• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      南北構(gòu)造帶北段上地幔各向異性特征

      2016-11-24 00:45:06常利軍丁志峰王椿鏞
      地球物理學(xué)報(bào) 2016年11期
      關(guān)鍵詞:巖石圈橫波塊體

      常利軍,丁志峰,王椿鏞

      中國(guó)地震局地球物理研究所,北京 100081

      ?

      南北構(gòu)造帶北段上地幔各向異性特征

      常利軍,丁志峰,王椿鏞

      中國(guó)地震局地球物理研究所,北京 100081

      對(duì)布設(shè)在南北構(gòu)造帶北段的中國(guó)地震科學(xué)探測(cè)臺(tái)陣項(xiàng)目二期674個(gè)寬頻帶流動(dòng)臺(tái)站和鄂爾多斯臺(tái)陣21個(gè)寬頻帶流動(dòng)臺(tái)站記錄的遠(yuǎn)震XKS(SKS、SKKS和PKS)波形資料作偏振分析,采用最小切向能量的網(wǎng)格搜索法和“疊加”分析方法求得每一個(gè)臺(tái)站的XKS波的快波偏振方向和快、慢波的時(shí)間延遲,并結(jié)合該區(qū)域出版的122個(gè)固定臺(tái)站的分裂結(jié)果,獲得了南北構(gòu)造帶北段上地幔各向異性圖像.快波方向分布顯示青藏高原東北緣、阿拉善塊體和鄂爾多斯塊體西緣的快波方向主要表現(xiàn)為NW—SE方向,秦嶺造山帶的快波方向?yàn)榻麰—W方向,鄂爾多斯塊體內(nèi)部的快波方向在北部為近N—S方向,南部表現(xiàn)為近E—W方向.時(shí)間延遲分布來(lái)看,鄂爾多斯塊體的時(shí)間延遲不僅明顯小于其周緣地區(qū),而且小于其他構(gòu)造單元,特別是在高原東北緣、阿拉善塊體和鄂爾多斯塊體的交匯地區(qū)的時(shí)間延遲很大,反映了構(gòu)造穩(wěn)定單元的時(shí)間延遲小于構(gòu)造活躍單元.通過(guò)比較快波方向的橫波分裂測(cè)量值與地表變形場(chǎng)模擬的預(yù)測(cè)值,并結(jié)合研究區(qū)地質(zhì)構(gòu)造和巖石圈結(jié)構(gòu)特征分析表明,在青藏高原東北緣、阿拉善塊體和鄂爾多斯塊體西緣各向異性主要由巖石圈變形引起,地表變形與地幔變形一致,地殼耦合于地幔,是一種垂直連貫變形模式;秦嶺造山帶的各向異性不僅來(lái)自于巖石圈,而且其巖石圈板塊驅(qū)動(dòng)的軟流圈地幔流作用不可忽視;鄂爾多斯塊體內(nèi)部深淺變形不一致,具有弱的各向異性、厚的巖石圈和構(gòu)造穩(wěn)定的特征,我們認(rèn)為其各向異性可能保留了古老克拉通的“化石”各向異性.

      南北構(gòu)造帶;地震臺(tái)陣;橫波分裂;巖石圈變形;軟流圈地幔流

      1 引言

      南北構(gòu)造帶,也被稱為南北地震帶,它地處中國(guó)大陸中部,是一條重要的近N—S經(jīng)向地質(zhì)、地貌分界線和大地構(gòu)造過(guò)渡帶,其為跨越和聯(lián)合了多個(gè)性質(zhì)不同的構(gòu)造單元復(fù)合構(gòu)造帶,帶內(nèi)構(gòu)造復(fù)雜,強(qiáng)震活動(dòng)頻繁(李善邦,1957;李四光,1959;馬杏垣,1989;葛肖虹等,2009).南北構(gòu)造帶北段位于青藏高原東北緣,這里為華北克拉通西部的鄂爾多斯塊體和阿拉善塊體與青藏高原東北緣相互作用的地區(qū).地球上,陸-陸碰撞的造山過(guò)程最壯觀的表現(xiàn)是由大約50 Ma開(kāi)始的印度-歐亞板塊碰撞所形成的青藏高原.碰撞導(dǎo)致了青藏高原的不斷隆升、地殼增厚及其側(cè)向逃逸(Molnar and Tapponnier,1975;Royden et al.,1997;Dewey and Burke,1973).青藏高原東北緣是高原物質(zhì)擠出的一個(gè)重要通道,這里強(qiáng)烈的造山運(yùn)動(dòng)和大型走滑斷裂活動(dòng)使得青藏高原東北緣、鄂爾多斯塊體和阿拉善塊體交界帶強(qiáng)震頻發(fā).據(jù)我國(guó)歷史地震記載,該區(qū)域發(fā)生了我國(guó)1/3的8級(jí)以上大地震,如1654年天水8級(jí)地震,1739年平羅8級(jí)地震,1879年武都8級(jí)地震,1920年海原8.5級(jí)地震,1927年古浪8級(jí)地震(圖1).通過(guò)分析南北構(gòu)造帶北段地殼和上地幔變形特征對(duì)理解這一由多個(gè)構(gòu)造單元組成的復(fù)合構(gòu)造帶形成的動(dòng)力學(xué)過(guò)程和強(qiáng)震孕育的動(dòng)力環(huán)境具有重要意義.

      地震各向異性是地球內(nèi)部物質(zhì)的一個(gè)基本屬性.上地幔各向異性一般被認(rèn)為是由于應(yīng)變作用下地幔物質(zhì)變形導(dǎo)致橄欖巖中晶格的優(yōu)勢(shì)取向(LPO)所引起的.由于各向異性和應(yīng)變密切相關(guān),各向異性反映了深部構(gòu)造的變形和動(dòng)力過(guò)程.橫波分裂現(xiàn)象作為各向異性在地震波記錄中最明顯的表現(xiàn)形式,兩個(gè)分裂參數(shù):快波偏振方向和快、慢波的時(shí)間延遲分別反映了地幔變形的方向和強(qiáng)度(Silver and Chan,1991).因此,遠(yuǎn)震橫波分裂測(cè)量獲得的地幔各向異性參數(shù)是揭示地幔變形最直接有效的手段之一,可以用來(lái)探討高原隆升機(jī)制和各個(gè)構(gòu)造單元相互作用的動(dòng)力學(xué)特征(丁志峰和曾融生,1996;高原和滕吉文,2005).有關(guān)南北構(gòu)造帶北段的各向異性研究一直受到地學(xué)工作者的關(guān)注,一些學(xué)者在青藏高原東北緣和鄂爾多斯塊體利用橫波分裂分析該區(qū)域的上地幔各向異性特征(常利軍等,2008,2011;Wang et al.,2008;馬禾青等,2010;李永華等,2010;Li et al.,2011;張洪雙等,2013;王瓊等,2013;Wu et al.,2015).然而,由于以前該區(qū)域的寬頻帶固定地震臺(tái)站數(shù)量較少,而且分布不均,特別是阿拉善塊體、鄂爾多斯塊體內(nèi)部.因此,對(duì)該區(qū)域的各向異性特征很難從整體上來(lái)詳細(xì)分析.近期,中國(guó)地震科學(xué)探測(cè)臺(tái)陣(ChinArray)項(xiàng)目順利實(shí)施,2013年至2015年,由中國(guó)地震局地球物理研究所牽頭的中國(guó)地震科學(xué)探測(cè)臺(tái)陣——南北地震帶北段項(xiàng)目在研究區(qū)布設(shè)了674個(gè)寬頻帶流動(dòng)地震臺(tái)站,再加上我們?cè)?010年至2011年期間開(kāi)展的鄂爾多斯地震臺(tái)陣(Ordos Array)的21個(gè)寬頻帶流動(dòng)地震臺(tái)站(Wang et al.,2014),在研究區(qū)形成了密集且分布均勻的大型地震科學(xué)探測(cè)臺(tái)陣(圖1),使得我們能夠?qū)υ搮^(qū)域的上地幔各向異性特征進(jìn)行進(jìn)一步全面和詳細(xì)的分析,并討論其動(dòng)力學(xué)含義.

