密度設(shè)置參照2007-2008年太湖的野外調(diào)查結(jié)果[10].

      實(shí)驗(yàn)期間每次采樣后補(bǔ)加同體積純凈水,為抑制管壁附著生物的生長(zhǎng),每2天利用軟毛刷輕輕刷除管壁附著生物.實(shí)驗(yàn)期間平均水溫為18.7℃,范圍16.9~20.6℃.

      實(shí)驗(yàn)持續(xù)20 d,分別于0、5、10、15、20 d采樣測(cè)定水體總氮(TN)、總磷(TP)和葉綠素a(Chl.a)濃度,方法依據(jù)《湖泊富營(yíng)養(yǎng)化調(diào)查規(guī)范》[11];最后一次采樣用內(nèi)徑為1.6 cm的有機(jī)玻璃管采集厚度約為1 cm的表層沉積物,測(cè)定底棲藻葉綠素a濃度,方法參照水體葉綠素a濃度測(cè)定方法熱乙醇法;同時(shí)測(cè)定水體懸浮物(TSS)濃度,方法參照《湖泊富營(yíng)養(yǎng)化調(diào)查規(guī)范》[11].TN、TP和Chl.a采用重復(fù)測(cè)量方差分析(repeated-measures two-way ANOVA)進(jìn)行比較,水體懸浮物(TSS)及底棲藻葉綠素a濃度采用兩因素方差分析(two-way ANOVA)進(jìn)行比較,數(shù)據(jù)統(tǒng)計(jì)分析均采用SPSS 19.0軟件.

      2 結(jié)果

      2.1 水體總氮、總磷和葉綠素a濃度

      霍甫水絲蚓、河蜆均對(duì)水體TN濃度具有顯著影響(P<0.01),且二者間存在交互作用(P<0.01).實(shí)驗(yàn)結(jié)束時(shí),河蜆組TN濃度比對(duì)照組降低了24.3%;添加河蜆后,混合組TN濃度比霍甫水絲蚓組降低了43.0%.霍甫水絲蚓能顯著增加水體TN濃度,實(shí)驗(yàn)結(jié)束時(shí),霍甫水絲蚓組TN濃度與對(duì)照組相比增加了27.8%.

      河蜆和霍甫水絲蚓均對(duì)水體TP濃度具有顯著影響(P<0.05),二者間無交互作用(P>0.05).河蜆能顯著降低水體TP濃度,實(shí)驗(yàn)結(jié)束時(shí),河蜆組TP濃度與對(duì)照組相比降低了14.1%.霍甫水絲蚓能顯著增加水體TP濃度,實(shí)驗(yàn)結(jié)束時(shí),霍甫水絲蚓組TP濃度為對(duì)照組的1.2倍.

      圖1 水體中TN、TP和Chl.a濃度的時(shí)間變化(平均值±標(biāo)準(zhǔn)誤)Fig.1 Temporal changes of TN,TP and Chl.a concentrations in water column

      表1 水體TN、TP、Chl.a重復(fù)測(cè)量方差分析及TSS和底棲藻葉綠素a兩因素方差分析結(jié)果Tab.1 Analysis of repeated-measures two-way ANOVA results for TN,TP,Chl.a and analysis of two-way ANOVA results for TSS and Chl.a concentration of benthic algae

      河蜆與霍甫水絲蚓均對(duì)水體Chl.a濃度具有顯著影響(P<0.05),二者間存在交互作用(P<0.05).實(shí)驗(yàn)結(jié)束時(shí),河蜆組Chl.a濃度與對(duì)照組相比降低了73.3%,添加河蜆后,混合組Chl.a濃度比霍甫水絲蚓組降低了83.3%.霍甫水絲蚓能顯著增加水體Chl.a濃度,實(shí)驗(yàn)結(jié)束時(shí),霍甫水絲蚓組Chl.a濃度是對(duì)照組的1.92倍.

      2.2 水體懸浮物和底棲藻葉綠素a濃度

      河蜆對(duì)TSS及底棲藻葉綠素a濃度具有顯著影響(P<0.01),實(shí)驗(yàn)結(jié)束時(shí),河蜆組中TSS濃度與對(duì)照組相比降低了73.8%,而底棲藻葉綠素a濃度顯著高于對(duì)照組26.8%.霍甫水絲蚓對(duì)TSS及底棲藻葉綠素a濃度無顯著影響(P>0.05),二者間無交互作用(P>0.05)(圖2).

