韓松,韓江濤,2*,劉國興,2,王海燕,梁宏達(dá)
1 吉林大學(xué) 地球探測科學(xué)與技術(shù)學(xué)院,長春 1300262 國土資源部應(yīng)用地球物理重點實驗室,長春 1300263 中國地質(zhì)科學(xué)院地質(zhì)研究所,國土資源部深部探測與地球動力學(xué)重點實驗室,北京 100037 4 中國地質(zhì)大學(xué)(北京)地球物理與信息技術(shù)學(xué)院,北京 100083
?
青藏高原東北緣至鄂爾多斯地塊殼幔電性結(jié)構(gòu)及構(gòu)造變形研究
韓松1,韓江濤1,2*,劉國興1,2,王海燕3,梁宏達(dá)4
1 吉林大學(xué) 地球探測科學(xué)與技術(shù)學(xué)院,長春 1300262 國土資源部應(yīng)用地球物理重點實驗室,長春 1300263 中國地質(zhì)科學(xué)院地質(zhì)研究所,國土資源部深部探測與地球動力學(xué)重點實驗室,北京 100037 4 中國地質(zhì)大學(xué)(北京)地球物理與信息技術(shù)學(xué)院,北京 100083
為了獲取青藏高原東北緣至鄂爾多斯地塊的殼幔電性結(jié)構(gòu),研究祁連造山帶、鄂爾多斯地塊及六盤山構(gòu)造帶的構(gòu)造變形,布設(shè)一條甘肅隴西至陜西黃陵的近東西向大地電磁測深剖面,獲取了91個大地電磁測深點的響應(yīng).經(jīng)過對全剖面觀測資料的數(shù)據(jù)處理、分析及二維反演,獲得了剖面殼幔電性結(jié)構(gòu)模型.研究結(jié)果表明:剖面橫向可劃分為三個區(qū)塊,分別對應(yīng)祁連造山帶、六盤山構(gòu)造帶與鄂爾多斯地塊;祁連造山帶東段可能殘存溝弧盆體系的構(gòu)造格架,青藏高原北東向生長可能是在這一先存格架上的疊加與改造;六盤山構(gòu)造帶殼幔結(jié)構(gòu)復(fù)雜,以中地殼拆離斷層為界,上地殼發(fā)育拆離斷層系統(tǒng)而下地殼擠壓縮短增厚;鄂爾多斯地塊成層性較好,地塊總體較為穩(wěn)定,但局部經(jīng)歷了與地幔上涌相關(guān)的物質(zhì)與結(jié)構(gòu)再造.
青藏高原東北緣;鄂爾多斯地塊;六盤山構(gòu)造帶;大地電磁測深;殼幔電性結(jié)構(gòu);構(gòu)造變形
青藏高原的形成及演化深刻地影響著周緣板塊.對青藏高原及相鄰塊體殼幔結(jié)構(gòu)、構(gòu)造變形及深部動力學(xué)的研究,是剖析青藏高原形成演化機(jī)制的重要組成部分.青藏高原東北緣與鄂爾多斯地塊的邊界帶以特殊的弧形構(gòu)造和構(gòu)造轉(zhuǎn)換區(qū)為特點,同時為我國構(gòu)造格局和地勢東西分異的重要界限(湯吉等,2005;李洪強等,2013),其殼幔結(jié)構(gòu)、變形特征及深部動力學(xué)機(jī)制備受關(guān)注.在該區(qū)開展殼幔結(jié)構(gòu)的深部探測對于揭示塊體之間的邊界、接觸關(guān)系及深部動力學(xué)過程有重要意義.
大地電磁測深法(Magnetotelluric,簡稱MT)以天然電磁場作為場源,穿透深度較大,是深部探測的有效手段.由于其對低阻反應(yīng)靈敏且不受高阻層屏蔽,因而能有效地反映深部構(gòu)造形態(tài)及高導(dǎo)層分布(Jones,1999,2013).近年來,為研究青藏高原東北緣的殼幔結(jié)構(gòu),眾多的研究人員在該區(qū)開展了大地電磁探測工作.涂毅敏等(2000)建立了南北地震帶北段下地殼部分熔融幾何形狀和分布的模型,對下地殼中的速度特征與電性特性進(jìn)行了聯(lián)合數(shù)值模擬;趙國澤等(2004)、湯吉等(2005)分別依據(jù)瑪沁—蘭州—靖邊剖面的大地電磁資料對青藏高原東北緣地塊變形和殼幔電性結(jié)構(gòu)進(jìn)行了研究,探討了巴顏喀拉地塊、秦祁地塊、海原震區(qū)及鄂爾多斯地塊內(nèi)部的電性結(jié)構(gòu)特征并對地塊變形進(jìn)行了分析;詹艷等(2005,2008,2014)綜合利用多條大地電磁剖面數(shù)據(jù)對青藏高原東北緣的深部結(jié)構(gòu)進(jìn)行研究,揭示了青藏高原東北緣特別是塊體交匯復(fù)雜結(jié)構(gòu)區(qū)的深部電性特征,探討了深部結(jié)構(gòu)與發(fā)震構(gòu)造樣式的關(guān)系;王鑫等(2010)依據(jù)查甘池—銀川—五湖洞大地電磁測深剖面的探測結(jié)果揭示了鄂爾多斯盆地西緣構(gòu)造帶北段深部電性結(jié)構(gòu),探討了阿拉善地塊與鄂爾多斯地塊的結(jié)構(gòu)差異;金勝等(2012)依據(jù)合作—大井大地電磁剖面的資料獲取了祁連造山帶至阿拉善地塊的電性結(jié)構(gòu),探討了區(qū)內(nèi)高導(dǎo)層不同的成因機(jī)制.
然而,研究區(qū)域以往的大地電磁測深剖面多數(shù)點距較大且剖面長度均較短,而且對處于弧形構(gòu)造帶尾端的六盤山中南段探測程度不夠.為了深入研究青藏高原東北緣殼幔電性結(jié)構(gòu)及深部動力學(xué)過程,進(jìn)一步揭示青藏高原與鄂爾多斯塊體的變形機(jī)制,在國家專項“深部探測技術(shù)與實驗研究”(Sinoprobe02)課題的支持下,布設(shè)了起始于祁連造山帶,跨越六盤山止于鄂爾多斯地塊的大地電磁測深剖面.依據(jù)剖面所獲得的電性結(jié)構(gòu),結(jié)合地震剖面的速度結(jié)構(gòu)等相關(guān)資料開展綜合分析,探討祁連造山帶、青藏高原東北緣與六盤山構(gòu)造帶及鄂爾多斯南部的深部結(jié)構(gòu)、構(gòu)造變形等問題,為活動地塊的劃分及活動地塊之間的相互作用機(jī)制提供電性依據(jù).
2.1 剖面位置及野外觀測
隴西—黃陵剖面L-L′西起隴西縣首陽鎮(zhèn),經(jīng)通渭、莊浪、華亭、崇信、涇川、寧縣、黃陵,東至陜西省洛川縣土基鎮(zhèn),剖面全長約486 km,剖面西端自青藏高原東北緣向東跨越六盤山并深入鄂爾多斯地塊.對測線所采集的原始數(shù)據(jù)進(jìn)行評估后,篩選出可供分析處理的寬頻帶大地電磁測點91個,平均點距約5.3km.剖面位置及測點分布見圖1.