      地球科學(xué)家對(duì)高原隆升提出了多種解釋模型.例如,Tapponnier等(1982)提出了“擠出說(shuō)”或“逃逸說(shuō)”的運(yùn)動(dòng)學(xué)模式,England和Houseman(1986)提出了“連續(xù)變形”的動(dòng)力學(xué)模式,還有一些學(xué)者提出了下地殼塑性流動(dòng)說(shuō)(Royden et al.,1997),即通道流(channel flow)模型.每個(gè)模型都試圖解釋高原變形隆升的性質(zhì).然而,如何理解巖石圈地幔在造山過(guò)程中的作用卻仍然是個(gè)問(wèn)題.如果我們能夠直接測(cè)量實(shí)際的地幔變形并表征它與地殼變形的關(guān)系,這將構(gòu)成理解地幔變形作用在造山增長(zhǎng)原因的基本手段.當(dāng)前,這樣的求值方法可以通過(guò)聯(lián)合分析地表變形數(shù)據(jù)和地幔各向異性來(lái)獲得(Silver and Holt,2002;Flesch et al.,2005;Wang et al.,2008;Chang et al.,2015).本文聯(lián)合南北構(gòu)造帶北段GPS觀測(cè)的地表變形數(shù)據(jù)和由密集的寬頻帶地震臺(tái)陣得到的橫波分裂測(cè)量反映的地幔變形數(shù)據(jù)分析了高原東北緣、阿拉善塊體和鄂爾多斯塊體的巖石圈變形耦合程度和動(dòng)力學(xué)含義.

      2 橫波分裂測(cè)量

      地震資料來(lái)自于中國(guó)地震科學(xué)探測(cè)臺(tái)陣——南北地震帶北段項(xiàng)目(“喜馬拉雅”項(xiàng)目二期)布設(shè)的674個(gè)寬頻帶流動(dòng)地震臺(tái)站(觀測(cè)時(shí)間為2013年到2015年,地震計(jì)為CMG-3ESP,頻帶范圍為50 Hz~60 s),21個(gè)來(lái)自國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目資助布設(shè)在鄂爾多斯地震臺(tái)陣的寬頻帶流動(dòng)地震臺(tái)站(觀測(cè)時(shí)間為2010年到2011年,地震計(jì)為CMG-3ESP,頻帶范圍為50 Hz~60 s),總計(jì)695個(gè)臺(tái)站記錄的遠(yuǎn)震波形資料(圖1).在遠(yuǎn)震橫波分裂測(cè)量中,基于中國(guó)地震臺(tái)網(wǎng)(CSN)地震目錄,選取震中距范圍85°~135°,震級(jí)MS>5.8,震相清晰的XKS(SKS、SKKS和PKS)波形資料.

      對(duì)選取的遠(yuǎn)震XKS波形記錄,我們采用最小切向能量的網(wǎng)格搜索方法(Silver and Chan,1991)和“疊加”處理(Wolfe and Silver,1998)來(lái)測(cè)量每一個(gè)臺(tái)站的橫波分裂參數(shù),解的誤差估計(jì)用95%的置信度.數(shù)據(jù)預(yù)處理采用帶通濾波(0.03~0.5 Hz),為了確保測(cè)量結(jié)果的正確,每次橫波分裂測(cè)量過(guò)程嚴(yán)格按照下面標(biāo)準(zhǔn)去檢驗(yàn):(1)選取的XKS波在旋轉(zhuǎn)到徑向和切向坐標(biāo)軸上,切向分量要明顯,且質(zhì)點(diǎn)運(yùn)動(dòng)圖為橢圓,以表明橫波具有明顯的分裂特征;(2)通過(guò)橫波分裂分析測(cè)量得到橫波分裂參數(shù),在進(jìn)行各向異性校正后,橫波旋轉(zhuǎn)到徑向和切向坐標(biāo)軸上,切向分量變得很小,且質(zhì)點(diǎn)運(yùn)動(dòng)圖為近似直線;(3)各向異性校正前的快、慢波之間有明顯的到時(shí)差,且質(zhì)點(diǎn)運(yùn)動(dòng)圖為橢圓;(4)校正后的快、慢波之間的到時(shí)差變得很小,且質(zhì)點(diǎn)運(yùn)動(dòng)圖近似為直線.圖2顯示了對(duì)2015年6月12日11時(shí)07分湯加群島MW6.0地震在53004臺(tái)的記錄所作的SKS波分裂分析.圖3顯示了64008臺(tái)從3個(gè)遠(yuǎn)震事件(2014年12月30日21時(shí)17分MW6.0;2015年5月30日17時(shí)18分MW5.9;2015年6月25日18時(shí)45分MW6.0)獲得的SKS波分裂分析結(jié)果(圖3a、圖3b和圖3c)與使用“疊加”處理后結(jié)果(圖3d)的比較,這3個(gè)分裂參數(shù)誤差較大的事件,經(jīng)過(guò)疊加之后最終分裂參數(shù)的誤差明顯減小.