      圖2 實(shí)驗(yàn)結(jié)束時(shí)水體中懸浮物和底棲藻葉綠素a濃度(平均值±標(biāo)準(zhǔn)誤)Fig.2 The TSS concentration in water column and the Chl.a concentration of benthic algae measured at the end of experiment

      3 討論

      研究結(jié)果表明霍甫水絲蚓能顯著增加水體總氮、總磷濃度,這與Zhang等[12]、吳方同等[6,13]的研究結(jié)果一致.水絲蚓的棲居方式是將身體的前端埋于底泥中,后端露于水中且不停擺動(dòng)進(jìn)行呼吸,產(chǎn)生的垂向通道有助于上覆水和間隙水相互交換,促進(jìn)沉積物中的氮、磷向水中釋放[4,14].水絲蚓的攝食和排泄將有機(jī)物轉(zhuǎn)化為無機(jī)物,也促進(jìn)了氮、磷向水體中釋放[15-16].此外,底棲動(dòng)物的生物擾動(dòng)還會(huì)顯著提高沉積物中微生物的礦化活動(dòng),提高營(yíng)養(yǎng)物的再生效率[17-18],而沉積物中溶出的氮磷最終通過生物擴(kuò)散[20]釋放到水體中,進(jìn)而增加水體總氮、總磷濃度.在本研究中實(shí)驗(yàn)前10 d水體總氮、總磷濃度均呈上升趨勢(shì),之后開始出現(xiàn)下降,一方面可能是因?yàn)楦∮卧孱惏l(fā)生沉降,另一方面則可能是因?yàn)楣鼙诟街锕潭瞬糠值?、?

      霍甫水絲蚓的大量存在可能會(huì)進(jìn)一步加劇湖泊的富營(yíng)養(yǎng)化程度.水絲蚓能耐受由于有機(jī)物大量被分解而造成的低氧甚至缺氧環(huán)境,故而能在富營(yíng)養(yǎng)嚴(yán)重的水體生存,而其它底棲動(dòng)物在這種環(huán)境下往往受到抑制甚至死亡[21],這就使得其在富營(yíng)養(yǎng)化水體中易成為優(yōu)勢(shì)底棲種.本研究顯示,水絲蚓能顯著促進(jìn)內(nèi)源釋放,且對(duì)浮游藻類的生長(zhǎng)具有顯著促進(jìn)作用,由此推測(cè)水絲蚓對(duì)富營(yíng)養(yǎng)化存在一定的正反饋效應(yīng).

      本研究結(jié)果顯示,河蜆能顯著降低水體總氮、總磷及葉綠素a濃度.類似地,Hwang等[8]研究發(fā)現(xiàn),在高密度河蜆的處理中,上覆水葉綠素濃度持續(xù)從87 mg/L降至25 mg/L,同時(shí)水體懸浮物及總磷濃度也顯著降低.Welker等[22]也發(fā)現(xiàn)雙殼類能顯著降低浮游植物生物量和總磷濃度,此外徐海軍等[9]發(fā)現(xiàn)河蜆對(duì)藻類的消除率可達(dá)88%±3.1%.水體氮、磷濃度顯著降低的主要原因,一方面是河蜆對(duì)浮游植物和顆粒物的高強(qiáng)度濾食[23],另一方面,河蜆對(duì)底棲藻類的生長(zhǎng)具有促進(jìn)作用,抑制了沉積物營(yíng)養(yǎng)釋放,從而間接降低水體總氮、總磷濃度.研究表明底棲藻類生物量與光照強(qiáng)度存在正相關(guān)[24],河蜆的濾食和生物沉降作用能增加水體透明度,從而增加底棲藻類的生物量,進(jìn)而使底棲藻類對(duì)營(yíng)養(yǎng)鹽的直接吸收和固定作用增強(qiáng)[25-26],最終減少水體氮磷濃度.而河蜆對(duì)于水體葉綠素a濃度的降低作用主要是由其濾食作用所致.研究表明食物質(zhì)量和顆粒物粒徑大小會(huì)對(duì)濾食產(chǎn)生影響[27].本研究中浮游植物主要由藍(lán)藻門的彎形小尖頭藻(Raphidiopsis curvata)、束絲藻(Aphanizomenon sp.)和裸藻門的裸藻(Euglena sp.)構(gòu)成,分別占整個(gè)浮游植物群落的87.5%、12.4%和0.06%(未發(fā)表數(shù)據(jù)),一方面,藍(lán)藻作為一種低質(zhì)量食物[28],河蜆作為非選擇性濾食者[29]其為獲得足夠的營(yíng)養(yǎng)可能會(huì)加強(qiáng)對(duì)藍(lán)藻的濾食;另一方面,3種藻類的粒徑不會(huì)對(duì)河蜆的鰓造成堵塞而影響其濾食過程,從而使水體葉綠素a濃度顯著下降.此外,底棲藻類在抑制沉積物營(yíng)養(yǎng)釋放的同時(shí),也能從水體中吸收營(yíng)養(yǎng),從而抑制了浮游藻類生長(zhǎng),致使水體葉綠素a濃度下降.