圖1 (a)研究區(qū)域構(gòu)造背景圖;(b)研究剖面L-L'測點分布及區(qū)域構(gòu)造圖數(shù)字地形圖是基于GeoMapApp軟件繪制而成,(a)圖中NCB為華北地塊,QL為祁連造山帶,WQ為西秦嶺造山帶,QD為秦嶺—大別造山帶,SPGZ為松潘甘孜地塊,SCB為華南地塊.圖中青藏高原東北緣構(gòu)造為基于張泓等(2003),徐學(xué)義等(2008)及Cheng et al.(2014)繪制,研究區(qū)域出露的主要巖體依據(jù)裴先治等(2004),Zhang et al.(2006)繪制.其中,剖面跨過的城市有隴西(LX),通渭(TW),莊浪(ZL),華亭(HT),崇信(CX),涇川(JC),寧縣(NX)和黃陵(HL).圖中出現(xiàn)的構(gòu)造名稱如下:① 商丹縫合帶;② 天水—寶雞斷裂;③ 北祁連南緣斷裂;④ 隴山斷裂;⑤ 六盤山西麓斷裂;⑥ 海原—六盤山斷裂;⑦ 青銅峽—固原斷裂;⑧ 韋州—安國斷裂;⑨ 青龍山—平?jīng)鰯嗔?⑩ 沙井子—擺宴井?dāng)嗔?○11 慶陽—佳縣斷裂;○12 永壽—柳林?jǐn)嗔?Fig.1 (a) Topography map showing the tectonic background of the study region;(b) Topography map showing major tectonic structures and distribution of MT stations of profile L-L'The digital topographic map and the profile were obtained by using GeoMapApp software available at http:∥www.geomapapp.org/.In figure (a),NCB represents the North China Block,QL represents the Qilian Orogenic Belt,QD represents the Qinling-Dabie Orogenic Belt,WQ represents the West Qinling Orogenic Belt,SPGZ represents the Songpan-Ganzi Block and SCB represents the South China Block.The profile goes across Longxi county (LX),Tongwei county (TW),Zhuanglang county (ZL),Huating county (HT),Chongxin county (CX),Jingchuan county (JC),Ning county (NX) and Huangling county (HL).The structures shown in the map follow that of Zhang et al.(2003),Xu et al.(2008) and Cheng et al.(2014).The outcrops in the study region are after Pei et al.(2004) and Zhang et al.(2006).The names of the structures are as follows:① Shangdan Suture Zone;② Tianshui-baoji Fault;③ Southern Margin Fault of the Northern Qilian Block;④ Longshan Fault;⑤ West Liupanshan Fault;⑥ Haiyuan-liupanshan Fault;⑦ Qingtongxia-guyuan Fault;⑧ Weizhou-anguo Fault;⑨ Qinglongshan-pingliang Fault;⑩ Shajingzi-baiyanjing Fault;○11 Qingyang-jiaxian Fault;○12 Yongshou-liulin Fault.
圖2 各地質(zhì)單元內(nèi)部典型測點的視電阻率和相位曲線Fig.2 Observed apparent resistivity and phase curves of typical stations located in each geological unit.Site 09 is located in the Qilian Block,Site 27~Site 48 are located in the boundary zone and Site 58~Site 87 are located in the Ordos Block
野外觀測采用加拿大鳳凰地球物理公司V5-2000大地電磁測深儀進(jìn)行寬頻帶數(shù)據(jù)采集,采用五分量方式(Ex,Ey,Hx,Hy,Hz)進(jìn)行觀測,測站布設(shè)中電極距小于100 m,測點采集時間平均為20 h,獲取數(shù)據(jù)資料的有效頻率范圍為320 Hz-5×10-4Hz,數(shù)據(jù)采集系統(tǒng)之間通過GPS同步.在數(shù)據(jù)處理過程中,使用SSMT2000軟件系統(tǒng)對原始時間序列進(jìn)行處理,原始時間序列經(jīng)傅里葉變換獲得電磁場的自功率譜或互功率譜,基于五分量的電磁場譜數(shù)據(jù)進(jìn)一步估算阻抗張量,從而獲得視電阻率、阻抗相位等數(shù)據(jù).處理過程中,綜合采用了Robust估計、遠(yuǎn)參考處理、功率譜挑選等處理手段,保證了原始資料的可信度.
2.2 數(shù)據(jù)質(zhì)量及分析
全剖面視電阻率及相位曲線的單點分析是進(jìn)行數(shù)據(jù)分析及校正的基礎(chǔ),每個測點均是該測點及其附近地下電性結(jié)構(gòu)的直觀反映,沿剖面對曲線數(shù)據(jù)質(zhì)量、類型、走勢進(jìn)行分析,可以篩選出異常數(shù)據(jù)點進(jìn)行分析校正并可初步了解地下的電性結(jié)構(gòu).剖面代表性原始曲線(含誤差)如圖2所示,曲線整體較為圓滑、誤差棒較小,其中測點09與測點87中間頻段受到干擾導(dǎo)致相位下掉趨向于-180°,應(yīng)用Rhoplus分析并參考旁測點曲線走勢判斷曲線畸變程度并進(jìn)行校正.測點09視電阻率曲線走勢呈現(xiàn)HKH型,其中在10-2Hz左右出現(xiàn)極小值,在電阻率結(jié)構(gòu)上可以預(yù)見高導(dǎo)層的存在.測點27、測點34與測點48分別屬于祁連造山帶、六盤山與鄂爾多斯地塊西南緣,各自幅值、趨勢不盡相同,表征了青藏高原東北緣強烈作用區(qū)的構(gòu)造復(fù)雜性.測點58與測點87曲線類型尤其是深部走勢不同,預(yù)示了鄂爾多斯地塊內(nèi)部所存在的深部結(jié)構(gòu)差異.
2.3 區(qū)域維性分析及構(gòu)造走向
本文采用Swift二維偏離度(Swift,1967)對區(qū)域電性結(jié)構(gòu)的維性特征進(jìn)行分析.阻抗二維偏離度是描述地下介質(zhì)維度的重要指標(biāo).一般認(rèn)為,其值小于0.3即可將地電斷面可視作二維的,并可由二維反演進(jìn)行定量解釋.從圖3可以看出剖面的中高頻段阻抗偏離度基本都小于0.3,可視為二維結(jié)構(gòu),而低頻部分局部阻抗偏離度較大,一方面是由于深部的三維性增強,另一方面可能為兩處礦區(qū)個別測點、個別頻點受到干擾所致.總的來看,剖面整體基本呈現(xiàn)二維特征,故可以對本剖面進(jìn)行二維反演和分析.
在對大地電磁測深數(shù)據(jù)進(jìn)行二維反演之前,需要進(jìn)行構(gòu)造走向分析,以確定剖面的區(qū)域構(gòu)造走向.運用GB分解張量阻抗分析技術(shù)(Groom and Bailey,1989)對剖面實測數(shù)據(jù)進(jìn)行區(qū)域構(gòu)造走向判斷.圖4給出了全頻、10~0.0005 Hz、1~0.0005 Hz、0.1~0.0005 Hz、0.01~0.0005 Hz五個頻段全測點主軸方位統(tǒng)計.由圖可知,全頻全測點的綜合統(tǒng)計顯示各個方向較為平均,主軸顯著性不強,而隨著高頻數(shù)據(jù)的剔除,主軸方向越發(fā)集中.由于阻抗張量分解所確定的主軸方向具有90°的模糊性,在GB張量阻抗分解的基礎(chǔ)上,考慮到六盤山構(gòu)造帶的構(gòu)造走向為北西向,綜合判定研究剖面的構(gòu)造走向為北西34°.據(jù)此將阻抗數(shù)據(jù)旋轉(zhuǎn)到該主軸方向,并識別出TE、TM兩種模式的視電阻率及相位曲線.
2.4 極化模式選擇及二維反演
大地電磁二維反演有三種模式,分別為TE、TM和TE+TM聯(lián)合模式,在進(jìn)行二維反演解釋之前需要進(jìn)行極化模式的選擇.實踐表明單獨TM模式的數(shù)據(jù)進(jìn)行二維反演的擬合程度往往比單獨TE模式要好,而且采用TM模式進(jìn)行二維反演可以較好地重建三維模型而較少地帶入冗余構(gòu)造.尤其是對三維高導(dǎo)模型的反映上,TM模式甚至還優(yōu)于TE+TM聯(lián)合反演的結(jié)果(蔡軍濤等,2010).經(jīng)過二維反演試算,在綜合考慮TE、TM與TE+TM數(shù)據(jù)反演擬合差、剖面構(gòu)造格架及地質(zhì)先驗資料的情況下,最終選擇TM模式數(shù)據(jù)進(jìn)行二維反演.
反演方法選擇非線性共軛梯度(NLCG)反演算法(Rodi and Mackie,2001).在反演之前采用L曲線法(Hansen,1992;Hansen and O′Leary,1993)對正則化因子的選取進(jìn)行評估,根據(jù)不同正則化因子反演所獲得的擬合差RMS與粗糙度Roughness繪制L曲線.由圖5可見τ=10時模型粗糙度與擬合差處于L曲線的拐點,故選取最終反演的正則化因子為τ=10.反演的其他參數(shù)為視電阻率誤差10%,相位誤差2.9°,橫縱光滑比α=1.反演初始模型為背景電阻率為100 Ωm的均勻半空間,經(jīng)過200次迭代,最終反演擬合差RMS為2.20,表明反演擬合狀況良好,反演所獲得的二維電阻率結(jié)構(gòu)具有較高可信度.圖6給出實測視電阻率和相位與反演模型理論響應(yīng)的對比影像圖.由圖可知,二者一致性較好.圖7為參與反演測點的單點擬合差分布情況.
