聶瑞強,楊玉靜,謝建山,2,范瑞文,許冬梅,于秀菊,段志成,董常生
(1山西農(nóng)業(yè)大學(xué)動物科技學(xué)院,山西太谷030801;2山西醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院,太原030001)
Pax6 PAI亞結(jié)構(gòu)域在黑色素細(xì)胞中對MITF、TYR、TYRP1和TYRP2的影響
聶瑞強1,楊玉靜1,謝建山1,2,范瑞文1,許冬梅1,于秀菊1,段志成1,董常生1
(1山西農(nóng)業(yè)大學(xué)動物科技學(xué)院,山西太谷030801;2山西醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院,太原030001)
【目的】高度保守的PAX轉(zhuǎn)錄因子家族在黑色素細(xì)胞的分化和黑色素的生成中起重要的作用,其家族共有的PD 結(jié)構(gòu)域是其與下游基因結(jié)合的主要位點,而PD結(jié)構(gòu)域氨基端的PAI亞結(jié)構(gòu)域在其與下游基因的結(jié)合過程中發(fā)揮重要的作用。研究表明Pax6在視網(wǎng)膜上皮黑色素細(xì)胞的分化中發(fā)揮至關(guān)重要的作用,本試驗借助研究Pax6 PAI亞結(jié)構(gòu)域的功能來對PAX轉(zhuǎn)錄因子家族共有的PD結(jié)構(gòu)域和PAI亞結(jié)構(gòu)域進行研究。【方法】首先通過Psipred對Pax6 PD 結(jié)構(gòu)域的結(jié)構(gòu)進行分析,使用NCBI對Pax6 PD結(jié)構(gòu)域與下游基因的結(jié)合位點進行分析,使用Jaspar對MITF、TYR、TYRP1和TYRP2啟動子中Pax6 PD結(jié)構(gòu)域可能的作用位點進行預(yù)測。使用普通PCR克隆Pax6 PAI亞結(jié)構(gòu)域,將其連入T載體,酶切后連入慢病毒載體,并送公司測序確認(rèn)。將構(gòu)建好的PAI亞結(jié)構(gòu)域過表達載體通過細(xì)胞轉(zhuǎn)染導(dǎo)入到培養(yǎng)的小鼠黑色素細(xì)胞中,使其過量表達。收集細(xì)胞,分別通過觀察綠色熒光蛋白檢測轉(zhuǎn)染效率,使用RT-PCR 和Western blot 來檢測MITF 、TYR 、TYRP1和TYRP2在mRNA 和蛋白水平的變化,同時檢測黑色素細(xì)胞中黑色素生成量的變化。【結(jié)果】通過NCBI分析可知,Pax6 PD結(jié)構(gòu)域與下游基因的作用位點主要集中在氨基端的PAI 亞結(jié)構(gòu)域。通過Jaspar預(yù)測分析,得知,MITF啟動子-695處存在Pax6 PD 結(jié)構(gòu)域的結(jié)合位點,TYR啟動子-873和-1133處存在Pax6 PD 結(jié)構(gòu)域的結(jié)合位點,TYRP1啟動子-629處存在Pax6 PD 結(jié)構(gòu)域的結(jié)合位點,TYRP2啟動子-655處存在Pax6 PD 結(jié)構(gòu)域的結(jié)合位點。在黑色素細(xì)胞中過表達Pax6 PAI亞結(jié)構(gòu)域后,與空載組相比,試驗組MITF mRNA升高2.05倍(P<0.01),蛋白質(zhì)升高1.7倍(P<0.01);TYR mRNA升高2.09倍,蛋白質(zhì)升高2倍(P<0.05);TYRP1 mRNA升高2.93倍(P<0.05),蛋白質(zhì)升高1.9倍(P<0.01);TYRP2 mRNA升高3.62倍(P<0.01),蛋白質(zhì)升高1.37倍。同時試驗組的黑色素含量是空載組黑色素含量的1.33倍(P<0.001)?!窘Y(jié)論】在小鼠黑色素細(xì)胞中,過表達Pax6 PAI亞結(jié)構(gòu)域可以促進MITF、 TYR、TYRP1和TYRP2的表達,進而使黑色素細(xì)胞黑色素的生成量增加。
PAI 亞結(jié)構(gòu)域;Pax6;黑色素