      圖1 南北構(gòu)造帶及鄰區(qū)構(gòu)造簡(jiǎn)圖(據(jù)任紀(jì)舜等,1980)和臺(tái)站分布圖圖中紅色方框?yàn)檠芯繀^(qū),紅色三角形為中國(guó)地震科學(xué)探測(cè)臺(tái)陣(ChinArray)的臺(tái)站,黑色正方形為鄂爾多斯地震臺(tái)陣(Ordos Array)的臺(tái)站,研究區(qū)主要斷裂為:F1青銅峽—固原斷裂;F2海源斷裂;F3東昆侖斷裂;F4龍門(mén)山斷裂.虛線為塊體邊界.綠色圓圈為1970年以來(lái)5級(jí)以上地震,黑色實(shí)心圓為8級(jí)以上歷史地震.藍(lán)色箭頭代表GPS測(cè)量的地表運(yùn)動(dòng)速度場(chǎng)(Gan et al.,2007).插圖a為本文選取的遠(yuǎn)震事件分布圖,黑色圓圈是為中國(guó)地震科學(xué)探測(cè)臺(tái)陣(ChinArray)選取的72個(gè)遠(yuǎn)震事件,紅色圓圈是為鄂爾多斯地震臺(tái)陣(Ordos Array)選取的61個(gè)遠(yuǎn)震事件.Fig.1 Map showing major tectonic features of the north-south tectonic belt and surrounding regions (from Ren et al.,1980),and regional geologic setting of the study area and location of stations The study area is shown by the red square.Red triangles and black squares represent seismic stations of the ChinArray and Ordos Array,respectively.Black lines are major faults.F1:Qingtongxia-Guyuan Fault;F2:Haiyuan Fault;F3:East Kunlun Fault;F4:Longmenshan Fault.Dashed lines represent boundaries between blocks.Green circles show earthquakes with M>5 since 1970s.Black solid circles mark historical earthquakes with M≥8.Blue arrows display GPS velocity vectors calculated in the stable Eurasian reference frame (Gan et al.,2007).Inset (a) shows epicenters of events used in the study.Black and red dots represent 72 events and 61 events recorded by the ChinArray and Ordos Array,respectively.

      圖2 SKS波分裂分析示例(a) 原始的徑向和切向上的波形和質(zhì)點(diǎn)運(yùn)動(dòng)圖;(b) 經(jīng)過(guò)各向異性校正后的徑向和切向上的波形和質(zhì)點(diǎn)運(yùn)動(dòng)圖;(c) 原始SKS震相轉(zhuǎn)到快波和慢波軸方向的波形和質(zhì)點(diǎn)運(yùn)動(dòng)圖;(d) 經(jīng)過(guò)各向異性校正后SKS震相在快波和慢波軸方向的波形和質(zhì)點(diǎn)運(yùn)動(dòng)圖;(e) 切向能量等值線圖,星號(hào)處對(duì)應(yīng)了最佳的分裂參數(shù).Fig.2 Shear wave splitting analysis for an SKS event recorded at station 53004(a) Radial and tangential components;(b) Radial and tangential components after the energy in the tangential component is removed;(c) Components from Fig.2a rotated to the fast and slow directions;(d) Fast and shifted slow components.Particle motion is shown on the right of each seismogram;(e) Contours of the energy on the corrected tangential component.Black asterisk is the best estimate.

      圖3 64008臺(tái)單個(gè)遠(yuǎn)震事件SKS波分裂分析的切向能量等值線圖(a)、(b)和(c)以及由這三個(gè)事件疊加得到的切向能量等值線圖(d)圖中星號(hào)表示最佳分裂參數(shù)的位置.Fig.3 Tangential energy contour of SKS splitting analysis from three teleseismic events (a),(b),and (c),and the stacked tangential energy contour (d) at station 64008The asterisk denotes the position of optimal parameter pair.

      圖4 南北構(gòu)造帶北段各臺(tái)站XKS波分裂測(cè)量結(jié)果紅色直線段為流動(dòng)臺(tái)陣的結(jié)果,藍(lán)色直線段為以前固定臺(tái)站的結(jié)果(常利軍等,2008,2011;Wang et al.,2008).線段的方向表示快波方向,線段的長(zhǎng)度表示時(shí)間延遲的大小.黑色粗箭頭為絕對(duì)板塊運(yùn)動(dòng)(APM)方向.Fig.4 Measurements of XKS splitting in the northern segment of the north-south tectonic beltRed bars and blue bars represent splitting measurements at temporary stations and previous permanent stations (Chang et al.,2008,2011;Wang et al.,2008),respectively.The orientations and length of bars indicate the fast polarization direction and the delay time,respectively.Black thick arrowhead represents the direction of absolute plate motion (APM).

      圖5 南北構(gòu)造帶北段快、慢波時(shí)間延遲和8級(jí)以上地震分布圖Fig.5 Distribution of delay times and megaquakes in the northern segment of the north-south tectonic belt

      3 橫波分裂測(cè)量結(jié)果和分析

      根據(jù)上述方法,我們測(cè)量了南北構(gòu)造帶北段695個(gè)寬頻帶流動(dòng)地震臺(tái)記錄的遠(yuǎn)震XKS波形,得到了每個(gè)臺(tái)站的橫波分裂參數(shù).由于地震臺(tái)陣位于中國(guó)西部,整體背景噪聲較低,數(shù)據(jù)記錄的整體質(zhì)量較好,2年多的觀測(cè)時(shí)間,獲得的可用于分裂分析的遠(yuǎn)震事件較多,并且單個(gè)事件分析的基礎(chǔ)上進(jìn)行了“疊加”分析處理,因而絕大多數(shù)的流動(dòng)臺(tái)站的分裂測(cè)量質(zhì)量比較好.總體上,絕大多數(shù)的臺(tái)站經(jīng)過(guò)“疊加”分析處理后,其快波方向的誤差小于10°,快、慢波的時(shí)間延遲小于0.2 s.根據(jù)每個(gè)臺(tái)站得到的各向異性參數(shù)離散性分析,沒(méi)有大的離散,沒(méi)有表現(xiàn)出隨事件反方位角規(guī)律性的變化,體現(xiàn)了單層各向異性特征.

      基于南北構(gòu)造帶北段695個(gè)流動(dòng)臺(tái)站測(cè)量的橫波分裂參數(shù)結(jié)果,并結(jié)合我們以前在該區(qū)域獲得的122個(gè)固定臺(tái)站分裂結(jié)果(常利軍等,2008,2011;Wang et al.,2008),我們用這817個(gè)臺(tái)站的分裂數(shù)據(jù)繪制了南北構(gòu)造帶北段目前最全面的上地幔各向異性圖像(圖4和圖5).從圖1中看,流動(dòng)臺(tái)站的結(jié)果與其鄰近的固定臺(tái)站結(jié)果一致,密集和均勻的臺(tái)站分布展現(xiàn)了其面狀分布的特征.從快波方向分布來(lái)看(圖4),青藏高原東北緣、阿拉善塊體和鄂爾多斯塊體西緣的快波方向主要表現(xiàn)為NW—SE方向,位于鄂爾多斯塊體南緣的秦嶺造山帶的快波方向?yàn)榻麰—W方向,鄂爾多斯塊體內(nèi)部的快波方向在北部為近N—S方向,南部表現(xiàn)為近E—W方向.從快、慢波的時(shí)間延遲分布來(lái)看(圖5),鄂爾多斯塊體的時(shí)間延遲不僅明顯小于其周緣地區(qū),而且小于其他構(gòu)造單元.特別是在高原東北緣、阿拉善塊體和鄂爾多斯塊體的交匯地區(qū)的時(shí)間延遲很大,其平均時(shí)間延遲達(dá)1.3 s,而鄂爾多斯塊體內(nèi)部時(shí)間延遲平均值僅為0.6 s.與鄂爾多斯塊體同屬華北克拉通西部塊體的阿拉善塊體其平均時(shí)間延遲約1 s,也明顯大于鄂爾多斯塊體.整體來(lái)看,構(gòu)造活躍地區(qū)的時(shí)間延遲明顯大于構(gòu)造穩(wěn)定地區(qū),特別是圖5中時(shí)間延遲分布最大的區(qū)域?qū)?yīng)了研究區(qū)內(nèi)8級(jí)以上強(qiáng)震的分布.