圖3 二維偏離度影像圖Fig.3 Image of 2D skewness
圖4 構(gòu)造主軸分頻統(tǒng)計玫瑰圖Fig.4 Rose diagrams showing strike analysis results for each corresponding frequency band
圖5 不同正則化因子的模型粗糙度與擬合誤差曲線圖Fig.5 L-curve of RMS and roughness for different τ values
研究剖面整體上呈現(xiàn)“橫向分塊、縱向分層”的特征.橫向上分為三大區(qū)塊,沿剖面自西向東0~157 km范圍內(nèi)為祁連造山帶,157~236 km范圍內(nèi)為六盤山構(gòu)造帶,236~486 km范圍內(nèi)為鄂爾多斯地塊.祁連造山帶與鄂爾多斯地塊均存在殼內(nèi)高導(dǎo)層,成層性較好,而處于二者之間的六盤山構(gòu)造帶結(jié)構(gòu)較為破碎,區(qū)域構(gòu)造復(fù)雜.下面分區(qū)塊討論剖面的電性結(jié)構(gòu)(如圖8(a)).
3.1 祁連造山帶
祁連造山帶為青藏高原東北緣的前緣地帶,在剖面上的位置為隴西、通渭、莊浪一線(測點1~28).祁連造山帶的深部電性結(jié)構(gòu)存在明顯的橫向差異,大致以通渭為界分為東西兩段.西段主要以低阻特征為主而東段呈現(xiàn)高阻特征.西段電性結(jié)構(gòu)顯示上地殼分為兩層:第一層為低阻層,電阻率為十幾至幾十Ωm,厚度約2.5~5 km,該層位自西向東逐漸變薄,區(qū)域地質(zhì)資料顯示地表為第三紀(jì)、第四紀(jì)地層所覆蓋;第二層為上地殼,電阻率較高,約為幾十至幾百Ωm,厚度約8~13 km,呈現(xiàn)自西向東的抬升趨勢.下地殼相對復(fù)雜,呈現(xiàn)橫向分區(qū)特征,存在殼內(nèi)高導(dǎo)層C1、直立高阻體R1以及東傾高導(dǎo)體C2.殼內(nèi)高導(dǎo)層C1電阻率小于10 Ωm,橫向延伸約50 km,厚度約8~10 km,自西向東抬升.高阻體R1位于高導(dǎo)體C1之下,延伸至上地幔,電阻率為幾百Ωm.低阻體C2位于C1東側(cè),電阻率約為10~50 Ωm,低阻體向東傾并延伸入上地幔,但由于最低頻率的限制觀測資料不能很好地限定C2的底界.東段電性結(jié)構(gòu)較為簡單,淺部低阻沉積層較薄,層厚約1.7~3 km,電阻率約為幾十Ωm,深部均為高阻特征.殼內(nèi)存在高阻體R2,電阻率大于1000 Ωm,經(jīng)過渡地帶與上地幔高阻體R3相接,高阻體R3的電阻率相對R2較低,約為幾百Ωm,R3與兩側(cè)異常體之間存在著較寬的電性過渡邊界.在通渭附近存在隱伏斷裂F1,推測該隱伏斷裂為北祁連南緣斷裂,F(xiàn)1分隔了東西兩段,表現(xiàn)為明顯的電性梯度帶.根據(jù)對1980—2008年87個地震臺站所記錄的2666次地震事件震源分布的統(tǒng)計(Cheng et al.,2014),通渭附近為一處地震事件多發(fā)區(qū)域,在該處地震事件震源深度小于40 km,推測F1應(yīng)為殼內(nèi)隱伏斷裂.
圖6 實測與反演模型響應(yīng)對比影像圖(a) 實測TM模式視電阻率;(b) 計算TM模式視電阻率;(c) 實測TM模式阻抗相位;(d) 計算TM模式阻抗相位.Fig.6 Pseudosection maps of the observed and modeled TM data of apparent resistivity and phase(a) Observed TM-mode apparent resistivity;(b) Calculated TM-mode apparent resistivity;(c) Observed TM-mode phase;(d) Calculated TM-mode phase.
圖7 測點 RMS誤差沿剖面分布圖Fig.7 Site-by-site RMS distribution of 2D inversion model
圖8 (a) 二維NLCG反演電性結(jié)構(gòu)圖;(b) 殼幔結(jié)構(gòu)解釋推斷圖;康氏面及Moho面據(jù)寬角反射與折射地震資料所繪(李英康等,2014;Wang et al.,2014),圖(b)中標(biāo)注的色階為不同層位相對電阻率高低Fig.8 (a) Image of the 2D electrical structure model obtained by NLCG code using TM impedance data (b) Image of the interpreted crust and upper mantle structure along the profile.The Conrad discontinuity and Moho is based on the deep seismic sounding profile (Li et al.,2014;Wang et al.,2014).The colour scale in (b) is based on the relative value of the resistivity.
3.2 六盤山構(gòu)造帶
六盤山構(gòu)造帶為祁連造山帶與鄂爾多斯地塊的拼合過渡區(qū)域,在剖面上的位置處于莊浪與崇信之間(測點28~44).二維電性結(jié)構(gòu)表明:過渡帶第一電性層為低阻層,電阻率約為十幾至幾十Ωm,東段(測點41-44)較厚(約為6 km),而西段較薄(厚度約1~3 km).該段地表主要為中新生代地層所覆蓋,可能為沉積地層的反映.第二層為高阻層,位于地殼中上部,該層位厚度約為18~33 km,西薄東厚,并且被斷裂六盤山西麓斷裂(F3)、韋州—安國斷裂(F4)分割為三個規(guī)模不等的高阻體R4、R5、R6,電阻率均在1000 Ωm以上,高阻體的底界面自東向西抬升;第三層為下地殼,呈低阻特征,存在一規(guī)模較大的高導(dǎo)體C3,其電阻率小于10 Ωm,橫向跨度約30 km,形態(tài)表現(xiàn)為中間厚兩邊薄.六盤山構(gòu)造帶下地殼顯著增厚(Tong et al.,2007;李英康等,2014;Wang et al.,2014;Guo et al.,2015),電阻率等值線下凹,下地殼底部150 Ωm等值線與莫霍面走勢基本一致.上地幔的電性結(jié)構(gòu)表現(xiàn)為明顯的拼合過渡特征,即自西側(cè)祁連造山帶R3較高的電阻率(約1000 Ωm)逐漸過渡至鄂爾多斯地塊上地幔的較低電阻率(約100 Ωm),由于下地殼高導(dǎo)體C4的屏蔽作用,六盤山上地幔的分辨率較低,兩大地塊相互作用的確切形態(tài)尚存在疑問.
本區(qū)在地質(zhì)上查明的重要活動斷裂主要有隴山斷裂(F2)、六盤山西麓斷裂(F3)、海原—六盤山斷裂、韋州—安國斷裂(F4)和青龍山平?jīng)鰯嗔?F5),均為逆沖斷裂.除海原—六盤山斷裂外,斷裂賦存區(qū)域在電性結(jié)構(gòu)上均表現(xiàn)為明顯的低阻異常帶,活動斷裂的密集出現(xiàn)及較寬的低阻破碎帶表征了過渡帶地殼結(jié)構(gòu)破碎的特征,與斷裂控制區(qū)域地震多發(fā)性相符.六盤山構(gòu)造帶所顯示的殼幔結(jié)構(gòu)異常與海原地區(qū)所反映的結(jié)構(gòu)破碎、莫霍面起伏的特征的相一致(李松林等,2002;陳九輝等,2005),而海原—六盤山斷裂的地表延伸位置在電性結(jié)構(gòu)上并無明顯差異,可能表征了斷裂活動性較弱、閉鎖程度較高(張曉亮等,2011;李強等,2013).
3.3 鄂爾多斯地塊
鄂爾多斯地塊在剖面上的位置位于崇信以東區(qū)域(測點44~91),二維電性結(jié)構(gòu)顯示鄂爾多斯地塊成層性較好,縱向大致可分為四層:第一層為沉積地層的反映,電阻率較低為幾~幾十Ωm,厚度約3~9 km,西厚東?。坏诙訛楦咦鑼雍穸燃s6~21 km,電阻率為幾十~上千Ωm,第二層出現(xiàn)兩處明顯加厚區(qū)域分別為鄂爾多斯西緣與子午嶺地區(qū)(測點73~82段),這兩層共同組成了上地殼;第三層為相對低阻層,上部存在殼內(nèi)高導(dǎo)層,電阻率小于10 Ωm,連續(xù)性較好,橫向延續(xù)可達(dá)160 km,高導(dǎo)層分為西段、中段和東段,分別為C4、C5、C6,東西兩段高導(dǎo)層埋深較淺,埋深8~12 km不等,其頂面大致與康氏面一致,中段(測點73~82)頂面埋深可達(dá)25 km且厚度較大.一般認(rèn)為,下地殼較為連續(xù)的高導(dǎo)層的存在表征了地塊長期穩(wěn)定的特性(Jones,1992),而鄂爾多斯高導(dǎo)層頂面存在明顯起伏,賦存深度存在差異,可能與深部的構(gòu)造變形相關(guān);第四層為相對高阻層,應(yīng)為上地幔的反映,該層位局部賦存相對高阻的異常體,可能為其深部結(jié)構(gòu)不均一性的反映.鄂爾多斯地塊層狀結(jié)構(gòu)清晰,長期穩(wěn)定存在,其內(nèi)部活動斷裂不發(fā)育,地震活動性較弱.穿過剖面的深大斷裂主要有慶陽—佳縣斷裂與永壽—柳林?jǐn)嗔?,兩者均為北東向展布的古老斷裂,一般認(rèn)為顯生宙以來活動微弱(張泓等,2003).永壽—柳林?jǐn)嗔言陔娦越Y(jié)構(gòu)上有著較為明顯的顯示,西傾高導(dǎo)層C5-C6可能為該斷裂的反映.