      河蜆能夠顯著減弱水絲蚓對(duì)總氮和葉綠素a濃度的增加作用,表明在水絲蚓分布區(qū)投加河蜆應(yīng)能起到改善富營(yíng)養(yǎng)水體的作用.Howard等[30]研究發(fā)現(xiàn)貝類的生物沉降物富含營(yíng)養(yǎng)物質(zhì)且易于同化,故河蜆的排泄及濾食可能為水絲蚓提供額外食物來源,從而減弱其為獲取食物而進(jìn)行的掘穴活動(dòng)所帶來的對(duì)沉積物的擾動(dòng),Lewandowski等[31]研究發(fā)現(xiàn)水絲蚓可鉆到沉積物—水界面下20 cm,故而掘穴活動(dòng)的減弱,會(huì)減少上覆水與深層沉積物的進(jìn)一步接觸,從而減弱深層沉積物中營(yíng)養(yǎng)物質(zhì)的釋放,從而使水體總氮濃度顯著降低.而葉綠素a濃度的降低主要是河蜆對(duì)浮游藻類的濾食作用超過水絲蚓營(yíng)養(yǎng)釋放造成的浮游藻類生長(zhǎng)所致.本研究中水絲蚓密度約為9700 ind./m2,而河蜆密度約為260 ind./m2(太湖平均密度),在此密度設(shè)置下,河蜆能對(duì)富營(yíng)養(yǎng)化水質(zhì)起到改善作用,但有研究表明在富營(yíng)養(yǎng)化嚴(yán)重的局部區(qū)域水絲蚓密度可大于60000 ind./m2[32],在水絲蚓極高密度區(qū)域由于底泥有機(jī)質(zhì)含量極高,河蜆能否存活并具有水質(zhì)改善作用則有待進(jìn)一步研究.

      4 結(jié)論

      1)水絲蚓生物擾動(dòng)能顯著增加水體總氮和總磷濃度,對(duì)浮游藻類生長(zhǎng)具有促進(jìn)作用.

      2)河蜆能通過濾食和生物沉降作用降低水體總氮、總磷、葉綠素a及懸浮物濃度,提高水體透明度,進(jìn)而促進(jìn)底棲藻類的生長(zhǎng),同時(shí)對(duì)水絲蚓生物擾動(dòng)所致的沉積物內(nèi)源釋放具有抑制作用.

      3)河蜆和水絲蚓對(duì)水體總氮和葉綠素a濃度存在交互作用,河蜆削弱了水絲蚓對(duì)總氮和葉綠素a濃度的增加作用.

      [1] Reise K.Tidal flat ecology.An experimental approach to species interactions.Berlin Heidelberg:Springer-Verlag,1985.

      [2] Zhang Hucai,Chen Yue,F(xiàn)an Hongfang et al.Climatic background of modern Corbicula fluminea and the stable isotopes of shells from the reprensentative areas in continental China.Marine Geology&Quaternary Geology,2007,27(3):77-84(in Chinese with English abstract).[張虎才,陳玥,樊紅芳等.河蜆分布的氣候環(huán)境及殼體穩(wěn)定同位素.海洋地質(zhì)與第四紀(jì)地質(zhì),2007,27(3):77-84.]

      [3] Caraco NF,Cole JJ,Strayer DL.Top down control from the bottom:Regulation of eutrophication in a large river by benthic grazing.Limnology and Oceanography,2006,51(1part2):664-670.DOI:10.4319/lo.2006.51.1_part_2.0664.

      [4] Bai Xiuling,Zhou Yunkai,Zhang Lei.The influence of tubificid worms bioturbation on organic phosphorus components and their vertical distribution in sediment of Lake Taihu.Acta Ecologica Sinica,2012,32(17):5581-5588(in Chinese with English abstract).DOI:10.5846/stxb201110231569.[白秀玲,周云凱,張雷.水絲蚓對(duì)太湖沉積物有機(jī)磷組成及垂向分布的影響.生態(tài)學(xué)報(bào),2012,32(17):5581-5588.]

