• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ROCK inhibition enhances neurite outgrowth in neural stem cells by upregulating YAP expression in vitro

    2016-12-02 10:48:14XufengJiaFeiYeYanboWangDaxiongFeng

    Xu-feng Jia, Fei Ye, Yan-bo Wang Da-xiong Feng

    1 Department of Orthopedic Surgery, Jianyang People's Hospital of Sichuan Province, Jianyang, Sichuan Province, China

    2 Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China

    RESEARCH ARTICLE

    ROCK inhibition enhances neurite outgrowth in neural stem cells by upregulating YAP expression in vitro

    Xu-feng Jia1,#, Fei Ye2,#, Yan-bo Wang2, Da-xiong Feng2,*

    1 Department of Orthopedic Surgery, Jianyang People's Hospital of Sichuan Province, Jianyang, Sichuan Province, China

    2 Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China

    Graphical Abstract

    #These authors contributed equally to this study.

    orcid: 0000-0002-2457-8187 (Xu-feng Jia)

    Accepted: 2016-04-28

    Spontaneous axonal regeneration of neurons does not occur after spinal cord injury because of inhibition by myelin and other inhibitory factors. Studies have demonstrated that blocking the Rho/Rho-kinase (ROCK) pathway can promote neurite outgrowth in spinal cord injury models. In the present study, we investigated neurite outgrowth and neuronal differentiation in neural stem cells from the mouse subventricular zone after inhibition of ROCK in vitro. Inhibition of ROCK with Y-27632 increased neurite length, enhanced neuronal differentiation, and upregulated the expression of two major signaling pathway effectors, phospho-Akt and phospho-mitogen-activated protein kinase, and the Hippo pathway effector YAP. These results suggest that inhibition of ROCK mediates neurite outgrowth in neural stem cells by activating the Hippo signaling pathway.

    nerve regeneration; spinal cord injury; neural stem cells; Rho signaling pathway; neurite outgrowth; myelin; YAP; neural regeneration

    Introduction

    After spinal cord injury (SCI), central nervous system neurons cannot regenerate axons spontaneously. This may be partially attributed to axon outgrowth inhibitors in the central nervous system environment, such as myelin-associated glycoprotein, myelin oligodendrocyte glycoprotein, chondroitin sulfate proteoglycans, and Nogo-66 and amino-Nogo (GrandPré et al., 2000; Prinjha et al., 2000; Fournier et al., 2001; Liu et al., 2002). Nogo-66 mainly functions as a neuron-specific inhibitor in soluble monomeric form, whereas amino-Nogo acts as a nonspecific inhibitor of neuronal and non-neuronal cells in the cluster form. Nogo-66 exerts its inhibitory function during axon regeneration by binding to the Nogo-66 receptor (Prinjha et al., 2000). The inhibitory effects of Nogo-66 and amino-Nogo can be reversed by inhibition of the Rho/Rho-kinase (ROCK) pathway in vivo,which enhances axonal regeneration and improves functional recovery after central nerve system injury.

    Fournier et al. (2000) reported that actin rearrangements within the growth cone play a key role in neurite outgrowth inhibition and neurite repulsion. The Rho family of GTPases regulates the actin cytoskeleton (Kawano et al., 2014). Rho family members are present either in their inactive form, or in an active GDP-bound form. Rho GTPases regulate collapse of the growth cone and inhibit neurite outgrowth (K?nigs et al., 2014).

    Rho family members exert their functions mainly through a variety of downstream effectors. Of interest among the downstream targets of GTP-bound Rho are p160ROCK (ROCK-I) and ROK-Rho-kinase (ROCK-II) (Guignandon et al., 2014). Once either of these is activated, the regulatory myosin light-chain phosphatase is phosphorylated (Deng et al., 2014).

    A previous study demonstrated that at low concentrations the cell-permeable pyridine derivative Y-27632, a relatively specific ROCK inhibitor, decreases ROCK-I and ROCKII activity (Ishizaki et al., 2000). Günther et al. (2014) and Roloff et al. (2015) found that in vitro application of Y-27632 to primary motoneurons and human NT2 model neurons increases neurite outgrowth. In addition, Y-27632 promotes the survival and neurite outgrowth of early postnatal cultured retinal neurocytes (Feng et al., 2013) and enhances axon regeneration in an adult rat retinal culture model only in the presence of growth-promoting factors or under high cAMP conditions (Ahmed et al., 2009). Y-27632 also promotes nerve growth factor-induced neurite outgrowth in PC12 cells; IP3 receptors and the PI3K-Akt signaling pathway might be involved in the underlying mechanisms (Minase et al., 2010). However, the mechanism of Y-27632 has not been fully explored. YAP is a major downstream effector of the Hippo pathway (Dill et al., 2015). It is markedly upregulated in many mammalian cancers, and YAP transgenic mice eventually develop liver tumors. Few reports have addressed the role of the Hippo pathway in axon regeneration after SCI.