祁連造山帶、六盤山構(gòu)造帶與鄂爾多斯地塊的殼幔電性結(jié)構(gòu)存在較明顯差異,上下地殼及地幔的構(gòu)造變形樣式各不相同,下面將基于電性結(jié)構(gòu)的認(rèn)識對其地質(zhì)意義及地塊變形特征進(jìn)行分析,剖面殼幔結(jié)構(gòu)解釋推斷如圖8(b).
4.1 祁連造山帶殼幔結(jié)構(gòu)及意義探討
祁連造山帶是典型的早古生代大陸造山帶,經(jīng)歷了大洋擴(kuò)張與俯沖,中西段出露有典型的俯沖-增生雜巖帶,發(fā)育完整的溝弧盆體系(許志琴等,1994;張建新等,1995;宋述光等,2009),而祁連造山帶東段由于新生界覆蓋的影響總體研究程度較低.秦祁結(jié)合部已有的研究(胡波等,2005;Zhang et al.,2006;何世平等,2007a;何世平等,2007b;裴先治等,2007;徐學(xué)義等,2008;李王曄,2008;丁仨平,2008)在區(qū)域地質(zhì)構(gòu)造特征及演化過程上尚未形成統(tǒng)一認(rèn)識,但這些研究均從不同角度確認(rèn)了早古生代及中生代與俯沖相關(guān)的構(gòu)造巖漿活動,為溝弧盆體系的存在提供了佐證.然而,新生界的覆蓋使得這一俯沖構(gòu)造體系缺乏蛇綠巖套等可靠證據(jù)的支持,俯沖位置及形態(tài)尚缺乏深部結(jié)構(gòu)的證據(jù).大地電磁探測將通過地下電性結(jié)構(gòu)的構(gòu)建為這一問題的認(rèn)識提供一個新的視角.
殼內(nèi)高阻體R2大致以康氏面為界,其上下兩部分的反射結(jié)構(gòu)存在差異.康氏面之上為密集反射區(qū),而康氏面以下部分為反射透明區(qū)(Guo et al.,2015),反射結(jié)構(gòu)的差異表明R2的物質(zhì)組成存在差異,結(jié)合區(qū)域構(gòu)造背景推斷R2上部為隴山巖群片麻質(zhì)基底(何艷紅等,2005;何世平等,2006),下部為島弧巖漿活動的反映(Guo et al.,2015).紅土堡變基性火山巖的元素地球化學(xué)特征(胡波等,2005;何世平等,2007a;何世平等,2007b;李王曄,2008)表明其原始巖漿受到古老地殼物質(zhì)的混染,而變基性火山巖中輝綠巖墻捕獲鋯石的年齡區(qū)間與隴山巖群時代大致相當(dāng),可能的情況是:在原始巖漿上升侵位過程中,與上部古老的隴山雜巖發(fā)生物質(zhì)交換,原始巖漿遭受了不同程度的混染(何世平等,2007a),這佐證了對于R2物質(zhì)組成的推斷.實際上島弧巖漿活動不僅限于R2,結(jié)合祁連造山帶東端的高阻特征及地震反射透明區(qū)(Guo et al.,2015)繪制島弧巖漿活動區(qū)域如圖8(b).
元素及同位素地球化學(xué)的特征顯示紅土堡變基性火山巖的巖漿來源于地幔,與俯沖消減有關(guān)(胡波等,2005;何世平等,2007b;丁仨平,2008;李王曄,2008),這意味著高阻體R3可能為基性火山巖原始巖漿固結(jié)的產(chǎn)物.構(gòu)造環(huán)境的判別研究也表明R2附近地表出露的火山巖(紅土堡變基性火山巖、陳家河群中酸性火山巖、閆家店閃長巖)形成于島弧或弧后裂陷-小洋盆的構(gòu)造背景(胡波等,2005;Zhang et al.,2006;何世平等,2007a;何世平等,2007b;徐學(xué)義等,2008;李王曄,2008;丁仨平,2008).考慮到北祁連造山帶的構(gòu)造演化史及低阻體C2東傾形態(tài),推測C2為俯沖帶及俯沖-增生雜巖的反映,俯沖前緣為北祁連南緣斷裂F1.通渭附近地震多發(fā)及地表溫泉的發(fā)現(xiàn)表明北祁連南緣斷裂F1現(xiàn)今仍在活動,與俯沖薄弱帶的深部特征相符.另外,形成于島弧或弧后裂陷-小洋盆構(gòu)造環(huán)境的巖體呈北西向延伸,這與現(xiàn)今北祁連南緣斷裂的展布、早古生代洋殼的北向俯沖極性一致.至此,深部電性結(jié)構(gòu)的空間線索將地質(zhì)、地球物理、地球化學(xué)的資料聯(lián)系起來,俯沖增生雜巖C2、俯沖帶前緣F1、高阻的島弧巖漿活動區(qū)以及地表出露的火山巖共同形成較為完整的俯沖構(gòu)造體系的空間框架.
綜合上述,我們認(rèn)為祁連造山帶東段仍然殘存溝弧盆體系的構(gòu)造格架,俯沖消減帶的前緣位于北祁連南緣斷裂處.青藏高原的北東向生長是在這一構(gòu)造格架的基礎(chǔ)上的疊加改造.
4.2 六盤山構(gòu)造帶變形特征及構(gòu)造意義
六盤山地殼結(jié)構(gòu)破碎,穩(wěn)定且清晰的層狀結(jié)構(gòu)不復(fù)存在,取而代之的是規(guī)模不等的上地殼高阻體,高阻體在反射結(jié)構(gòu)上表現(xiàn)為密集反射區(qū)(Guo et al.,2015).結(jié)合區(qū)域構(gòu)造背景(何艷紅等,2005;何世平等,2006)推測高阻體為受到后期改造的隴山巖群片麻質(zhì)基底.高阻基底(R4、R5、R6)被多條殼內(nèi)低阻逆沖斷裂(F2、F3、F4、F5)所分隔且具有顯著的西傾反射樣式(Guo et al.,2015),表征了上地殼以逆沖推覆為主的變形特征.中地殼存在東傾的電阻率的分界面,P波速度結(jié)構(gòu)顯示界面處呈低速特征(李文輝,2013),結(jié)合地殼反射樣式及結(jié)構(gòu)特征的研究(Guo et al.,2015)推斷該界面為拆離斷層面,與Burchfiel et al.(1989)提供的構(gòu)造證據(jù)相吻合,沿滑脫面發(fā)育的碎屑巖系可能為電阻率及波速異常的原因.拆離斷層與逆沖斷層系共同構(gòu)成了六盤山上地殼的拆離斷層系統(tǒng),反映了上下地殼對于青藏高原側(cè)向生長的響應(yīng)差異.下地殼高導(dǎo)體C3在P波速度結(jié)構(gòu)上顯示為速度逆轉(zhuǎn)層,具有較低的P波波速(李文輝,2013),考慮到研究區(qū)較低的大地?zé)崃鞅尘?汪洋等,2001),推測高導(dǎo)特征為流體作用所致.而流體的存在表明下地殼的機(jī)械強度可能較弱,容易在外力作用下發(fā)生變形,這與電阻率等值線、地殼反射結(jié)構(gòu)(Guo et al.,2015)、接收函數(shù)(Wei et al.,2011;Wang et al.,2014)所反映的Moho面下凹的的結(jié)論一致,據(jù)此推斷六盤山下地殼呈塑性,在青藏高原的作用下經(jīng)歷了縮短增厚.青藏高原東北緣在新生代強烈向外擴(kuò)張,祁連造山帶下地殼縮短增厚并向鄂爾多斯地塊生長,鄂爾多斯地塊的阻擋使得處于兩者之間的六盤山構(gòu)造帶發(fā)生強烈變形.由于中地殼拆離斷層的存在,上下地殼形成了不同的變形樣式,上地殼在先期構(gòu)造的基礎(chǔ)上發(fā)育逆沖斷裂形成拆離斷層系統(tǒng)而下地殼擠壓縮短增厚.隨著青藏高原的不斷擴(kuò)張,下地殼的縮短增厚量不斷累積,在此背景下六盤山于8Ma左右快速隆起.六盤山上地幔處于祁連造山帶高阻上地幔與鄂爾多斯相對低阻上地幔之間,從西向東存在由高到低的電阻率變化,考慮六盤山隆起的構(gòu)造背景,這一電性結(jié)構(gòu)特征可能為祁連造山帶與鄂爾多斯地塊在六盤山上地幔匯聚的反映,但更為準(zhǔn)確的結(jié)構(gòu)特征需要長周期探測的結(jié)果進(jìn)一步界定.