      4 聯(lián)合分析地表變形場(chǎng)和橫波分裂數(shù)據(jù)

      XKS波分裂測(cè)量的各向異性快波偏振方向代表了地幔橄欖巖有限應(yīng)變引起的晶格優(yōu)勢(shì)取向(LPO)(Silver and Chan,1991).因此,快波方向φ平行于構(gòu)造應(yīng)力作用下橄欖巖的a軸.實(shí)驗(yàn)室研究顯示,在缺少部分熔融或富含水的情況下,對(duì)于A-型的LPO,在簡(jiǎn)單剪切變形中,橄欖巖的a軸平行于有限應(yīng)變的最大剪切方向(Zhang and Karato,1995);在純剪切變形中,A-型橄欖巖的a軸平行于有限應(yīng)變的拉張方向(Nicolas et al.,1973).

      由于簡(jiǎn)單剪切下,地表瞬時(shí)最大剪切方向與有限應(yīng)變最大剪切方向平行;純剪切下,地表瞬時(shí)最大剪切方向與有限應(yīng)變最大伸展方向平行.與有限應(yīng)變對(duì)應(yīng)的快波方向?qū)⑵叫杏诘乇響?yīng)變瞬時(shí)最大剪切(伸展)方向.因此,在簡(jiǎn)單剪切和純剪切假設(shè)下,有限應(yīng)變引起的快波方向φ分別平行于簡(jiǎn)單剪切下的地表瞬時(shí)最大剪切方向和純剪切下的地表瞬時(shí)最大伸展方向.所以,我們可以由GPS和斷裂第四紀(jì)滑動(dòng)速率測(cè)量數(shù)據(jù)確定的地表運(yùn)動(dòng)學(xué)模型來(lái)計(jì)算最大剪切和伸展方向,并和地幔各向異性的快波方向的對(duì)比分析來(lái)評(píng)估南北構(gòu)造帶北段的垂直連貫變形程度.

      圖6 橫波分裂測(cè)量的1°×1°網(wǎng)格平均快波方向φ與地表變形場(chǎng)預(yù)測(cè)的快波方向φc比較基于運(yùn)動(dòng)學(xué)渦度確定了每個(gè)測(cè)點(diǎn)的預(yù)測(cè)的快波方向φc,即φc=φl(shuí)ss(最大左旋簡(jiǎn)單剪切方向,紅色線段),φc=φrss(最大右旋簡(jiǎn)單剪切方向,黃色線段),φc=φps(純剪切的最大拉伸方向,綠色線段).對(duì)于=±0.5的測(cè)點(diǎn),圖中還同時(shí)顯示了純剪切和簡(jiǎn)單剪切下的預(yù)測(cè)的快波方向.Fig.6 Comparison between 1°×1° grid average fast-wave direction from splitting observations and predicted fast axis orientation φc calculated from the surface deformation field The kinematic vorticity estimate, (see above) at each anisotropy measurement is used to predict φc=φl(shuí)ss (left-lateral simple shear,red),φc=φrss (right-lateral simple shear,yellow),or φc=φps (maximum extension pure shear,green).For =±0.5,both pure shear and simple shear predicted fast axis are displayed.

      5 討論與結(jié)論

      5.1 各向異性層的分布

      XKS波分裂反映了橫波從核幔邊界到接收臺(tái)站整個(gè)傳播路徑上的綜合效應(yīng),其橫向分辨率很高,但垂直分辨較差,各向異性層可能存在于地殼、上地幔巖石圈、巖石圈下的軟流圈,以及下地幔的任何地方,但實(shí)際上更接近于上部.同一事件在相近臺(tái)站觀測(cè)到差異較大的XKS 波分裂結(jié)果,例如鄂爾多斯塊體內(nèi)部和西緣相鄰的一些臺(tái)站間的距離只有幾十公里,這些臺(tái)站下同一事件XKS波射線在深部幾乎沿同一路徑傳播,只是到接近接收臺(tái)站才分開(kāi),如果各向異性層來(lái)自深部,那么結(jié)果應(yīng)該相同,但事實(shí)上它們的分裂參數(shù)相差很大,說(shuō)明各向異性層不可能來(lái)自深的下地幔.另外,同一臺(tái)站從不同方位入射的XKS 波的路徑在淺部基本相同,在地幔深部不同,如果各向異性介質(zhì)存在于下地幔,則同一臺(tái)站下不同方位到的XKS 波應(yīng)是不同地區(qū)深部各向異性介質(zhì)的影響,結(jié)果應(yīng)有很大的差異,顯然與我們的觀測(cè)結(jié)果不符,從這一方面也說(shuō)明各向異性層主要分布在上地幔及其以上范圍.關(guān)于地殼各向異性的約束,全球平均尺度的地殼各向異性約0.2 s(Silver,1996).盡管研究區(qū)的地殼厚度相對(duì)較厚(從鄂爾多斯塊體和阿拉善塊體約為40 km逐步過(guò)渡到青藏高原約為60 km)(Tian and Zhang,2013;Li et al.,2014),在青藏高原東北緣,Herquel等(1995) 通過(guò)Moho界面的Ps轉(zhuǎn)換波得到的地殼各向異性研究結(jié)果為0.2~0.3 s.常利軍等(2010)、馬禾青等(2011)和郭桂紅等(2015)通過(guò)近垂直入射的直達(dá)S波在青藏高原東北緣和鄂爾多斯塊體西緣估算的地殼各向異性延遲時(shí)間為0.1~0.3 s.Wang等(2016)利用接收函數(shù)波形提取了青藏高原東北緣少量臺(tái)站的地殼各向異性,得到局部地區(qū)地殼可以產(chǎn)生0.36~1.06 s的時(shí)間延遲,與該區(qū)其他結(jié)果相差較大,可能這種影響是局部的.綜合考慮研究區(qū)的地殼各向異性產(chǎn)生的分裂延遲平均值約為0.2 s,因此,南北構(gòu)造帶北段各向異性層主要來(lái)自于上地幔,地殼各向異性對(duì)XKS波分裂影響較小.