【研究意義】哺乳動物皮膚黑色素細(xì)胞是由神經(jīng)嵴祖細(xì)胞定向分化而來[1],其正常分化依靠相關(guān)基因在時間和空間上的正常表達,而基因的正常表達離不開功能相互交錯的轉(zhuǎn)錄因子網(wǎng)絡(luò)的調(diào)控[2]。高度保守的Paired box(PAX)轉(zhuǎn)錄因子家族屬于Ι型轉(zhuǎn)錄因子,在黑色素細(xì)胞的定向分化和黑色素的產(chǎn)生中發(fā)揮重要的作用[3-4]。PAX家族的共同特征是都在N端含有128個氨基酸組成的paired domain(PD),PD本身就是一個獨立的結(jié)構(gòu),它包含氨基端的PAI 亞結(jié)構(gòu)域和羧基端的RED 亞結(jié)構(gòu)域[5-6],這兩個亞結(jié)構(gòu)域都包含有螺旋-轉(zhuǎn)角-螺旋結(jié)構(gòu)[7],而PAI亞結(jié)構(gòu)域是PAX家族與其下游調(diào)控基因結(jié)合的主要部位[8]?!厩叭搜芯窟M展】BERY于2015年證明在小鼠的皮質(zhì)祖細(xì)胞中富含PAX轉(zhuǎn)錄因子家族的結(jié)合位點[9]。FUJIMURA于2015年證明在視網(wǎng)膜色素上皮細(xì)胞的分化轉(zhuǎn)移中,Pax6調(diào)控其色素積淀和細(xì)胞增殖[10]。CARBE于2013年證明Pax6在眼的發(fā)育中發(fā)揮獨特的作用,但在大腦的發(fā)育中,Pax6可以在功能上被含有相似PD結(jié)構(gòu)域結(jié)合特異性的PAX家族基因所代替[11]。HUETTL于2015年證明Pax6不僅依靠其包括paired domain 和 homeodomain(HD)的完整分子結(jié)構(gòu)執(zhí)行其功能,而且每一個亞結(jié)構(gòu)域也有其獨特的功能[8]?!颈狙芯壳腥朦c】Pax6已被證明在黑色素細(xì)胞的分化和黑色素的生成中發(fā)揮重要作用[12-13]。Pax6不僅包含PAX家族共有的PD,還包含有homeodomain和C端富含脯氨酸、絲氨酸、蘇氨酸的PST區(qū)域。PD和HD通過識別不同的DNA靶點,既合作又獨立的來調(diào)控不同的分子機制。FAVOR發(fā)現(xiàn)在Pax6的編碼序列中第309個堿基C突變?yōu)門,從而使轉(zhuǎn)錄終止,形成了只含有Pax6 PAI完整結(jié)構(gòu)的氨基酸序列[14],破壞了RED的螺旋-轉(zhuǎn)角-螺旋結(jié)構(gòu),保留了PAI完整的螺旋-轉(zhuǎn)角-螺旋結(jié)構(gòu)。這為筆者以研究Pax6 PAI 亞結(jié)構(gòu)域的功能為途徑探究PAX轉(zhuǎn)錄因子家族PAI亞結(jié)構(gòu)域的功能提供了基礎(chǔ)。【擬解決的關(guān)鍵問題】本試驗在細(xì)胞水平,過表達Pax6 PAI 亞結(jié)構(gòu)域,來探究其能否作為反式作用因子調(diào)控下游基因的表達,并通過生物信息學(xué)的分析方法,嘗試解釋其作用機理。
試驗于2015年3月至2016年1月在山西農(nóng)業(yè)大學(xué)羊駝生物工程實驗室完成。
1.1 試驗材料
黑色素細(xì)胞培養(yǎng)基(Sciencell,美國),Trizol(Invitrogen,美國),RIPA 蛋白裂解液(碧云天,北京),RT-PCR Kit(康為,北京),MITF 多克隆抗體,TYR 多克隆抗體,TYRP1多克隆抗體,TYRP2多克隆抗體。
1.2 試驗方法
1.2.1 小鼠Pax6 PAI亞結(jié)構(gòu)域二級結(jié)構(gòu)和下游基因結(jié)合位點分析 二級結(jié)構(gòu)通過Psipred(http://bioinf.cs. ucl.ac.uk/psipred/)分析獲得[15],下游基因結(jié)合位點通過NCBI(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb. cgi)分析獲得[16]。
1.2.2 小鼠MITF、TYR、TYRP1和TYRP2啟動子中Pax6作用位點預(yù)測 通過Jaspar(http://jaspar.genereg.net/)預(yù)測獲得。
1.2.3 小鼠Pax6 PAI亞結(jié)構(gòu)域基因片段的克隆和真核表達載體構(gòu)建 通過普通PCR克隆PAI 亞結(jié)構(gòu)域基因片段,并將其連入T載體,再將其酶切后連接在慢病毒載體中,送公司測序確認(rèn)。
1.2.4 細(xì)胞培養(yǎng)和轉(zhuǎn)染 將小鼠黑色素細(xì)胞培養(yǎng)于6孔板中,設(shè)置正常組、空載組和試驗組。細(xì)胞轉(zhuǎn)染時,將轉(zhuǎn)染試劑與表達載體形成的脂質(zhì)體加入正常培養(yǎng)基中,37℃培養(yǎng)細(xì)胞60 h,進行轉(zhuǎn)染結(jié)果檢測。