4.3 鄂爾多斯地塊高導(dǎo)層分布及構(gòu)造意義
鄂爾多斯地塊成層性較好,中下地殼出現(xiàn)高導(dǎo)層,總體較為連續(xù),這一點與鄂爾多斯地塊以往的大地電磁探測一致(趙國澤等,2004;湯吉等,2005;趙國澤等,2010;王鑫等,2010),表征了鄂爾多斯地塊長期穩(wěn)定的特征.然而,剖面反演結(jié)果顯示高導(dǎo)層的埋深具有明顯的橫向差異.根據(jù)分布位置的不同可將鄂爾多斯地塊高導(dǎo)異常分為三部分,分別為C4、C5、C6.其中C4、C6位于中地殼,與接收函數(shù)(Wang et al.,2014)在中地殼揭示的負(fù)極性震相相吻合,表明該處中地殼結(jié)構(gòu)橫向不連續(xù).C5位于下地殼下部,向深部延展跨越Moho面.C5-C6相互貫通呈西傾形態(tài),與剪切波西傾低速區(qū)(Zhu et al.,2009)一致,可能為古元古代俯沖的痕跡(Zhu et al.,2009),因此C5-C6應(yīng)為構(gòu)造薄弱區(qū).鄂爾多斯航磁異常的研究(王濤等,2007)發(fā)現(xiàn)C5-C6(測點73~86段)處于北東向航磁負(fù)異常帶內(nèi),與兩側(cè)明顯高值正異常存在明顯差異.然而,航磁異常帶所處基底巖系——太華巖群以片麻巖為主,為高磁化率巖性(邸領(lǐng)軍,2003),推測航磁負(fù)異常的出現(xiàn)與深部構(gòu)造活動有關(guān).考慮到C5向上地幔延展的特征及鄂爾多斯地塊中生代晚期構(gòu)造熱事件(任戰(zhàn)利等,2007),推斷現(xiàn)今觀測到的高導(dǎo)低速低磁的特征與該期構(gòu)造熱事件相關(guān),中生代晚期鄂爾多斯盆地巖石圈深部的熱活動增強,上地幔熱物質(zhì)局部上涌,下地殼發(fā)生熔融和殼幔物質(zhì)交換,來自上地幔的鎂鐵質(zhì)成分的添加使得鄂爾多斯南部區(qū)域泊松比偏高(任梟等,2012;Wang et al.,2014;司薌等,2015)、Moho面及下地殼P波速度界面上隆(Wang et al.,2014;滕吉文,2014).同時上地幔的熱活動可能以古俯沖帶為通道進(jìn)行物質(zhì)交換與熱流傳導(dǎo),導(dǎo)致基底物質(zhì)及結(jié)構(gòu)經(jīng)歷熱及化學(xué)再造,使得C5-C6呈現(xiàn)低速高導(dǎo)低磁特征.綜合上述,鄂爾多斯地塊總體穩(wěn)定,局部經(jīng)歷了與地幔上涌相關(guān)的物質(zhì)與結(jié)構(gòu)再造.
本文研究得出如下結(jié)論:1)研究剖面橫向可劃分為三個區(qū)塊,分別對應(yīng)祁連造山帶、六盤山構(gòu)造帶與鄂爾多斯地塊.祁連造山帶以低阻俯沖帶為界分為西側(cè)層狀結(jié)構(gòu)區(qū)與東側(cè)高阻區(qū);六盤山構(gòu)造帶上地殼呈高阻,結(jié)構(gòu)破碎,下地殼存在高導(dǎo)層,上地幔表現(xiàn)為祁連造山帶與鄂爾多斯地塊在六盤山之下的匯聚,呈中高電阻率的過渡特征;鄂爾多斯地塊內(nèi)部縱向成層且中下地殼高導(dǎo)層普遍存在,上地幔存在電阻率的橫向差異;2)祁連造山帶東段可能殘存溝弧盆體系的構(gòu)造格架,俯沖消減帶的前緣位于北祁連南緣斷裂處,青藏高原的北東向生長是在這一先存構(gòu)造上的疊加與改造;3)六盤山構(gòu)造帶以中地殼拆離斷層為界,上地殼發(fā)育拆離斷層系統(tǒng)而下地殼擠壓縮短增厚;4)鄂爾多斯地塊成層性較好,地塊總體穩(wěn)定而局部經(jīng)歷了與地幔上涌相關(guān)的物質(zhì)與結(jié)構(gòu)再造.
致謝 感謝國家專項“深部探測技術(shù)實驗與集成”(SinoProbe-02)與國家自然科學(xué)基金項目(41504076)給予的支持,感謝張興洲教授在論文修改過程中給予的幫助,與西北大學(xué)程斌老師及中國地質(zhì)大學(xué)張樂天老師的交流擴(kuò)展了作者的思路,在此一并感謝,同時感謝匿名審稿人提出的寶貴建議.
Burchfiel B C,Deng Q D,Molnar P,et al.1989.Intracrustal detachment within zones of continental deformation.Geology,17(8),748-752,doi:10.1130/0091-7613(1989)017〈0448:IDWZOC〉2.3.CO;2.
Cai J T,Chen X B.2010.Refined techniques for data processing and two-dimensional inversion in magnetotelluric Ⅱ:Which data polarization mode should be used in 2D inversion.Chinese J.Geophys.(in Chinese),53(11):2703-2714,doi:10.3969/j.issn.0001-5733.2010.11.018.
Chen J H,Liu Q Y,Li S C,et al.2005.Crust and upper mantle S-wave velocity structure across Northeastern Tibetan Plateau and Ordos block.Chinese J.Geophys.(in Chinese),48(2):333-342,doi:10.3321/j.issn:0001-5733.2005.02015.
Cheng B,Cheng S Y,Zhang G W et al.2014.Seismic structure of the Helan-Liupan-Ordos western margin tectonic belt in North-Central China and its geodynamic implications.J.Asian Earth Sci.,87,141-156,doi:10.1016/j.jseaes.2014.01.006.
Di L J.2003.Research on related problems of basement evolution and sedimentary cover in Ordos Basin[Ph.D.thesis].(in Chinese).Xi′an:Northwest University.
Ding S P.2008.Early Palaeozoic tectonic framework and evolution in the junction of Western Qinling orogenic belt and Qilian orogenic belt[Ph.D.thesis].(in Chinese).Xi′an:Chang′an University.
Gao R,Wang H Y,Yin A,et al.2013.Tectonic development of the northeastern Tibetan Plateau as constrained by high-resolution deep seismicreflection data.Lithos,634:555-574.doi:10.1130/L293.1.
Groom R W,Bailey R C.1989.Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion.J.Geophys.Res.,94(B2),1913-1925,doi:10.1029/JB094iB02p01913.
Guo X Y,Gao R,Wang H Y,et al.2015.Crustal architecture beneath the Tibet-Ordos transition zone,NE Tibet,and the implications for plateau expansion.Geophys.Res.Lett.,42(24):10631-10639,doi:10.1002/2015GL066668.
Hansen P C.1992.Analysis of discrete ill-posed problems by means of the L-curve.SIAM Rev.,34(4):561-580,doi:10.1137/1034115.
Hansen P C,O′Leary D P.1993.The use of the L-curve in the regularization of discrete ill-posed problems.SIAM J.Sci.Comput.,14(6):1487-1503,doi:10.1137/0914086.
He S P,Wang H L,Chen J L,et al.2006.Zircon U-Pb chronology of Longshan rock group by LA-ICP-MS and its geological significance.Acta Geologica Sinica (in Chinese),80(11):1668-1675,doi:10 .3321/j.issn:0001-5717.2006.11.004
He S P,Wang H L,Xu X Y,et al.2007a.A LA-ICP-MS U-Pb chronological study of zircons from Hongtubu basic volcanic rocks and its geological significance in the east segment of north Qilian Orogenic Belt.Advances in Earth Science (in Chinese),22(2),143-151,doi:10.3321/j.issn:1001-8166.2007.02.004.