      南北構(gòu)造帶北段的各向異性可能來(lái)自巖石圈,也可能來(lái)自軟流圈,下面的論述將提供一些約束.在研究區(qū),秦嶺造山帶的巖石圈厚度約為110 km,鄂爾多斯塊體約為150 km,青藏高原東北緣和阿拉善塊體約為170 km(An and Shi,2006).假設(shè)大陸巖石圈地幔的各向異性度為4%(Mainprice and Silver,1993),1 s的分裂時(shí)間延遲估算的各向異性層厚度約為110 km.秦嶺造山帶的平均時(shí)間延遲為1.2 s,去除地殼各向異性影響造成的0.2 s時(shí)間延遲后,需要110 km的地幔巖石圈對(duì)應(yīng)1.0 s的時(shí)間延遲,而減去50 km厚的地殼后,秦嶺地幔巖石圈厚度只有60 km,說(shuō)明秦嶺造山帶下的各向異性來(lái)自于巖石圈和軟流圈的綜合效應(yīng).青藏高原東北緣,其平均時(shí)間延遲從西北部約1 s增加到東南部約1.3 s,需要從西北部的90 km到東南部120 km厚度的地幔巖石圈產(chǎn)生0.8 s到1.1 s的分裂時(shí)間延遲,高原東北緣的地幔巖石圈厚度約為110 km,因此,高原東北緣的各向異性主要來(lái)自巖石圈.阿拉善塊體的平均時(shí)間延遲為1 s,其120 km厚的地幔巖石圈足以產(chǎn)生地幔內(nèi)0.8 s的分裂時(shí)間延遲.鄂爾多斯塊體的平均時(shí)間延遲為0.6 s,其110 km厚的地幔巖石圈也足以產(chǎn)生地幔內(nèi)0.4 s的分裂時(shí)間延遲.通過(guò)一階Fresnel帶(Alsina and Snieder,1995)的推斷,研究區(qū)各向異性層主要分布在50~170 km之間.綜上所述,南北構(gòu)造帶北段除秦嶺造山帶的各向異性層主要來(lái)自于上地幔巖石圈和軟流圈外,其他構(gòu)造單元的各向異性主要位于上地幔巖石圈.

      5.2 各向異性成因

      在鄂爾多斯塊體內(nèi)部,絕大部分測(cè)點(diǎn)的φ不能被φc成功地預(yù)測(cè)(圖6),巖石圈變形模式表現(xiàn)復(fù)雜,并且其時(shí)間延遲相對(duì)于其他構(gòu)造單元很小,平均值只有0.6 s,表現(xiàn)出弱的各向異性特征,反映了鄂爾多斯塊體內(nèi)部的剛性特性.鄂爾多斯塊體位于華北克拉通西部,相對(duì)于華北克拉通中東部(中部的燕山—太行造山帶和東部的華北裂谷盆地)遭受了強(qiáng)烈的改造,發(fā)生了巨厚巖石圈減薄(>100 km),西部的鄂爾多斯塊體仍然保留了古老克拉通的性質(zhì),結(jié)構(gòu)穩(wěn)定(Wu et al.,2005;Chen et al.,2006).鄂爾多斯塊體內(nèi)部沒(méi)有發(fā)生過(guò)6級(jí)以上地震,但它的周緣則地震活動(dòng)強(qiáng)烈,歷史上發(fā)生過(guò)數(shù)次8級(jí)以上地震,是中國(guó)大陸的一個(gè)強(qiáng)震活動(dòng)帶(圖1).由GPS數(shù)據(jù)模擬得到的應(yīng)變率場(chǎng)顯示鄂爾多斯塊體相對(duì)于其周緣要低1個(gè)數(shù)量級(jí)(Zhang et al.,2004).這些特征都表明鄂爾多斯塊體是一個(gè)構(gòu)造穩(wěn)定,具有很好的整體性,內(nèi)部變形很弱的剛性塊體.鄂爾多斯塊體弱的各向異性可能保留了古老克拉通的“化石”各向異性.鄂爾多斯塊體巖石圈變形模式復(fù)雜,主要是由于預(yù)測(cè)地幔各向異性快波方向的地表變形場(chǎng)是基于現(xiàn)今GPS和斷裂第四紀(jì)滑動(dòng)速率數(shù)據(jù)得到的,主要反映了現(xiàn)今的構(gòu)造變形,而鄂爾多斯塊體是一個(gè)古老穩(wěn)定的克拉通,保留了古老的構(gòu)造變形,用現(xiàn)今的變形去模擬古老的變形不再適合垂直連貫變形模型.

      5.3 結(jié)論

      利用南北構(gòu)造帶北段密集分布的817個(gè)寬頻帶地震臺(tái)站的分裂參數(shù),獲得了目前該區(qū)域最全面的上地幔各向異性圖像.青藏高原東北緣、阿拉善塊體和鄂爾多斯塊體西緣的快波方向主要表現(xiàn)為NW—SE方向,秦嶺造山帶的快波方向?yàn)榻麰—W方向,鄂爾多斯塊體內(nèi)部的快波方向在北部為近N—S方向,南部表現(xiàn)為近E—W方向.從時(shí)間延遲分布來(lái)看,鄂爾多斯塊體的時(shí)間延遲不僅明顯小于其周緣地區(qū),而且小于其他構(gòu)造單元,特別是在高原東北緣、阿拉善塊體和鄂爾多斯塊體的交匯地區(qū)的時(shí)間延遲很大,反映了構(gòu)造穩(wěn)定單元的時(shí)間延遲小于構(gòu)造活躍單元.比較快波方向的橫波分裂測(cè)量值與地表變形場(chǎng)模擬的預(yù)測(cè)值,二者在青藏高原東北緣、阿拉善塊體和鄂爾多斯塊體西緣相一致,反映了該區(qū)域深淺變形一致,地殼強(qiáng)烈地耦合于地幔,符合巖石圈垂直連貫變形.在青藏高原東北緣的東南部巖石圈變形主要表現(xiàn)為左旋簡(jiǎn)單剪切變形模式,在高原東北緣的西北部、阿拉善塊體和鄂爾多斯塊體的西緣巖石圈變形主要表現(xiàn)為純剪切變形模式.秦嶺造山帶的各向異性來(lái)自于上地幔巖石圈和軟流圈的共同作用,其巖石圈近E—W方向的快波方向的測(cè)量值和預(yù)測(cè)值也是一致的,體現(xiàn)了巖石圈垂直連貫變形;其軟流圈近E—W方向的快波方向與絕對(duì)板塊的運(yùn)動(dòng)方向相一致,反映了軟流圈被上覆巖石圈板塊直接驅(qū)動(dòng)產(chǎn)生了近E—W方向的地幔流,進(jìn)而形成了觀測(cè)的各向異性.鄂爾多斯塊體內(nèi)部快波方向的測(cè)量值和預(yù)測(cè)值相差較大,不符合垂直連貫變形,考慮其弱的各向異性、厚的巖石圈和構(gòu)造穩(wěn)定的特征,我們認(rèn)為其各向異性可能保留了古老克拉通的“化石”各向異性.