      [5] Zhang Lei,Gu Xiaozhi,Wang Zhaode et al.The influence of Tubificid worms bioturbation on the exchange of phosphorus across sediment-water interface in lakes.J Lake Sci,2010,22(5):666-674(in Chinese with English abstract).DOI:10. 18307/2010.0507.[張雷,古小治,王兆德等.水絲蚓(Tubificid worms)擾動(dòng)對(duì)磷在湖泊沉積物-水界面遷移的影響.湖泊科學(xué),2010,22(5):666-674.]

      [6] Wu Fangtong,Chen Jinxiu,Yan Yanhong et al.The influence of Limnodrilus hoffmeisteri bioturbation on nitrogen release from sediments in the East Lake Dongting.J Lake Sci,2011,23(5):731-737(in Chinese with English abstract).DOI:10.18307/2011.0510.[吳方同,陳錦秀,閆艷紅等.水絲蚓生物擾動(dòng)對(duì)東洞庭湖沉積物氮釋放的影響.湖泊科學(xué),2011,23(5):731-737.]

      [7] Zhu Xiaolong,Gu Jiao,Jin Hui et al.Effects of Corbicula fluminea in Lake Taihu on improvement of eutrophic water quality.J Lake Sci,2015,27(3):486-492(in Chinese with English abstract).DOI:10.18307/2015.0316.[朱小龍,谷嬌,靳輝等.太湖河蜆(Corbicula fluminea)對(duì)富營(yíng)養(yǎng)水體水質(zhì)的改善作用.湖泊科學(xué),2015,27(3):486-492.]

      [8] Hwang SJ,Kim HS,Park JH et al.Shift in nutrient and plankton community in eutrophic lake following introduction of a freshwater bivalve.Journal of Environmental Biology,2011,32(2):227-234

      [9] Xu Haijun,Lin Qufei,Yang Caigen et al.Preliminary studies on the elimination effect of algae by three species of freshwater bivalve.Journal of Hydroecology,2010,3(1):72-73(in Chinese with English abstract).[徐海軍,凌去非,楊彩根等.3種淡水貝類對(duì)藻類消除作用的初步研究.水生態(tài)學(xué)雜志,2010,3(1):72-73.]

      [10] Cai Yongjiu,Gong Zhijun,Qin Boqiang.Community structure and diversity of macrozoobenthos in Lake Taihu,a large shallow eutrophic lake in China.Biodiversity Science,2010,18(1):50-59(in Chinese with English abstract).[蔡永久,龔志軍,秦伯強(qiáng).太湖大型底棲動(dòng)物群落結(jié)構(gòu)及多樣性.生物多樣性,2010,18(1):50-59.]

      [11] Jin Xiangcan,Tu Qingying eds.Lake eutrophication investigation specification:The second edition.Beijing:China Environmental Science Press,1990(in Chinese).[金相燦,屠清瑛.湖泊富營(yíng)養(yǎng)化調(diào)查規(guī)范(第二版).北京:中國(guó)環(huán)境科學(xué)出版社,1990.]

      [12] Zhang X,Liu Z,Jeppesen E et al.Effects of deposit-feeding tubificid worms and filter-feeding bivalves on benthic-pelagic coupling:Implications for the restoration of eutrophic shallow lakes.Water Research,2014,50(3):135-146.

      [13] Wu Fangtong,Yan Yanhong,Sun Shiquan et al.Influence of Limnodrilus hoffmeisteri bioturbation on phosphorus release from sediment.Chinese Journal of Environmental Engineering,2011,5(5):1071-1076(in Chinese with English abstract).[吳方同,閆艷紅,孫士權(quán)等.水絲蚓生物擾動(dòng)對(duì)沉積物磷釋放的影響.環(huán)境工程學(xué)報(bào),2011,5(5):1071-1076.]

      [14] Hedman JE,Gunnarsson JS,Samuelsson G et al.Particle reworking and solute transport by the sediment-living polychaetes Marenzelleria neglecta and Hediste diversicolor.Journal of Experimental Marine Biology and Ecology,2011,407(2):294-301.DOI:10.1016/j.jembe.2011.06.026.