He S P,Wang H L,Xu X Y,et al.2007b.Geochemical characteristics and tectonic environment of Hongtubao basalts and Chenjiahe intermediate-acid volcanic rocks in the eastern segment of North Qilian Orogenic Belt.Acta Petrologica Et Mineralogica (in Chinese),26(4),295-309,doi:10.3969/j.issn.1000-6524.2007.04.001.
He Y H,Sun Y,Chen L,et al.2005.Zircon U-Pb chronology of Longshan complex by LA-ICP-MS and its geological significance.Acta Petrologica Sinica,21(1):125-134,doi:10.3321/j.issn:1000-0569.2005.01.012
Hu B,Pei X Z,Ding S P,et al.2005.Geochemical characteristics of the Hongtubao metabasic rocks in the Tianshui area,Gansu,and their tectonic significance.Geological Bulletin of China.(in Chinese),24(3),258-263,doi:10.3969/j.issn.1671-2552.2005.03.009.
Jin S,Zhang L T,Jin Y J,et al.2012.Crustal electrical structure along the Hezuo-Dajing profile across the Northeastern Margin of the Tibetan Plateau.Chinese J.Geophys.(in Chinese),55(12):3979-3990,doi:10.6038/j.issn.0001-5733.2012.12.010.
Jones A G.1992.Electrical conductivity of the continental lower crust.∥Fountain D M,Arculus R J,Kay R W,ed.Continental Lower Crust.Elsevier,81-143.
Jones A G.1999.Imaging the continental upper mantle using electromagnetic methods.Lithos.48 (1-4),57-80,doi:10.1016/S0024-4937(99)00022-5.
Jones A G.2013.Imaging and observing the electrical Moho.Tectonophysics,609,423-436.doi:10.1016/j.tecto.2013.02.025.
Li H Q,Gao R,Wang H Y,et al.2013.Extracting the Moho structure of Liupanshan by the method of near vertical incidence.Chinese J.Geophys.(in Chinese),56(11):3811-3818,doi:10.6038/cjg20131122.
Li Q,Jiang Z S,Wu Y Q,et al.2013.Present-day tectonic deformation characteristics of Haiyuan-Liupanshan Fault Zone.Journal of Geodesy and Geodynamics.(in Chinese),33(2),18-22.
Li S L,Zhang X K,Zhang C K,et al.2002.A preliminary study on the crustal velocity structure of Maqin-Lanzhou-Jingbian by means of deep seismic sounding profile.Chinese J.Geophys.(in Chinese),45(2),210-217,doi:10.3321/j.issn:0001-5733.2002.02.007.
Li W H.2013.Joint exploration of deep seismic reflection and deep seismic sounding with its application in crust structure research.[Ph.D.thesis](in Chinese).Beijing,Chinese Academy of Geological Science.
Li W Y.2008.Geochronology and geochemistry of the ophiolites and island-arc-type igneous rocks in the Western Qinling orogen and the Eastern Kun1un orogen:Implication for the evo1ution of the Tethyan Ocean.[Ph.D.thesis](in Chinese).Hefei:University of Science and Technology of China.
Li Y K,Gao R,Mi S X,et al.2014.The characteristics of crustal velocity structure for Liupan Mountain-Ordos Basin in the Northeastern Margin of Qinghai-Xizang (Tibet) Plateau.Geological Review (in Chinese),60(5),1147-1157,doi:10.3969/j.issn.0371-5736.2014.05.019.
Meng X H,Shi L,Guo L H,et al.2012.Multi-scale analyses of transverse structures based on gravity anomalies in the northeastern margin of the Tibetan Plateau.Chinese J.Geophys.(in Chinese),55(12),3933-3941,doi:10.6038/j.issn.0001-5733.2012.12.006.
Pei X Z,Li Y,Ding S P,et al.2004.1:250 000 regional geological survey report of Tianshui (in Chinese).Xi′an,Geological Survey Institute of Chang′an University.
Pei X Z,Sun R Q,Ding S P,et al.2007.LA-ICP-MS zircon U-Pb dating of the Yanjiadian diorite in the eastem Qilian Mountains and its geological significance.Geology in China (in Chinese),34(1):8-16,doi:10.3969/j.issn.1000-3657.2007.01.002.
Ren Z L,Zhang S,Gao S L,et al.2007.The tectonic-thermal evolution history and mineralization implications of the Ordos basin.Science in China Series D:Earth Science (in Chinese),37(z1):23-32,doi:10.3321/j.issn:1006-9267.2007.z1.003.
Ren X,Xu Z G,Yang H,et al.2012.Moho depth distribution character beneath the Ordos block′s southeastern margin areas.Chinese J.Geophys.(in Chinese),55(12):4089-4096,doi:10.6038/j.issn.0001-5733.2012.12.021.
Rodi W L,Mackie R L.2001.Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion.Geophysics,66 (1),174-187,doi:10.1190/1.1444893.
Si X,Teng J W,Liu Y S,et al.2016.Crust structure of the Qinling orogenic and the region on its north and south margins from teleseismic receiver function.Chinese J.Geophys.(in Chinese),59(4):1321-1334,doi:10.6038/cjg20160414.
Song S G,Niu Y L,Zhang L F,et al.2009.Time constraints on orogenesis from oceanic subduction to continental subducfion,collision,and exhumation:An example from North Qilian and North Qaidam HP-UHP belts.Acta Petrologica Sinica (in Chinese),25(9):2067—2077.
SWIFT C M.1967.A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States [Ph.D.thesis].Cambridge:Massachusetts Institute of Technology.
Tang J ,Zhan Y,Zhao G Z,et al.2005.Electrical conductivity structure of the crust and upper mantle in the northeastern margin of the Qinghai-Tibet plateau along the profile Maqin-Lanzhou-Jingbian.Chinese J.Geophys.(in Chinese),48(5):1205-1216,doi:10.3321/j.issn:0001-5733.2005.05.032.
Teng J W,Li S L,Zhang Y Q,et al.2014.Fine velocity structures and deep processes in crust and mantle of the Qinling orogenic belt and the adjacent North China craton and Yangtze craton.Chinese J.Geophys.(in Chinese),57(10):3154-3175,doi:10.6038/cjg20141006.
Tian X B,Liu Z,Si S K,et al.2014.The crustal thickness of NE Tibet and its implication for crustal shortening.Tectonophysics,634:198-207,doi:10.1016/j.tecto.2014.07.001.
Tong W W,Wang L S,Mi N,et al.2007.Receiver function analysis for seismic structure of the crust and uppermost mantle in the Liupanshan area,China.Science in China Series D:Earth Sciences,50(S2):227-233,doi:10.1007/s11430-007-6008-z.
Tu Y M,Li Q H,Cheng J.2000.Seismic velocity structure and electric resistivity on north segment of the North-South Seismic Zone.Northwestern Seismological Journal (in Chinese),22(4),353-360,doi:10.3969/j.issn.1000-0844.2000.04.001.
Wang C Y,Sandvol E,Zhu L,et al.2014.Lateral variation of crustal structure in the Ordos block and surrounding regions,North China,and its tectonic implications.Earth Planet.Sci.Lett.,387:198-211,doi:10.1016/j.epsl.2013.11.033.
Wang T,Xu M J,Wang L S,et al.2007.Aeromagnetic anomaly analysis of Ordos and adjacent regions and its tectonic implications.Chinese J.Geophys.(in Chinese),50(1):163-170,doi:10.3321/j.issn:0001-5733.2007.01.023.
Wang X,Zhan Y,Zhao G Z,et al.2010.Deep electric structure beneath the northern section of the western margin of the Ordos basin.Chinese J.Geophys.(in Chinese),53(3):595-604,doi:10.3969/j.issn.0001-5733.2010.03.013.
Wang Y,Wang J Y,Xiong L P,et al.2001.Lithospheric geothermics of major geotectonic units in China mainland.Acta Geoscientia Sinica (in Chinese),22(1):17-22,doi:10.3321/j.issn:1006-3021.2001.01.004.
Wei Z G,Chen L and Xu W W.2011.Crustal thickness and Vp/Vs ratio of the central and western North China Craton and its tectonic implicaions.Geophys.J.Int.,186(2),385-389,doi:10.1111/j.1365-246X.2011.05089.x.
Xu C F.2003.The cause of formation of the upper mantle and crust high conductive layers in Chinese mainland and the study of Tangshan Earthquake.Earth Science Frontiers (in Chinese),10(z1):101-111,doi:10.3321/j.issn:1005-2321.2003.z1.016.