1.2.5 黑色素含量測定 用胰酶將黑色素細(xì)胞從細(xì)胞培養(yǎng)板上消化下來,用PBS清洗后細(xì)胞計數(shù)。用0.2 mol·L-1NaOH溶解細(xì)胞,使用酶標(biāo)儀在475 nm 波長進行測值。用烏賊墨標(biāo)準(zhǔn)品做標(biāo)準(zhǔn)曲線[17]。
1.2.6 Real-time PCR檢測 Trizol法提取轉(zhuǎn)染細(xì)胞RNA,反轉(zhuǎn)錄獲得cDNA。根據(jù)熒光定量PCR結(jié)果的CT 值計算試驗結(jié)果,目的基因的相對表達水平=2–△△CT,所有數(shù)據(jù)用GraphPad Prism5.0進行統(tǒng)計分析,實時熒光定量PCR 結(jié)果均用均值±標(biāo)準(zhǔn)誤(Means ± SEM)表示,其中各基因的表達量均經(jīng)β-actin校正,兩組之間的數(shù)據(jù)比較全部采用GraphPad Prism5.0 統(tǒng)計軟件進行t檢驗,三組之間的比較全部采用單因素方差分析。
1.2.7 蛋白免疫印跡試驗 RIPA蛋白裂解液提取轉(zhuǎn)染細(xì)胞蛋白,200 ng上樣量進行SDS-PAGE 電泳,后轉(zhuǎn)至NC 膜??贵w所用濃度為1 000倍稀釋。孵育二抗后,用ECL顯色后暗室曝光,獲得有條帶的膠片,分析。用Image-ProPlus 6.0 軟件對行條帶面積和灰度值半定量分析,數(shù)據(jù)均用Means ± SEM 表示,兩組之間的數(shù)據(jù)比較全部采用GraphPad Prism5.0 統(tǒng)計軟件進行t檢驗,三組之間的比較全部采用單因素方差分析。
2.1 小鼠Pax6 PAI 亞結(jié)構(gòu)域
圖1 Pax6 PD 結(jié)構(gòu)域結(jié)構(gòu)分析Fig. 1 The structure analysis of Pax6 PD domain
結(jié)構(gòu)完整性分析發(fā)現(xiàn),Pax6 PD 結(jié)構(gòu)域 是由PAI和RED 亞結(jié)構(gòu)域組成(圖1-A),PAI和RED亞結(jié)構(gòu)域都含有螺旋-轉(zhuǎn)角-螺旋結(jié)構(gòu),當(dāng)編碼Pax6基因cds區(qū)的第307個堿基由C突變?yōu)門后,在307—309堿基處形成了一個終止密碼子,從而使翻譯提前終止,形成了一個由Pax6前309個堿基序列翻譯出的102個氨基酸殘基組成的氨基酸序列。完整的PD含有128個氨基酸殘基,該突變位點將RED亞結(jié)構(gòu)域的螺旋-轉(zhuǎn)角-螺旋結(jié)構(gòu)破壞,而在形成的氨基酸序列中保留了完整的PAI亞結(jié)構(gòu)域。且通過對PAX家族保守性分析可知,PD與下游基因的結(jié)合位點主要集中在前102個氨基酸序列(圖1-B)。
2.2 小鼠黑色素細(xì)胞培養(yǎng)及細(xì)胞轉(zhuǎn)染
細(xì)胞接種12 h后,即可見細(xì)胞貼壁伸展,24 h后細(xì)胞呈典型的樹突狀。細(xì)胞密度達到70%時,添加脂質(zhì)體和載體的混合物,60 h后通過熒光顯微鏡觀察轉(zhuǎn)染結(jié)果(圖2)。
2.3 細(xì)胞轉(zhuǎn)染后相關(guān)檢測
2.3.1 Pax6 PAI亞結(jié)構(gòu)域與MITF相互作用檢測 提取轉(zhuǎn)染后試驗組和空載組RNA和蛋白后,使用RT-PCR和Western blot 檢測(圖3),并使用Jaspar預(yù)測PD 結(jié)構(gòu)域在MITF啟動子上的作用位點。通過分析結(jié)果顯示:在MITF轉(zhuǎn)錄起始位點前695個堿基處預(yù)測出存在PD 結(jié)構(gòu)域與MITF的結(jié)合位點(圖4-A),同時通過RT-PCR和Western blot結(jié)果分析,與空載組相比,試驗組MITF mRNA升高2.05倍(P<0.01,圖4-B);蛋白質(zhì)升高1.7倍(P<0.01,圖4-C)。由此得出,PAI 亞結(jié)構(gòu)域可以與MITF啟動子作用促進MITF表達。