    A previous report showed that Y-27632 treatment led to functional and anatomical recovery in mice with corticospinal tract lesions (Dergham et al., 2002). The present study was designed to investigate the effects of ROCK inhibition using Y-27632 on neurite outgrowth and neuronal differentiation in neural stem cells (NSCs) and explore the underlying mechanisms.

    Materials and Methods

    NSC culture

    Animal studies were approved by the Institutional Animal Care and Use Committee of the Affiliated Hospital of Southwest Medical University, China (IACUC protocol No. [2012009]), and performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Precautions were taken to minimize suffering and the number of animals used in each experiment.

    For NSC isolation, 100 specific-pathogen-free neonatal Kunming mice (postnatal days 2—6) were provided by the Animal Experimental Center of Southwest Medical University, China (license No. SYXK (Chuan) 2013-181). NSC isolation and culture were performed as described previously (Lingor et al., 2008), with modifications. Briefly, a single-cell suspension was prepared from subventricular zone tissue (Paxinos and Franklin, 2013) and cultured in Dulbecco's modified Eagle's medium (DMEM)/F12 (1:1; Invitrogen, Carlsbad, CA, USA) with B27 supplement (2%; Invitrogen), epidermal growth factor (20 ng/mL; Invitrogen) and basic fibroblast growth factor (20 ng/mL; Invitrogen). After 5—7 days, neurospheres were broken into small clusters and cultured in the same medium at a ratio of 1:3. Proliferative NSCs formed three-dimensional cell clusters. NSCs at passages 2—4 were used for subsequent experiments.

    To investigate NSC differentiation, medium containing DMEM/F12 (1:1), B27 (2%) and retinoic acid (5 μM; Sigma-Aldrich, St. Louis, MO, USA) was used to culture cell clusters on cover slips pre-coated with 0.1 mg/mL poly-D-lysine. The culture medium was refreshed every other day. Six days later, neurobasal medium containing 2% B27 and 20 ng/mL nerve growth factor (Invitrogen) was used.

    Detection of cell viability by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay A single-cell suspension made by cell clusters was seeded into a 96-well plate at a density of 3.0 × 103NSCs per 100 μL of proliferation-inducing medium, and then cultured with the same medium containing different concentrations of Y-27632 (Cytoskeleton Inc., Denver, CO, USA) for 4, 8 or 12 hours. Four hours later, cells were incubated with MTT detergent (10 μL/well; Sigma-Aldrich) at 37°C for 2—4 hours in the dark. Optical density at 570 nm was read on a microplate fluorescence reader (FL600; BioTek, Winooski, VT, USA).

    Neurite outgrowth measurement

    Neurite outgrowth was measured as described previously (Hirose et al., 1998; Sandvig et al., 2004). To detect inhibition of ROCK, the dissociated cell clusters were incubated with proliferation-inducing medium containing 10 μM Y-27632 or an equivalent volume of sterile H2O and then plated onto 10 μg/mL laminin (Sigma-Aldrich) for 1—2 hours. Cells treated with Y-27632 were spread onto the myelin substrate. Neurite outgrowth was quantified using ImageJ software (NIH, Bethesda, MD, USA).

    Western blot assay

    Western blot assay was performed as described previously (Ivanov et al., 2009). Cells were collected after centrifugation and then lysed in radioimmune precipitation assay buffer containing a protein inhibitor cocktail (Sigma-Aldrich). Protein content was quantified by bicinchoninic acid assay (Pierce, Rockford, IL, USA), and equal amounts of protein were separated by polyacrylamide gel electrophoresis. The proteins were then transferred to a polyvinylidene fluoride membrane (BioRad, Hercules, CA, USA). Themembrane was incubated for 1 hour at room temperature in Tris-buffered saline with Tween-20 containing 5% bovine serum albumin to block nonspecific binding, then at 4°C overnight with antibodies against ROCK-II (1:1,000; BD Transduction Laboratories, San Diego, CA, USA), YAP (1:1,000; BD Transduction Laboratories), Akt (1:1,000; Santa Cruz Biotechnology, Santa Cruz, CA, USA), phospho-Akt (1:1,000; Cell Signaling Technology, Danvers, MA, USA), phospho-p44/42 mitogen-activated protein kinase (MAPK; Thr202/Tyr204; 1:1,000; Cell Signaling Technology), and GAPDH (1:5,000; Sigma-Aldrich). All primary antibodies were rabbit anti-mouse monoclonal antibodies. The membrane was rinsed, and the enhanced chemiluminescence method (ThermoScientific, Hudson, NH, USA) was used to visualize the bands, using goat anti-rabbit HRP-conjugated antibodies (1:400; BioRad) at room temperature for 2 hours. Signal intensity (optical density) was quantified using ImageJ software. Relative optical density was calculated relative to GAPDH.