      [15] Devine JA,Vanni MJ.Spatial and seasonal variation in nutrient excretion by benthic invertebrates in a eutrophic reservoir.Freshwater Biology,2002,47(6):1107-1121.DOI:10.1046/j.1365-2427.2002.00843.x.

      [16] Ji L,Song C,Cao X et al.Spatial variation in nutrient excretion by macrozoobenthos in a Chinese large shallow lake(Lake

      Taihu).Journal of Freshwater Ecology,2015,30(1):169-180.DOI:10.1080/02705060.2014.997816.

      [17] Banta GT,Andersen O.Bioturbation and the fate of sediment pollutants:experimental case studies of selected infauna species.Vie et Milieu,2003,53(4):233-248.

      [18] Guo Liang,Yao Sipeng,Xin Peng.The influence of Limnodrilus hoffmeisteri bioturbation on the bacterial community composition and diversity in surface sediment.Journal of Agro-Environment Science,2011,30(5):973-978(in Chinese with English abstract).[郭亮,姚思鵬,邢鵬.霍甫水絲蚓(Limnodrilus hoffmeisteri)擾動(dòng)對(duì)表層沉積物細(xì)菌群落結(jié)構(gòu)和多樣性的影響.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(5):973-978.]

      [19] Wang Xue,Zhao Dayong,Zeng Jin et al.Effects of Corbicula fluminea bioturbation on the community composition and abundance of ammonia-oxidizing archaea and bacteria in Surface Sediments.Environmental Science,2014,35(6):2314-2321(in Chinese with English abstract).DOI:10.13227/j.hjkx.2014.06.038.[王雪,趙大勇,曾巾等.河蜆(Corbicula fluminea)擾動(dòng)對(duì)表層沉積物中氨氧化菌群落結(jié)構(gòu)和豐度的影響.環(huán)境科學(xué),2014,35(6):2314-2321.]

      [20] Koretsky CM,Meile C,Van Cappellen P.Quantifying bioirrigation using ecological parameters:a stochastic approach.Geochem Trans,2002,3(3):17-30.DOI:10.1039/b110459d.

      [21] Gong Zhijun,Xie Ping,Tang Huijuan et al.The influence of eutrophycation upon community structure and biodiversity of macrozoobenthos.Acta Hydrobiologica Sinica,2001,25(3):210-216(in Chinese with English abstract).[龔志軍,謝平,唐匯涓等.水體富營(yíng)養(yǎng)化對(duì)大型底棲動(dòng)物群落結(jié)構(gòu)及多樣性的影響.水生生物學(xué)報(bào),2001,25(3):210-216.]

      [22] Welker M,Walz N.Can mussels control the plankton in rivers?—a planktological approach applying a Lagrangian sampling strategy.Limnology and Oceanography,1998,43(5):753-762.DOI:10.4319/lo.1998.43.5.0753.

      [23] Strayer DL,Caraco NF,Cole JJ et al.Transformation of freshwater ecosystems by bivalves.BioScience,1999,49(1):19-27.

      [24] Yao Yang,Jin Xiangcan,Jiang Xia et al.Study on effects of light on phosphorus release and phosphorus form change in lake sediments.Research of Environmental Sciences,2004,17(z1):30-33(in Chinese with English abstract).[姚揚(yáng),金相燦,姜霞等.光照對(duì)湖泊沉積物磷釋放及磷形態(tài)變化的影響研究.環(huán)境科學(xué)研究,2004,17(z1):30-33.]

      [25] Wetzel RG.Limnology:lake and river ecosystems.Gulf Professional Publishing,2001.

      [26] Zhang X,Liu Z,Gulati RD et al.The effect of benthic algae on phosphorus exchange between sediment and overlying water in shallow lakes:A microcosm study using32P as a tracer.Hydrobiologia,2013,710(1):109-116.DOI:10.1007/s10750-012-1134-9.

      [27] Vanderploeg HA,Liebig JR,Carmichael WW et al.Zebra mussel(Dreissena polymorpha)selective filtration promoted toxic Microcystis blooms in Saginaw Bay(Lake Huron)and Lake Erie.Canadian Journal of Fisheries and Aquatic Sciences,2001,58(6):1208-1221.DOI:10.1139/f01-066.

      [28] Basen T,Martin-Creuzburg D,Rothhaupt KO.Role of essential lipids in determining food quality for the invasive freshwater clam Corbicula fluminea.Journal of the North American Benthological Society,2011,30(3):653-664.DOI:10.1899/10-087.1.