圖2 黑色素細(xì)胞培養(yǎng)和轉(zhuǎn)染Fig. 2 Melanocyte culture and transfection
圖3 Western blot 檢測圖Fig.3 The picture of Western blot
2.3.2 Pax6 PAI亞結(jié)構(gòu)域與TYR相互作用檢測 提取轉(zhuǎn)染后試驗組和空載組RNA和蛋白后,使用RT-PCR和Western blot 檢測(圖3),并使用Jaspar預(yù)測PD結(jié)構(gòu)域在TYR啟動子上的作用位點。通過統(tǒng)計分析獲得結(jié)果顯示:在TYR轉(zhuǎn)錄起始位點前873和1 133個堿基處預(yù)測出存在PD 結(jié)構(gòu)域與TYR的結(jié)合位點(圖5-A),同時通過RT-PCR和Western blot結(jié)果分析,與空載組相比,試驗組TYR mRNA升高2.09倍(圖5-B);蛋白質(zhì)顯著升高2倍(P<0.05)(圖5-C)。說明PAI亞結(jié)構(gòu)域仍然可以促進TYR的表達。
圖4 MITF相關(guān)檢測Fig. 4 The detection results of MITF
圖5 TYR相關(guān)檢測Fig.5 The detection results of TYR
2.3.3 Pax6 PAI亞結(jié)構(gòu)域與TYRP1相互作用檢測提取轉(zhuǎn)染后試驗組和空載組RNA和蛋白后,使用RT-PCR和Western blot 檢測(圖3),并使用Jaspar預(yù)測PD 結(jié)構(gòu)域在TYRP1啟動子上是否存在作用位點。通過分析結(jié)果顯示:在TYRP1轉(zhuǎn)錄起始位點前629個堿基處預(yù)測出存在PD結(jié)構(gòu)域與TYRP1的結(jié)合位點(圖6-A),同時通過RT-PCR和Western blot結(jié)果分析,與空載組相比,試驗組TYRP1 mRNA升高2.93倍(P<0.05)(圖6-B);蛋白質(zhì)升高1.9倍(P<0.01)(圖6-C)。說明PAI 亞結(jié)構(gòu)域仍然可以促進TYRP1的表達。
2.3.4 Pax6 PAI亞結(jié)構(gòu)域與TYRP2相互作用檢測提取轉(zhuǎn)染后試驗組和空載組RNA和蛋白后,使用RT-PCR和Western blot 檢測(圖3),并使用Jaspar預(yù)測PD 結(jié)構(gòu)域在TYRP2啟動子上是否存在作用位點。通過分析結(jié)果顯示:在TYRP2轉(zhuǎn)錄起始位點前655個堿基處預(yù)測出存在PD 結(jié)構(gòu)域與TYRP2的結(jié)合位點(圖7-A),同時通過RT-PCR和Western blot結(jié)果分析,與空載組相比,試驗組TYRP2 mRNA升高3.62倍(P<0.01)(圖7-B);蛋白質(zhì)升高1.37倍(圖7-C)。說明PAI 亞結(jié)構(gòu)域仍然可以促進TYRP2的表達。
圖6 TYRP1相關(guān)檢測Fig. 6 The detection results of TYRP1
2.4 轉(zhuǎn)染后黑色素含量測定
收集空載組和試驗組黑色素細(xì)胞,通過酶標(biāo)儀對黑色素含量進行測定。試驗組的黑色素含量是空載組黑色素含量的1.33倍(P<0.001)(圖8)。說明PAI 亞結(jié)構(gòu)域仍然可以促進黑色素細(xì)胞中黑色素含量增多。
本試驗通過將Pax6 PAI 亞結(jié)構(gòu)域在黑色素細(xì)胞中過量表達,結(jié)合生物信息學(xué)的分析方法,來探究PAX轉(zhuǎn)錄因子家族共有的PD結(jié)構(gòu)域氨基端的PAI亞結(jié)構(gòu)域在調(diào)控下游基因中的作用。前人的研究得出,Pax6在黑色素細(xì)胞的分化和黑色素的產(chǎn)生中發(fā)揮著至關(guān)重要的作用,且其與黑色素生成通路中的MITF[18-20]、TYR[21-22]、TYRP1[23-24]、TYRP2[25]和β-catenin[26-28]有著密切的聯(lián)系。故本試驗將MITF、TYR、TYRP1和TYRP2作為目標(biāo)基因,使用RT-PCR和Western blot來檢測這些基因表達的變化,同時對黑色素細(xì)胞的黑色素生成量進行測定。結(jié)果顯示,通過預(yù)測發(fā)現(xiàn),在MITF、TYR、TYRP1和TYRP2的啟動子中都可以找到Pax6 PD 結(jié)構(gòu)域的結(jié)合位點,過量表達PAI亞結(jié)構(gòu)域后,黑色素細(xì)胞中MITF、TYR、TYRP1和TYRP2的表達量在mRNA和蛋白質(zhì)水平都會升高,并且黑色素細(xì)胞的黑色素生成量也會增多。