Xu X Y,He S P,Wang H L,et al.2008.Tectonic framework of North Qinling Mountain and North Qilian Mountain conjunction area in early Paleozoic:a study of the evidences from strata and tectonic-magmatic events.Northwestern Geology (in Chinese),41(1),1-21,doi:10.3969/j.issn.1009-6248.2008.01.001.
Xu Z Q,Xu H F,Zhang J X,et al.1994.The zhoulangnanshan Caledonian subductive complex in the northern Qilian Mountains and its dynamics.Acta Geologica Sinica (in Chinese),68(1):1-15.
Yin B X,Cheng J H,Min G,et al.2013.The conductivity characteristics of middle and upper crust of Jingyuan-Yanchi,Southern Ningxia arc structure.Earth Science Frontiers (in Chinese),20(4),332-339.
Zhan Y,Zhao G Z,Wang J J.2005.Crustal electric structure of Haiyuan arcuate tectonic region in the northeastern margin of Qinghai-Xizang Plateau.Acta Seismologica Sinica (in Chinese),27(4),431-440,doi:10.3321/j.issn:0253-3782.2005.04.010.
Zhan Y.2008.Deep electric structures beneath the northeastern margin of the Tibetan Plateau and its tectonic implications.[Ph.D.thesis](in Chinese).Beijing:Institute of Geology,China Earthquake Administration.
Zhan Y,Zhao G Z,Wang L F,et al.2014.Deep electric structure beneath the intersection area of West Qinling orogenic zone with North-South Seismic tectonic zone in china.Chinese J.Geophys.(in Chinese),57(8):2594-2607,doi:10.6038/cjg20140819.
Zhang H,He Z L,Jin X L,et al.2005.Tectonic evolution and coal accumulation of the Ordos Basin:A brief explanation of the geological tectonic map of the Ordos coal basin(with scale of 1∶500 000) (in Chinese).Beijing:Geological Publishing House.
Zhang H F,Zhang B R,Harris N,et al.2006.U-Pb zircon SHRIMP ages,geochemical and Sr-Nd-Pb isotopic compositions of intrusive rocks from the Longshan-Tianshui area in the southeast corner of the Qilian orogenic belt,China:Constraints on petrogenesis and tectonic affinity.J.Asian Earth Sci.,27,751-764,doi:10.1016/j.jseaes.2005.07.008
Zhang J X,Xu Z Q.1995.Caledonian subduction-accretionary complex/volcanic arc zone and its deformation features in the middle sector of Northern Qilian Mountains.Acta Geoscience Sinica (in Chinese),16(2):153-163.
Zhang P Z,Shen Z K,Wang M,et al.2004.Continuous deformation of the Tibetan Plateau from global positioning system data.Geology,32(9):809-812,doi:10.1130/G20554.1.
Zhang X L,Shi Z M,Jiang F Y,et al.2011.Research on late tectonic deformation evolvement of Haiyuan-Liupanshan Arc Fault and its surrounding area.Journal of Geodesy and Geodynamics.(in Chinese),31(3),20-24,doi:10.3969/j.issn.1671-5942.2011.03.004.
Zhao G Z,Tang J,Zhan Y,et al.2004.The electrical structure of the northern margin of the Qinghai-Tibet Pleatu crust and the deformation of tectonic units.Science in China Series D:Earth Science (in Chinese),34(10):908-918,doi:10.3321/j.issn:1006-9267.2004.10.003.
Zhao G Z,Zhan Y,Wang L F,et al.2010.Electric structure of the crust beneath the Ordos Fault Block.Seismology and geology,32(3):345-359,doi:10.3969/j.issn:0253-4967.2010.03.001.
Zhu R X and Zheng T Y.2009.Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics.Chinese Sci.Bull.,54(19):3354-3366,doi:10.1007/s11434-009-0451-5.
附中文參考文獻(xiàn)
蔡軍濤,陳小斌.2010.大地電磁資料精細(xì)處理和二維反演解釋技術(shù)研究(二)—反演數(shù)據(jù)極化模式選擇.地球物理學(xué)報,53(11):2703-2714,doi:10.3969/j.issn.0001-5733.2010.11.018.
陳九輝,劉啟元,李順成等.2005.青藏高原東北緣—鄂爾多斯地塊上地幔S波速度結(jié)構(gòu).地球物理學(xué)報 ,48(2):333-342,doi:10.3321/j.issn:0001-5733.2005.02.015.
邸領(lǐng)軍.2003.鄂爾多斯盆地基底演化及沉積蓋層相關(guān)問題的探究[博士論文].西安:西北大學(xué).
丁仨平.2008.西秦嶺—祁連造山帶(東段)交接部位早古生代構(gòu)造格架及構(gòu)造演化[博士論文].西安:長安大學(xué).
何世平,王洪亮,陳雋璐等.2006.北祁連東端隴山巖群斜長角閃巖鋯石LA-ICP-MS測年及其地質(zhì)意義.地質(zhì)學(xué)報,80(11):1668-1675,doi:10.3321/j.issn:0001-5717.2006.11.004.
何世平,王洪亮,徐學(xué)義等.2007a.北祁連東段紅土堡基性火山巖鋯石LA-ICP-MS U-Pb年代學(xué)及其地質(zhì)意義.地球科學(xué)進(jìn)展,22(2):143-151,doi:10.3321/j.issn:1001-8166.2007.02.004.何世平,王洪亮,徐學(xué)義等.2007b.北祁連東段紅土堡基性火山巖和陳家河中酸性火山巖地球化學(xué)特征及構(gòu)造環(huán)境.礦物巖石學(xué)雜志,26(4),295-309,10.3969/j.issn.1000-6524.2007.04.001.何艷紅,孫勇,陳亮等.2005.隴山雜巖的LA-ICP-MS鋯石U-Pb年齡及其地質(zhì)意義.巖石學(xué)報,21(1):125-134,doi:10.3321/j.issn:1000-0569.2005.01.012.
胡波,裴先治,丁仨平等.2005.甘肅天水地區(qū)紅土堡變基性巖的地球化學(xué)特征及其構(gòu)造意義.地質(zhì)通報,24(3),258-263,10.3969/j.issn.1671-2552.2005.03.009.
金勝,張樂天,金永吉等.2012.青藏高原東北緣合作—大井剖面地殼電性結(jié)構(gòu)研究.地球物理學(xué)報,55(12):3979-3990,doi:10.6038/j.jssn.0001-5733.2012.12.010.
李洪強,高銳,王海燕等.2013.用近垂直方法提取莫霍面—以六盤山深地震反射剖面為例.地球物理學(xué)報,56(11),3811-3818,doi:10.6038/cjg20131122.
李強,江在森,武艷強等.2013.海原—六盤山斷裂帶現(xiàn)今構(gòu)造變形特征.大地測量與地球動力學(xué),33(2),18-22.
李松林,張先康,張成科等.2002.瑪沁—蘭州—靖邊地震測深剖面地殼速度結(jié)構(gòu)的初步研究.地球物理學(xué)報,45(2),210-217,doi:10.3321/j.issn:0001-5733.2002.02.007.
李文輝.2013.深地震反射與深地震測深聯(lián)合探測及其在地殼結(jié)構(gòu)研究中的應(yīng)用[博士論文].北京:中國地質(zhì)科學(xué)研究院.
李王曄.2008.西秦嶺—東昆侖造山帶蛇綠巖及島弧型巖漿巖的年代學(xué)和地球化學(xué)研究——對特提斯洋演化的制約[博士論文].合肥:中國科學(xué)技術(shù)大學(xué).
李英康,高銳,米勝信等.2014.青藏高原東北緣六盤山—鄂爾多斯盆地的地殼速度結(jié)構(gòu)特征.地質(zhì)評論,60(5),1147-1157,doi:10.3969/j.issn.0371-5736.2014.05.019.
孟小紅,石磊,郭良輝等.2012.青藏高原東北緣重力異常多尺度橫向構(gòu)造分析.地球物理學(xué)報,55(12),3933-3941,doi:10.6038/j.issn.0001-5733.2012.12.006.
裴先治,李勇,丁仨平等.2004.天水市幅1:25萬區(qū)域地質(zhì)調(diào)查(修測)成果報告.西安:長安大學(xué)地質(zhì)調(diào)查研究院.
裴先治,孫仁奇,丁仨平等.2007.隴東地區(qū)閆家店閃長巖LA-ICP-MS鋯石U-Pb測年及其地質(zhì)意義.中國地質(zhì),34(1):8-16,doi:10.3969/j.issn.1000-3657.2007.01.002.