      致謝 感謝所有參與中國(guó)地震科學(xué)探測(cè)臺(tái)陣(ChinArray)項(xiàng)目的規(guī)劃者和實(shí)施者為確保獲取高質(zhì)量的地震數(shù)據(jù)付出的努力.感謝中國(guó)地震局地球物理研究所地震科學(xué)探測(cè)臺(tái)陣數(shù)據(jù)中心為本研究提供地震波形數(shù)據(jù).

      Alsina D,Snieder R.1995.Small-scale sublithospheric continental mantle deformation:constraints from SKS splitting observations.Geophys.J.Int.,123(2):431-448.

      An M J,Shi Y L.2006.Lithospheric thickness of the Chinese Continent.Phys.Earth Planet.Int.,159(3-4):257-266.

      Chang L J,Wang C Y,Ding Z F,et al.2008.Seismic anisotropy of upper mantle in the northeastern margin of the Tibetan Plateau.Chinese J.Geophys.(in Chinese),51(2):431-438.

      Chang L J,Ding Z F,Wang C Y.2010.Variations of shear wave splitting in the 2010 Yushu Ms7.1 earthquake region.Chinese J.Geophys.(in Chinese),53(11):2613-2619,doi:10.3969/j.issn.0001-5733.2010.11.009.

      Chang L J,Wang C Y,Ding Z F.2011.Upper mantle anisotropy in the Ordos block and its margins.Sci.China Earth Sci.,54(6):888-900.

      Chang L J,Flesch L M,Wang C Y,et al.2015.Vertical coherence of deformation in lithosphere in the eastern Himalayan syntaxis using GPS,Quaternary fault slip rates,and shear wave splitting data.Geophys.Res.Lett.,42(14):5813-5819.

      Chen L,Zheng T Y,Xu W W.2006.Receiver function migration image of the deep structure in the Bohai Bay Basin,eastern China.Geophys.Res.Lett.,33(20):L20307,doi:10.1029/2006GL027593.

      Dewey J F,Burke K C A.1973.Tibetan,Variscan,and Precambrian basement reactivation:products of continental collision.J.Geol.,81(6):683-692.

      Ding Z F,Zeng R S.1996.Observation and study of shear wave anisotropy in Tibetan Plateau.Chinese J.Geophys.(Acta Geophysica Sinica) (in Chinese),39(2):211-220.England P,Houseman G.1986.Finite strain calculations of continental deformation:2.Comparison with the India-Asia collision zone.J.Geophys.Res.,91(B3):3664-3676.

      Flesch L M,Holt W E,Silver P G,et al.2005.Constraining the extent of crust-mantle coupling in Central Asia using GPS,geologic,and shear wave splitting data.Earth Planet.Sci.Lett.,238(1-2):248-268.Fossen H,Tikoff B.1993.The deformation matrix for simultaneous simple shearing,pure shearing and volume change,and its application to transpression-transtension tectonics.J.Struct.Geol.,15(3-5):413-422.

      Gan W J,Zhang P Z,Shen Z K,et al.2007.Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements.J.Geophys.Res.,112,B08416,doi:10.1029/2005JB004120.

      Gao Y,Teng J W.2005.Studies on seismic anisotropy in the crust and mantle on Chinese Mainland.Progress in Geophys.(in Chinese),20(1):180-185.

      Ge X H,Ma W P,Liu J L,et al.2009.A discussion on the tectonic framework of Chinese mainland.Geology in China (in Chinese),36(5):949-965.

      Gripp A E,Gordon R G.2002.Young tracks of hotspots and current plate velocities.Geophys.J.Int.,150(2):321-361.

      Guo G H,Zhang Z,Cheng J W,et al.2015.Seismic anisotropy in the crust in northeast margin of Tibetan Plateau and tectonic implication.Chinese J.Geophys.(in Chinese),58(11):4092-4105,doi:10.6038/cjg20151117.

      Herquel G,Wittlinger G,Guilbert J.1995.Anisotropy and crustal thickness of Northern-Tibet.New constraints for tectonic modelling.Geophys.Res.Lett.,22(14):1925-1928.

      Huang J L,Zhao D P.2006.High-resolution mantle tomography of China and surrounding regions.J.Geophys.Res.,111:B09305,doi:10.1029/2005JB004066.

      Kaminski E,Ribe N M.2002.Timescales for the evolution of seismic anisotropy in mantle flow.Geochem.Geophys.Geosyst.,3(8):1-17,doi:10.1029/2001GC000222.

      Kosarev G,Kind R,Sobolev S V,et al.1999.Seismic evidence for a detached Indian lithospheric mantle beneath Tibet.Science,283(5406):1306-1309.

      Lee S P.1957.The map of seismicity of China.Chinese J.Geophys.(Acta Geophysica Sinica) (in Chinese),6(2):127-158.

      Li J,Wang X L,Niu F L.2011.Seismic anisotropy and implications for mantle deformation beneath the NE margin of the Tibet plateau and Ordos plateau.Phys.Earth Planet.Int.,189(3-4):157-170.

      Li S G.1959.The east-west trending complex tectonic zone and the north south trending tectonic zone.Collections of Geomechanics (in Chinese),(1):5-14.

      Li Y H,Wu Q J,Feng Q Q,et al.2010.Seismic anisotropy beneath Qinghai province revealed by shear wave splitting.Chinese J.Geophys.(in Chinese),53(6):1374-1383,doi:10.3969/j.issn.0001-5733.2010.06.016.

      Li Y H,Gao M T,Wu Q J.2014.Crustal thickness map of the Chinese mainland from teleseismic receiver functions.Tectonophysics,611:51-60.

      Ma H Q,Ding Z F,Chang L J,et al.2010.Seismic anisotropy of the upper mantle in Ningxia regions.Acta Seismol.Sin.(in Chinese),32(5):507-516.

      Ma H Q,Ding Z F,Chang L J,et al.2011.Features about seismic anisotropy of the crustal medium in Ningxia region.Progress in Geophys.(in Chinese),26(1):61-70.

      Ma X Y.1987.An Outline for Lithosphere Dynamics of China (in Chinese).Beijing:Geological Publishing House.

      Mainprice D,Silver P G.1993.Interpretation of SKS-waves using samples from the subcontinental lithosphere.Phys.Earth Planet.Int.,78(3-4):257-280.

      McKenzie D.1979.Finite deformation during fluid flow.Geophys.J.Int.,58(3):689-715.

      Molnar P,Tapponnier P.1975.Cenozoic tectonics of Asia,effects of a continental collision.Science,189(4201):419-426.

      Nicolas A,Boudier F,Boullier A M.1973.Mechanisms of flow in naturally and experimentally deformed peridotites.Am.J.Sci.,273(10):853-876.