圖7 TYRP2相關(guān)檢測Fig.7 The detection results of TYRP2
圖8 過表達Pax6 PAI 亞結(jié)構(gòu)域?qū)谏丶?xì)胞中黑色素生成的影響Fig. 8 Melanin production in melanocytes over-expressing Pax6 PAI subdomain structure
FUJIMURA在2015年通過試驗得出,Pax6可以與MITF和β-catenin協(xié)同作用促進TYR和TYRP1的表達,但是Pax6只有在MITF存在的情況下才能激活TYR和TYRP1的啟動子,Pax6在沒有MITF存在的情況下是不會激活TYR和TYRP1的啟動子[10]。PLANQUE證明Pax6與MITF協(xié)同作用調(diào)節(jié)下游基因的表達時,主要是與MITF的b-HLH-LZ 結(jié)構(gòu)域相互作用[29]。YASUMOTO證明在Pax6表達存在缺陷的視網(wǎng)膜色素上皮細(xì)胞中,TYR的表達量降低1.58倍(P<0.05),TYRP1的表達量降低1.91倍(P<0.01)[23,30]。本試驗結(jié)果得出,在過量表達PAI亞結(jié)構(gòu)域的情況下,MITF mRNA升高2.05倍,蛋白質(zhì)升高1.7倍,說明PAI亞結(jié)構(gòu)域仍然可以通過調(diào)控MITF的啟動子來促進MITF的表達。TYR mRNA升高2.09倍,蛋白質(zhì)升高2倍;TYRP1 mRNA升高2.93倍,蛋白質(zhì)升高1.9倍;TYRP2 mRNA升高3.62倍,蛋白質(zhì)升高1.37倍,由此可以得出PAI 亞結(jié)構(gòu)域仍然可以使TYR、TYRP1和TYRP2的表達量升高,但是本試驗不能確定PAI亞結(jié)構(gòu)域能否還可以與MITF的b-HLH-LZ結(jié)構(gòu)域相互作用,其促進TYR和TYRP1的表達是與MITF協(xié)同作用的結(jié)果,還是通過促進MITF的表達間接促進TYR和TYRP1的表達,這需要進一步進行試驗加以確認(rèn)。同時尚未有研究報道Pax6作為轉(zhuǎn)錄因子是如何作用于TYRP2的,其促進TYRP2的表達是否也需要MITF的存在。與此同時,試驗組的黑色素含量也與空載組相比升高1.33倍,說明PAI 亞結(jié)構(gòu)域仍然可以通過促進調(diào)節(jié)黑色素生成相關(guān)基因的表達來促進黑色素細(xì)胞黑色素的生成(圖9)。
PD結(jié)構(gòu)域是PAX轉(zhuǎn)錄因子家族共有的結(jié)構(gòu)域,而位于PD結(jié)構(gòu)域氨基端的PAI亞結(jié)構(gòu)域在PD結(jié)合下游基因啟動子中發(fā)揮重要的作用,而PD結(jié)構(gòu)域羧基端的RED亞結(jié)構(gòu)域是否也有其獨特的功能?尚待進一步深入的研究。
圖9 Pax6 PAI亞結(jié)構(gòu)域調(diào)控黑色素生成通路Fig. 9 The pathway of Pax6 PAI subdomain in regulating melanogenesis
在小鼠黑色素細(xì)胞中,過表達Pax6 PAI 亞結(jié)構(gòu)域可以促進MITF、TYR、TYRP1和TYRP2的表達,進而使黑色素細(xì)胞黑色素的生成量增加。
[1] COHEN M A, WERT K J, GOLDMANN J, MARKOULAKI S, BUGANIM Y, FU D, JAENISCH R. Human neural crest cells contribute to coat pigmentation in interspecies chimeras after in utero injection into mouse embryos. Proceedings of the National Academy of Sciences of the United States of America 2016, 113: 1570-1575.