      [29] Boltovskoy D,Izaguirre I,Correa N.Feeding selectivity of Corbicula fluminea(Bivalvia)on natural phytoplankton.Hydrobiologia,1995,312(3):171-182.DOI:10.1007/BF00015510.

      [30] Howard JK,Cuffey KM.The functional role of native freshwater mussels in the fluvial benthic environment.Freshwater Biology,2006,51(3):460-474.DOI:10.1111/j.1365-2427.2005.01507.x.

      [31] Lewandowski J,Hupfer M.Effect of macrozoobenthos on two-dimensional small-scale heterogeneity of pore water phosphorus concentrations in lake sediments:A laboratory study.Limnology and Oceanography,2005,50(4):1106-1118.DOI:10.4319/lo.2005.50.4.1106.

      [32] Wavre M,Brinkhurst RO.Interactions between some tubificid oligochaetes and bacteria found in the sediments of Toronto Harbour,Ontario.Journal of the Fisheries Board of Canada,1971,28(3):335-341.DOI:10.1139/f71-045.

      Inhibiting effect of Corbicula fluminea on the bioturbation of Limnodrilus hoffmeisteri

      JIN Hui1,3,LUO Xuguang2,GU Jiao3,4,NING Xiaoyu3,CAI Yongjiu3,HE Hu3,YU Jinlei3,YANG Guijun1??&LI Kuanyi3
      (1:School of Environment and Civil Engineering,Jiangnan University,Wuxi 214122,P.R.China)(2:College of Animal Science,Inner Mongolia Agricultural University,Huhehaote 010018,P.R.China)(3:State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,Nanjing 210008,P.R.China)(4:University of Chinese Academy of Sciences,Beijing 100049,P.R.China)

      In recent years,eutrophication in partial areas of Lake Taihu still had a tendency to become worse which may attributed to the release of internal nutrient loading promoted by the bioturbation of zoobenthos.Corbicula fluminea and Limnodrilus hoffmeisteri were the dominant species in Lake Taihu.In order to explore whether C.fluminea had inhibiting effect on the bioturbation of L.hoffmeisteri,a mesocosm experiment including four treatments(control,C.fluminea,L.hoffmeisteri,C.fluminea&L.hoffmeisteri)was carried out from September 22 to October 12,2014.The results showed that the bioturbation of L.hoffmeisteri could increase the concentration of total nitrogen and total phosphorus in water column remarkably,meanwhile stimulated the growth of phytoplankton.C.fluminea could decrease the concentration of total nitrogen,total phosphorus and total suspended matter remarkably by filter-feeding and biodeposition.Besides,C.fluminea had inhibiting effect on the growth of phytoplankton which in turn promoted the growth of benthic algae.Our results confirmed that C.fluminea had inhibiting effect on the biotubation of L.hoffmeisteri.

      Corbicula fluminea;Limnodrilus hoffmeisteri;sediments;release of nutrient;Lake Taihu

      J.Lake Sci.(湖泊科學(xué)),2016,28(6):1348-1353

      DOI 10.18307/2016.0620

      ?2016 by Journal of Lake Sciences

      猜你喜歡
      藻類湖泊沉積物
      晚更新世以來南黃海陸架沉積物源分析
      渤海油田某FPSO污水艙沉積物的分散處理
      海洋石油(2021年3期)2021-11-05 07:43:12
      藻類水華控制技術(shù)及應(yīng)用
      水體表層沉積物對(duì)磷的吸收及釋放研究進(jìn)展
      細(xì)菌和藻類先移民火星
      軍事文摘(2020年20期)2020-11-16 00:31:40
      你相信嗎?湖泊也可以“生死輪回”
      吃蔬菜有個(gè)“321模式” 三兩葉菜類,二兩其他類,一兩菌藻類
      “害羞”的湖泊
      奇異的湖泊
      浮游藻類在水體PAHs富集與降解中的研究
      盐池县| 甘南县| 抚宁县| 武威市| 黔西县| 景宁| 互助| 迭部县| 长沙县| 周宁县| 龙井市| 波密县| 田林县| 南昌县| 隆尧县| 积石山| 长乐市| 吴堡县| 靖西县| 墨竹工卡县| 金堂县| 乳源| 建昌县| 巧家县| 敖汉旗| 思茅市| 承德市| 灌阳县| 宁蒗| 潼南县| 达尔| 龙泉市| 迭部县| 莎车县| 陈巴尔虎旗| 方正县| 金秀| 青川县| 隆昌县| 铜鼓县| 新蔡县|