      Ren J S,Jiang C F,Zhang Z K,et al.1980.Geotectonic Evolution of China (in Chinese).Beijing:Science Press.124.

      Royden L H,Burchfiel B C,King R W,et al.1997.Surface deformation and lower crustal flow in Eastern Tibet.Science,276(5313):788-790.

      Silver P G,Chan W W.1991.Shear wave splitting and subcontinental mantle deformation.J.Geophys.Res.,96(B10):16429-16454.

      Silver P G.1996.Seismic anisotropy beneath the continents:Probing the depths of geology.Annu.Rev.Earth Planet.Sci.,24:385-432.

      Silver P G,Holt W E.2002.The mantle flow field beneath western North America.Science,295(5557):1054-1057.

      Tapponnier P,Peltzer G,Le Dain A Y,et al.1982.Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine.Geology,10(12):611-616.

      Tian X B,Zhang Z J.2013.Bulk crustal properties in NE Tibet and their implications for deformation model.Gondwana Res.,24(2):548-559.

      Vinnik L P,Makeyeva L I,Milev A,et al.1992.Global patterns of azimuthal anisotropy and deformations in the continental mantle.Geophys.J.Int.,111(3):433-447.

      Wang C Y,Flesch L M,Silver P G,et al.2008.Evidence for mechanically coupled lithosphere in central Asia and resulting implications.Geology,36(5):363-366.

      Wang C Y,Sandvol E,Zhu L P,et al.2014.Lateral variation of crustal structure in the Ordos block and surrounding regions,North China,and its tectonic implications.Earth Planet.Sci.Lett.,387:198-211.

      Wang Q,Gao Y,Shi Y T,et al.2013.Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet plateau:evidence from shear wave splitting of SKS,PKS and SKKS.Chinese J.Geophys.(in Chinese),56(3):892-905,doi:10.6038/cjg20130318.

      Wang Q,Niu F L,Gao Y,et al.2016.Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data.Geophys.J.Int.,204(1):167-179.

      Wolfe C J,Silver P G.1998.Seismic anisotropy of oceanic upper mantle:Shear wave splitting methodologies and observations.J.Geophys.Res.,103(B1):749-771.

      Wu C L,Xu T,Badal J,et al.2015.Seismic anisotropy across the Kunlun fault and their implications for northward transforming lithospheric deformation in northeastern Tibet.Tectonophysics,659:91-101.

      Wu F Y,Lin J Q,Wilde S A,et al.2005.Nature and significance of the Early Cretaceous giant igneous event in eastern China.Earth Planet Sci.Lett.,233(1-2):103-119.

      Xu Z Q,Yang J S,Jiang M,et al.1999.Continental subduction and uplifting of the orogenic belts at the margin of the Qinghai-Tibet plateau.Earth Science Frontiers (Chinese),6(3):139-151.

      Yin A.2010.Cenozoic tectonic evolution of Asia:a preliminary synthesis.Tectonophysics,274:41-59.

      Zhang H S,Teng J W,Tian X B,et al.2013.Lithospheric thickness and upper mantle anisotropy beneath the northeastern Tibetan Plateau.Chinese J.Geophys.(in Chinese),56(2):459-471,doi:10.6038/cjg20130210.

      Zhang P Z,Shen Z K,Wang M,et al.2004.Continuous deformation of the Tibetan Plateau from global positioning system data.Geology,32(9):809-812.

      Zhang S Q,Karato S.1995.Lattice preferred orientation of olivine aggregates deformed in simple shear.Nature,375(6534):774-777.

      Zhang Y Q,Mercier J L,Vergély P.1998.Extension in the graben systems around the Ordos (China),and its contribution to the extrusion tectonics of south China with respect to Gobi-Mongolia.Tectonophysics,285(1-2):41-75.

      附中文參考文獻(xiàn)

      常利軍,王椿鏞,丁志峰等.2008.青藏高原東北緣上地幔各向異性研究.地球物理學(xué)報(bào),51(2):431-438.

      常利軍,丁志峰,王椿鏞.2010.2010年玉樹(shù)7.1級(jí)地震震源區(qū)橫波分裂的變化特征.地球物理學(xué)報(bào),53(11):2613-2619,doi:10.3969/j.issn.0001-5733.2010.11.009.

      常利軍,王椿鏞,丁志峰.2011.鄂爾多斯塊體及周緣上地幔各向異性研究.中國(guó)科學(xué)D輯,41(5):686-699.

      丁志峰,曾融生.1996.青藏高原橫波分裂的觀測(cè)研究.地球物理學(xué)報(bào),39(2):211-220.

      高原,滕吉文.2005.中國(guó)大陸地殼與上地幔地震各向異性研究.地球物理學(xué)進(jìn)展,20(1):180-185.

      葛肖虹,馬文璞,劉俊來(lái)等.2009.對(duì)中國(guó)大陸構(gòu)造格架的討論.中國(guó)地質(zhì),36(5):949-965.

      郭桂紅,張智,程建武等.2015.青藏高原東北緣地殼各向異性的構(gòu)造含義.地球物理學(xué)報(bào),58(11):4092-4105,doi:10.6038/cjg20151117.

      李善邦.1957.中國(guó)地震區(qū)域劃分圖及其說(shuō)明Ⅰ.總的說(shuō)明.地球物理學(xué)報(bào),6(2):127-158.

      李四光.1959.東西復(fù)雜構(gòu)造帶和南北構(gòu)造帶.地質(zhì)力學(xué)叢刊,(1):5-14.

      李永華,吳慶舉,馮強(qiáng)強(qiáng)等.2010.青海地區(qū)S波分裂研究.地球物理學(xué)報(bào),53(6):1374-1383,doi:10.3969/j.issn.0001-5733.2010.06.016.

      馬禾青,丁志峰,常利軍等.2010.寧夏地區(qū)上地幔地震各向異性特征.地震學(xué)報(bào),32(5):507-516.

      馬禾青,丁志峰,常利軍等.2011.寧夏地區(qū)地殼介質(zhì)地震各向異性特征.地球物理學(xué)進(jìn)展,26(1):61-70.

      馬杏垣.1987.中國(guó)巖石圈動(dòng)力學(xué)綱要.北京:地質(zhì)出版社.

      任紀(jì)舜,姜春發(fā),張正坤等.1980.中國(guó)大地構(gòu)造及其演化——1∶400萬(wàn)中國(guó)大地構(gòu)造圖簡(jiǎn)要說(shuō)明.北京:科學(xué)出版社.124.

      王瓊,高原,石玉濤等.2013.青藏高原東北緣上地幔地震各向異性:來(lái)自SKS、PKS和SKKS震相分裂的證據(jù).地球物理學(xué)報(bào),56(3):892-905,doi:10.6038/cjg20130318.

      許志琴,楊經(jīng)綏,姜枚等.1999.大陸俯沖作用及青藏高原周緣造山帶的崛起.地學(xué)前緣,6(3):139-151.