[2] CHEN Y, PAN L, SU Z, WANG J, LI H, MA X, LIU Y, LU F, QU J, HOU L. The transcription factor TBX2 regulates melanogenesis in melanocytes by repressing Oca2. Molecular and Cellular Biochemistry 2016, 415(1/2):103-109.
[3] HEVER A M, WILLIAMSON K A, VAN HEYNINGEN V. Developmental malformations of the eye: The role of PAX6, SOX2 and OTX2. Clinical Genetics, 2006, 69(6):459-470.
[4] MONSORO-BURQ A H. PAX transcription factors in neural crest development. Seminars in Cell & Developmental Biology, 2015, 44: 87-96.
[5] WEI F, LI M, CHENG S Y, WEN L, LIU M H, SHUAI J. Cloning, expression, and functional characterization of the rat Pax6 5a orthologous splicing variant. Gene, 2014, 547(1):169-174.
[6] PAIXAO-CORTES V R, SALZANO F M, BORTOLINI M C. Origins and evolvability of the PAX family. Seminars in Cell & Developmental Biology, 2015, 44:64-74.
[7] EPSTEIN J A, GLASER T, CAI J, JEPEAL L, WALTON D S, MAAS R L. Two independent and interactive DNA-binding subdomains of the Pax6 paired domain are regulated by alternative splicing. Genes & Development, 1994, 8(17):2022-2034.
[8] HUETTL R E, ECKSTEIN S, STAHL T, PETRICCA S, NINKOVIC J, GOTZ M, HUBER A B. Functional dissection of the Pax6 paired domain: Roles in neural tube patterning and peripheral nervous system development. Developmental Biology, 2015,413:86-103.
[9] BERY A, MEROT Y, RETAUX S. Genes expressed in mouse cortical progenitors are enriched in Pax, Lhx, and Sox transcription factor putative binding sites. Brain Research, 2015,1633:37-51.
[10] FUJIMURA N, KLIMOVA L, ANTOSOVA B, SMOLIKOVA J, MACHON O, KOZMIK Z. Genetic interaction between Pax6 and β-catenin in the developing retinal pigment epithelium. DevelopmentGenes and Evolution, 2015, 225(2):121-128.
[11] CARBE C, GARG A, CAI Z, LI H, POWERS A, ZHANG X. An allelic series at the paired box gene 6 (Pax6) locus reveals the functional specificity of Pax genes. The Journal of Biological Chemistry, 2013, 288(17):12130-12141.
[12] ZHANG S J, LI Y F, TAN R R, TSOI B, HUANG W S, HUANG Y H, TANG X L, HU D, YAO N, YANG X. A new gestational diabetes mellitus model, hyperglycemia-induced eye malformation via inhibiting Pax6 in chick embryo. Disease Models & Mechanisms, 2016, 9:177-186.
[13] 聶瑞強, 楊玉靜, 謝建山, 范瑞文, 高文俊, 董常生. 黑色素細(xì)胞中過量表達Pax610Neu基因?qū)ITF和TYR的影響. 中國農(nóng)業(yè)科學(xué), 2016, 49(11):2214-2221. NIE R Q, YANG Y J, XIE J S, FAN R W, GAO W J, DONG C S. The influences of over-expressing Pax610Neuon MITF and TYR in melanocytes. Scientia Agricultura Sinica, 2016, 49(11):2214-2221.(in Chinese)
[14] FAVOR J, PETERS H, HERMANN T, SCHMAHL W, CHATTERJEE B, NEUHAUSER-KLAUS A, SANDULACHE R. Molecular characterization of Pax6(2Neu) through Pax6(10Neu): an extension of the Pax6 allelic series and the identification of two possible hypomorph alleles in the mouse Mus musculus. Genetics, 2001, 159(4): 1689-1700.