任戰(zhàn)利,張盛,高勝利等.2007.鄂爾多斯盆地構(gòu)造熱演化史及其成藏成礦意義.中國科學(xué)D輯:地球科學(xué),37(z1):23-32,doi:10.3321/j.issn:1006-9267.2007.z1.003.
任梟,徐志國,楊輝等.2012.鄂爾多斯地塊東南緣地帶Moho深度變化特征研究.地球物理學(xué)報,55(12):4089-4096,doi:10.6038/j.issn.0001-5733.2012.12.021.
司薌,滕吉文,劉有山等.2016.秦嶺造山帶與南北相鄰地帶遠(yuǎn)震接收函數(shù)與地殼結(jié)構(gòu).地球物理學(xué)報,59(4):1321-1334,doi:10.6038/cjg20160414.
宋述光,牛耀齡,張立飛等.2009.大陸造山運動:從大洋俯沖到大陸俯沖、碰撞、折返的時限——以北祁連山、柴北緣為例.巖石學(xué)報,25(9):2067-2077.
湯吉,詹艷,趙國澤等.2005.青藏高原東北緣瑪沁—蘭州—靖邊剖面地殼上地幔電性結(jié)構(gòu)研究.地球物理學(xué)報,48(5):1205-1216,doi:10.3321/j.issn:0001-5733.2005.05.032.
滕吉文,李松嶺,張永謙等.2014.秦嶺造山帶與鄰域華北克拉通和揚子克拉通的殼、幔精細(xì)速度結(jié)構(gòu)與深層過程.地球物理學(xué)報,57(10):3154-3175,doi:10.6038/cjg20141006.
涂毅敏,李清河,成瑾.2000.南北地震帶北段速度結(jié)構(gòu)與電阻率特性.西北地震學(xué)報,22(4),353-359,doi:10.3969/j.issn.1000-0844.2000.04.001.
王濤,徐鳴潔,王良書等.2007.鄂爾多斯及鄰區(qū)航磁異常特征及其大地構(gòu)造意義.地球物理學(xué)報,50(1):163-170,doi:10.3321/j.issn:0001-5733.2007.01.023.
王鑫,詹艷,趙國澤等.2010.鄂爾多斯盆地西緣構(gòu)造帶北段深部電性結(jié)構(gòu).地球物理學(xué)報,53(3):595-604,doi:10.3969/j.issn.0001-5733.2010.03.013.
汪洋,汪集旸,熊亮萍等.2001.中國大陸主要地質(zhì)構(gòu)造單元巖石圈地?zé)崽卣?地球?qū)W報,22(1):17-22,doi:10.3321/j.issn:1006-3021.2001.01.004.
徐常芳.2003.中國大陸殼內(nèi)與上地幔高導(dǎo)層成因及唐山地震機(jī)理研究.地學(xué)前緣,10(z1):101-111,doi:10.3321/j.issn:1005-2321.2003.z1.016.
徐學(xué)義,何世平,王洪亮等.2008.早古生代北秦嶺—北祁連結(jié)合部構(gòu)造格局的地層及構(gòu)造巖漿事件約束.西北地質(zhì),41(1),1-21,doi:10.3969/j.issn.1009-6248.2008.01.001.
許志琴,徐惠芬,張建新等.1994.北祁連走廊南山加里東俯沖雜巖增生地體及動力學(xué).地質(zhì)學(xué)報,68(1):1-15.
尹秉喜,程建華,閔剛等.2013.寧南弧形構(gòu)造帶甘肅靖遠(yuǎn)—寧夏鹽池剖面中上地殼電性結(jié)構(gòu)特征.地學(xué)前緣,20(4),332-339.
詹艷,趙國澤,王繼軍等.2005.青藏高原東北緣海原弧形構(gòu)造區(qū)地殼電性結(jié)構(gòu)探測研究.地震學(xué)報,27(4),431-440,doi:10.3321/j.issn:0253-3782.2005.04.010.
詹艷.2008.青藏高原東北緣地區(qū)深部電性結(jié)構(gòu)及構(gòu)造涵義[博士論文].北京:中國地震局地質(zhì)研究所.
詹艷,趙國澤,王立鳳等.2014.西秦嶺與南北地震構(gòu)造帶交匯區(qū)深部電性結(jié)構(gòu)特征.地球物理學(xué)報,57(8):2594-2607,doi:10.6038/cjg20140819.
張泓,何宗蓮,晉香蘭等.2005.鄂爾多斯盆地構(gòu)造演化與成煤作用.北京:地質(zhì)出版社.
張建新,許志琴.1995.北祁連中段加里東俯沖-增生雜巖/火山弧帶及其變性特征.地球?qū)W報,16(2):153-163.
張曉亮,師昭夢,蔣鋒云等.2011.海原—六盤山弧型斷裂及其附近最新構(gòu)造變形演化分析.大地測量與地球動力學(xué),31(3),20-24,doi:10.3969/j.issn.1671-5942.2011.03.004.
趙國澤,湯吉,詹艷等.2004.青藏高原東北緣地殼電性結(jié)構(gòu)和地塊變形關(guān)系的研究.中國科學(xué)(D輯):地球科學(xué),34(10):908-918,doi:10.3321/j.issn:1006-9267.2004.10.003.
趙國澤,詹艷,王立鳳等.2010.鄂爾多斯斷塊地殼電性結(jié)構(gòu).地震地質(zhì),32(3):345-359,doi:10.3969/j.issn:0253-4967.2010.03.001.
(本文編輯 劉少華)
Crust and upper mantle electrical structure and tectonic deformation of the northeastern margin of the Tibetan Plateau and the adjacent Ordos Block
HAN Song1,HAN Jiang-Tao1,2*,LIU Guo-Xing1,2,WANG Hai-Yan3,LIANG Hong-Da4
1 Geo-exploration Science and Technology Institute,Jilin University,Changchun 130026,China2 Key Laboratory of Applied Geophysics,Ministry of Land and Resources,Changchun 130026,China3 Lithosphere Research Center,Institute of Geology,CAGS,Key laboratory of Earthprobe and Geodynamics, CAGS,Beijing 100037,China 4 School of Geophysics and Information Technology,China University of Geosciences,Beijing 100083,China
In order to obtain the crust and upper mantle electrical structure of the northeastern margin of the Tibetan Plateau and the adjacent Ordos Block and to further study the tectonic style and deformation of the survey area,a magnetotelluric (MT) sounding profile has been completed.The profile contains 91 sites and goes approximately east-westward from Longxi county,Gansu to Huangling county,Shanxi.Dimensionality analysis demonstrated that the MT data can be interpreted using two-dimensional (2D) approaches.2D inversions were carried out after data processing,qualitative analysis and strike analysis.The final resistivity model derived from the inversions revealed the crust and upper mantle electrical structures along the profile.According to the electrical structures,the profile can be divided into three tectonic units:the North Qilian Orogenic Belt,the Liupanshan Belt and the Ordos Block,which is consistent with the regional geology settings.The electrical structure of North Qilian Orogenic Belt reveals that the growth of the Tibetan Plateau is a tectonic superimposing and reforming process on the existing Trench-Arc-Basin system.The structure of the crust and upper mantle of Liupanshan Belt is complicated;The Ordos Block is characterized by the four-layer electrical structures with resistive upper crust and high conductive layer(HCL).The interior of the Ordos Block is stable while the southern part experienced distinct material and structural reconstruction associated with the upwelling of the upper mantle.
Northeastern margin of the Tibetan Plateau;Ordos Block;Liupanshan Belt;Magnetotelluric;Crust and upper mantle electrical structure;Tectonic deformation
韓松,韓江濤,劉國興等.2016.青藏高原東北緣至鄂爾多斯地塊殼幔電性結(jié)構(gòu)及構(gòu)造變形研究.地球物理學(xué)報,59(11):4126-4138,
10.6038/cjg20161116.
Han S,Han J T,Liu G X,et al.2016.Crust and upper mantle electrical structure and tectonic deformation of the northeastern margin of the Tibetan Plateau and the adjacent Ordos Block.Chinese J.Geophys.(in Chinese),59(11):4126-4138,doi:10.6038/cjg20161116.
國家專項項目“深部探測技術(shù)實驗與集成”(SinoProbe-02)和國家自然科學(xué)基金項目(41504076)資助.
韓松,男,1989年生,博士研究生,主要從事大地電磁處理與解釋方面的研究.E-mail:hansong13@mails.jlu.edu.cn
*通訊作者 韓江濤,男,1982年生,副教授,從事電法勘探教學(xué)與應(yīng)用研究.E-mail:hanjt@jlu.edu.cn
10.6038/cjg20161116
P542
2016-06-27,2016-09-27收修定稿