      張洪雙,滕吉文,田小波等.2013.青藏高原東北緣巖石圈厚度與上地幔各向異性.地球物理學(xué)報(bào),56(2):459-471,doi:10.6038/cjg20130210.

      (本文編輯 何燕)

      Upper mantle anisotropy beneath the northern segment of the north-south tectonic belt in China

      CHANG Li-Jun,DING Zhi-Feng,WANG Chun-Yong

      Institute of Geophysics,China Earthquake Administration,Beijing 100081,China

      The north-south tectonic belt (NSTB) is a north-south meridional tectonic boundary between the eastern and western Chinese mainland with a very complex structure,showing significant changes in geology,geomorphology,and geophysical field characteristics on both sides.Meanwhile,the NSTB is seismically active zone,so also named the well-known north-south seismic belt (NSSB).Thus,the NSTB is regarded as a unique natural laboratory for understanding continental interiors and lithospheric deformation.The study region of this paper is located in the northern NSTB,including the Songpan-Garzê and Kunlun-Qilian fold belts,which are terranes of the northeastern margin of the Tibetan Plateau,and the Alxa and Ordos blocks which are west portions of the North China craton (NCC).This work uses knowledge of seismic anisotropy to provide important constraints on deformation patterns of the crust and lithosphere mantle during an orgency process.It is based on 695 new shear-wave splitting observations from a dense temporary seismic array and 122 published results from permanent seismic stations to map variations in the deformation of the northern segment of the NSTB.The new XKS (SKS,SKKS,and PKS) shear wave splitting observations include 674 measurements from portable deployments in the NSTB (2013—2015,the ChinArray Phase Ⅱ) and 21 measurements from temporary stations deployed in the Ordos block (2010—2011,the Ordos Array).We determine the XKS fast wave polarization directions and delay times between fast and slow shear waves for 695 new seismic stations in the northern segment of the NSTB using both the grid searching method of minimum transverse energy and stacking analysis method.To obtain a reliable estimate of splitting parameters,the following criteria are taken as diagnostics for successful splitting parameter estimations:(1) Clear XKS arrivals and distinct tangential component.(2) The horizontal particle motion is elliptical when anisotropy is present.(3) The two horizontal fast- and slow-component waveforms are coherent.(4) The particle motion becomes linear following correction for anisotropy.And (5) successful removal of tangential energy in the case of core phases.The results at most stations are good,the error of azimuth is less than 10°,and the error of delay time is less than 0.2 s.The fast polarization directions and delay times do not depend on back azimuths,thus a single layer of anisotropic fabric is able to sufficiently explain the data without the need for additional layer.Based on 817 observations,we develop an anisotropic image of upper mantle in the northern segment of the NSTB.In the study region,the fast-waves trend in NW—SE in the northeastern margin of the Tibetan Plateau,Alxa block,and western and northern margins of the Ordos block.The fast-wave directions are in nearly E—W in the Qinling orogen.Within the Ordos block,the fast-wave directions trend in nearly N—S in the north,but switch to nearly E—W in the south.The value of delay time in the Ordos block is not only less than that in its margins,but also less than that in other tectonic units.Especially,the value of delay time in the conjunction of the northeastern margin of the Tibetan Plateau,Alxa block and Ordos block is the largest and considerably larger than other areas.This implies the value of delay time in the stable units is less than that of the active units.Analysis of the fit between the fast-wave direction of shear-wave splitting and predicted fast axis orientation calculated from the surface deformation field indicates the coherence between surface deformation and mantle deformation in the northeastern margin of the Tibetan Plateau,Alxa block,western and northern margins of the Ordos block,and the crust is coupled with the mantle.These results suggest the vertical coherent deformation of the lithosphere plays a major role in the observed seismic anisotropy.In the Qinling orogen,both the lithosphere mantle and eastward asthenospheric mantle flow contribute to the observed anisotropy.Within the Ordos block,there exist weak anisotropy and thick lithosphere,and the shallow deformation is inconsistent with the deep deformation,suggesting the anisotropy of the stable Ordos block is possibly caused by “fossil” anisotropy frozen in the ancient NCC.

      North-south tectonic belt;Seismic array;Shear wave splitting;Lithospheric deformation;Asthenospheric mantle flow

      常利軍,丁志峰,王椿鏞.2016.南北構(gòu)造帶北段上地幔各向異性特征.地球物理學(xué)報(bào),59(11):4035-4047,

      10.6038/cjg20161109.

      Chang L J,Ding Z F,Wang C Y.2016.Upper mantle anisotropy beneath the northern segment of the north-south tectonic belt in China.Chinese J.Geophys.(in Chinese),59(11):4035-4047,doi:10.6038/cjg20161109.

      國(guó)家自然科學(xué)基金(41474088),地震行業(yè)科研專項(xiàng)(201308011)和國(guó)家自然科學(xué)基金(41174070,41274063)資助.

      常利軍,男,1978年生,研究員,主要從事地球深部構(gòu)造、地震各向異性和地球動(dòng)力學(xué)方面的研究工作.E-mail:ljchang@cea-igp.ac.cn

      10.6038/cjg20161109

      P315

      2016-03-31,2016-05-26收修定稿

      猜你喜歡
      巖石圈橫波塊體
      橫波技術(shù)在工程物探中的應(yīng)用分析
      第四章 堅(jiān)硬的巖石圈
      一種新型單層人工塊體Crablock 的工程應(yīng)用
      巖石圈磁場(chǎng)異常變化與巖石圈結(jié)構(gòu)的關(guān)系
      地震研究(2017年3期)2017-11-06 21:54:14
      2014年魯?shù)?—5級(jí)地震相關(guān)斷裂的巖石圈磁異常分析
      地震研究(2017年3期)2017-11-06 01:58:51
      一種Zr 基塊體金屬玻璃的納米壓入蠕變行為研究
      上海金屬(2015年3期)2015-11-29 01:09:58
      塊體非晶合金及其應(yīng)用
      揚(yáng)眉一顧,妖嬈橫波處
      橫波一顧,傲殺人間萬(wàn)戶侯
      火花(2015年1期)2015-02-27 07:40:24
      波浪作用下斜坡上護(hù)面塊體斷裂破壞的數(shù)值模擬
      水道港口(2015年1期)2015-02-06 01:25:35
      深圳市| 和林格尔县| 桃园县| 五华县| 荥经县| 邳州市| 阜城县| 文山县| 沁阳市| 富锦市| 商南县| 临猗县| 始兴县| 谢通门县| 鄯善县| 大连市| 民乐县| 牡丹江市| 黄骅市| 长子县| 南汇区| 双鸭山市| 康平县| 怀安县| 新晃| 上蔡县| 太保市| 安远县| 江华| 岱山县| 济宁市| 宁安市| 黔西县| 贵州省| 抚顺市| 乐亭县| 万全县| 康定县| 宜都市| 沙雅县| 丰台区|