[15] SHUKLA S, MISHRA R. Predictions on impact of missense mutations on structure function relationship of PAX6 and its alternatively spliced isoform PAX6(5a). Interdisciplinary Sciences, Computational Life Sciences, 2012, 4(1):54-73.
[16] MARCHLER-BAUER A, DERBYSHIRE M K, GONZALES N R, LU S, CHITSAZ F, GEER L Y, GEER R C, HE J, GWADZ M, HURWITZ D I. CDD: NCBI's conserved domain database. Nucleic Acids Research, 2015, 43(Database issue):D222-226.
[17] DONG Y, WANG H, CAO J, REN J, FAN R, HE X, SMITH G W, DONG C. Nitric oxide enhances melanogenesis of alpaca skin melanocytes in vitro by activating the MITF phosphorylation. Molecular and Cellular Biochemistry, 2011, 352(1/2):255-260.
[18] SINGH R K, MALLELA R K, CORNUET P K, REIFLER A N, CHERVENAK A P, WEST M D, WONG K Y, NASONKIN I O. Characterization of three-dimensional retinal tissue derived from human embryonic stem cells in adherent monolayer cultures. Stem Cells and Development, 2015, 24(23):2778-2795.
[19] PARVINI M, PARIVAR K, SAFARI F, TONDAR M. Generation of eye field/optic vesicle-like structures from human embryonic stem cells under two-dimensional and chemically defined conditions. In vitro Cellular & Developmental Biology Animal, 2015, 51(3): 310-318.
[20] 朱芷葳, 賀俊平, 于秀菊, 程志學(xué), 董常生. Mitf-M在羊駝皮膚組織的表達與序列分析及免疫組織化學(xué)定位. 中國農(nóng)業(yè)科學(xué), 2012, 45(4):794-800. ZHU Z W, HE J P, YU X J, CHENG Z X, DONG C S. Expression, sequence analysis and immunohistochemical localization of Mitf-M transcription factor in alpaca skin. Scientia Agricultura Sinica, 2012, 45(4):794-800. (in Chinese)
[21] SUZUKI K T, ISOYAMA Y, KASHIWAGI K, SAKUMA T, OCHIAI H, SAKAMOTO N, FURUNO N, KASHIWAGI A, YAMAMOTO T. High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos. Biology Open, 2013, 2(5): 448-452.
[22] YAHALOM C, SHARON D, DALIA E, SIMHON S B, SHEMESH E, BLUMENFELD A. Combined occurrence of autosomal dominant aniridia and autosomal recessive albinism in several members of a family. Ophthalmic Genetics, 2015, 36(2):175-179.
[23] RAVIV S, BHARTI K, RENCUS-LAZAR S, COHEN-TAYAR Y, SCHYR R, EVANTAL N, MESHORER E, ZILBERBERG A, IDELSON M, REUBINOFF B. PAX6 regulates melanogenesis in the retinal pigmented epithelium through feed-forward regulatory interactions with MITF. PLoS Genetics, 2014, 10(5):e1004360.
[24] 馬淑慧, 薛霖莉, 徐剛, 侯亞琴, 耿建軍, 曹靖, 赫曉燕, 王海東,董常生. 黑色素細(xì)胞中過量表達miR-137對TYRP-1和TYRP-2的影響. 中國農(nóng)業(yè)科學(xué), 2013, 46(16):3452-3459. MA S H, XUE L L, XU G, HOU Y Q, GENG J J, CAO J, HE X Y, WANG H D, DONG C S. The Influences of over-expressing miR-137 on TYRP-1 and TYRP-2 in melanocytes. Scientia Agricultura Sinica, 2013, 46(16): 3452-3459. (in Chinese)
[25] YANG S, ZHANG J, JI K, JIAO D, FAN R, DONG C. Characterization and expression of soluble guanylate cyclase in skins and melanocytes of sheep. Acta Histochemica, 2016,118:219-224.
[26] ZEMKE M, DRAGANOVA K, KLUG A, SCHOLER A, ZURKIRCHEN L, GAY M H, CHENG P, KOSEKI H, VALENTA T, SCHUBELER D. Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation. BMC Biology, 2015, 13:103.
[27] CANTU C, ZIMMERLI D, HAUSMANN G, VALENTA T, MOOR A, AGUET M, BASLER K. Pax6-dependent, but β-catenin-independent, function of Bcl9 proteins in mouse lens development. Genes & Development, 2014, 28(17):1879-1884.
[28] 賈小云, 金雷皓, 苗瀲涓, 丁娜, 范瑞文, 董常生. miR-663通過靶向TGF-β1調(diào)控羊駝黑色素細(xì)胞的黑色素生成. 中國農(nóng)業(yè)科學(xué), 2015,48(1):165-173. JIA X Y, JIN L H, MIAO L J, DING N, FAN R W, DONG C S. Melanin synthesis of alpaca melanocytes regulated by miR-663 through targeting TGF-β1. Scientia Agricultura Sinica, 2015, 48(1): 165-173. (in Chinese)
[29] PLANQUE N, LECONTE L, COQUELLE FM, MARTIN P, SAULE S. Specific Pax-6/microphthalmia transcription factor interactions involve their DNA-binding domains and inhibit transcriptional properties of both proteins. The Journal of Biological Chemistry, 2001, 276(31):29330-29337.
[30] YASUMOTO K, YOKOYAMA K, TAKAHASHI K, TOMITA Y, SHIBAHARA S. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. The Journal of Biological Chemistry 1997, 272(1):503-509.
(責(zé)任編輯 林鑒非)
Influences of Pax6 PAI Subdomain on MITF, TYR, TYRP1 and TYRP2 in Melanocytes
NIE Rui-qiang1, YANG Yu-jing1, XIE Jian-shan1,2, FAN Rui-wen1, XU Dong-mei1, YU Xiu-ju1, DUAN Zhi-cheng1, DONG Chang-sheng1
(1College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi;2School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001)
【Objective】 Highly conserved PAX family has important effects on the differentiation of melanocytes and production of melanin. It has mainly binding sites with target gene in PD domain that is included by all of PAX family, on the otherhand, the PAI subdomain, which is located in amino terminal of PD domain, has most important effects on PD domain which bound with target gene. Many reports show that Pax6 has the most important effects on the differentiation of retinal pigment epithelial cells. This experiment studies the function of PD domain and PAI subdomain of PAX family by analysing the function of Pax6 PAI subdomain.【Method】The structure of Pax6 PD domain was analyzed by Psipred. The target gene binding sites of Pax6 PD domain was analyzed by NCBI. The binding sites of Pax6 PD domain to the promoter of MITF, TYR, TYRP1, and TYRP2 were analyzed by Jasper. The coding sequences of Pax6 PAI subdomain was amplified by PCR and the Pax6 PAI subdomain was cloned into the T-Vector, meanwhile, confirmed by sequencing. The fragment was then subcloned into a mammalian expression vector, resulting in a construction that contained a promoter driving the expression of green fluorescent protein (GFP). The plasmid vector was confirmed by sequencing. Then, the mouse melanocytes were transfected with the vector using Liposome 2000. Three methods were used in the result test, they were quantitative real-time PCR, western blot and melanin content measurement. 【Result】The target gene binding sites of Pax6 PD domain was mainly distributed in PAI subdomain which is located in amino terminal of PD domain. There was a binding site of Pax6 PD domain at -695 base of MITF promoter; Two binding sites of Pax6 PD domain at -873 base and -1133 base of TYR promoter; One binding site of Pax6 PD domain at -629 base of TYRP1 promoter; And one binding site of Pax6 PD domain at -655 base of TYRP2 promoter. The RT-PCR and western blot results showed that the four target genes and melanin content were significantly increased. MITF mRNA was significantly increased by 2.05 times (P<0.01), TYR mRNA was increased by 2.09 times, TYRP1 mRNA was increased by 2.93 times(P<0.05), TYRP2 mRNA was increased by 3.62 times (P<0.01). Compared with the control group, MITF protein was significantly increased by 1.7 times (P<0.01), TYR protein was increased to 2 times (P<0.05), TYRP1 protein was increased by 1.9 times(P<0.01), TYRP2 protein was increased to 1.37 times. Meanwhile, the melanin content was significantly increased by 1.33 times (P<0.001).【Conclusion】Results of the study demonstrated that the Pax6 PAI subdomain still promoted the expression of MITF, TYR, TYRP1, and TYRP2, while increased the production of melanin of melanocytes.
PAI subdomain; Pax6; melanin
2016-01-26;接受日期:2016-07-29
國家高技術(shù)研究發(fā)展計劃(863計劃, 2013AA102506)、國家公益性行業(yè)(農(nóng)業(yè))科研專項(201303119)、山西農(nóng)業(yè)大學(xué)創(chuàng)新團隊建設(shè)計劃項目(CXTD201201)
聯(lián)系方式:聶瑞強,E-mail:libernie@126.com。通信作者董常生,E-mail:cs_dong@sxau.edu.cn