    Statistical analysis

    Raw data were imported into Origin 9.0 software (OriginLab Corporation, Northampton, MA, USA) for graphing and fitted with Sigma Plot (Systat Software Inc., San Jose, CA, USA). Data, expressed as the mean ± SEM, were analyzed using Student's two-tailed t-test between two groups, or one-way analysis of variance followed by Tukey's post-hoc test for multiple comparisons. P < 0.05 was considered statistically significant.

    Results

    Effects of Y-27632 on NSC viability

    MTT assay showed that the viability of NSCs at passages 2—4 was not reduced after incubation with Y-27632 at 0.5—2 μg/mL for 4 hours (Figure 1A) or 1 μg/mL for 4 and 8 hours (Figure 1B). Therefore, in subsequent experiments, NSCs were treated with 1 μg/mL Y-27632 for 4 hours.

    Y-27632 increased neurite outgrowth in NSCs

    Treatment of NSCs with Y-27632 for 4 hours significantly increased neurite length during subsequent neuronal differentiation. Y-27632 dose-dependently promoted NSC neurite outgrowth, with the greatest effect observed at 2 μg/mL (Figure 2A). After 1 day of culture, the average neurite length in the NSCs was significantly greater in the three groups treated with Y-37632 than in the control group (150 ± 20 μm vs. 63 ± 6 μm; P < 0.05). At 5 days, the average neurite length in the three Y-27632 groups was more than twice that in the control group (Figure 2B).

    Y-27632 increased YAP protein expression in NSCs

    After a 4-hour treatment with 1 μg/mL Y-27632, western blots were performed to assess the changes in two important signaling pathway effectors, p-Akt and p-MAPK. After Y-27632 treatment, ratios of p-Akt/Akt and p-MAPK/MAPK were significantly elevated (Figure 3). Interestingly, YAP protein expression was also significantly upregulated, and accompanied by a downregulation of ROCKII expression.

    These findings suggest that hyperactivation of YAP in NSCs contributes to neurite outgrowth.

    Discussion

    Blocking the ROCK pathway promotes neurite outgrowth in SCI models (Fournier et al., 2003; Kubo et al., 2007; Boadas-Vaello and Verdú , 2015; Hou et al., 2015). Here, we investigated the inhibitory effects of ROCK on NSC differentiation and neurite outgrowth. Our results showed that ROCK inhibition significantly promoted neuronal differentiation and neurite outgrowth in mouse NSCs. These observations provide insights into stem cell therapy and functional recovery of axonal growth.

    Myelin is an important inhibitor of axon regeneration after SCI. It is secreted by oligodendrocytes in injured nervous tissue (Sandvig et al., 2004). In the central nervous system, Nogo-A is the most ubiquitous myelin-associated protein (McGee and Strittmatter, 2003). By binding to the Nogo-66 receptor, Nogo activates the Rho/ROCK pathway, which in turn activates PI3K/Akt signaling and cytoskeleton organization effectors (Liao et al., 2007; Schmandke et al., 2007), leading to neurite elongation (Hirose et al., 1998). There is evidence that cell survival, proliferation and regeneration can be enhanced by inhibition of the Rho/ROCK signaling pathway, and partially through the MAPK and Akt signaling pathways (Lingor et al., 2008). Our results also showed that phospho-Akt and MAPK were elevated in Y-27632-treated NSCs, indicating that these molecules are important in axonal regeneration after SCI. The Rho/ROCK signaling pathway is also suggested to play a key role in neuronal differentiation (Sandvig et al., 2004). Our results show that neuronal differentiation was significantly enhanced in NSCs after Y-27632 treatment. These results were consistent with a previous study that showed that ERK1/2 phosphorylation is necessary for early neuronal differentiation and embryonic stem cell survival (Li et al., 2006).

    Interestingly, our results showed that while Y-27632 upregulated p-Akt and MAPK expression in NSCs, it also significantly increased that of the Hippo signaling pathway mediator YAP. All components of the Hippo signaling pathway have one or more vertebrate orthologs. Human cancers have been linked to mutations in these genes (McClatchey and Giovannini, 2005; Harvey and Tapon, 2007). Cao et al. (2008) reported that the Hippo signaling pathway greatly contributes to the regulation of neural progenitor cell number by controlling cell proliferation and apoptosis. Our results showed that ROCKII inhibition induced YAP to regulate the neurite outgrowth of vertebrate NSCs. In the mouse blastocyst, inhibition of ROCK by Y-27632 significantly enhances inner cell mass by activating Hippo signaling pathway (Kono et al., 2014). Taken together, our data suggest that Y-27632 mediates NSC outgrowth partially through activation of Hippo signaling pathway, thus enhancing axon regeneration after SCI.

    Author contributions: XFJ and DXF conceived, designed, and revised the paper. FY and YBW collected data. XFJ wrote thepaper. All authors approved the final version of the paper.

    Figure 1 Changes in viability of NSCs after Y-27632 exposure (MTT assay).

    Figure 2 Neurite outgrowth of NSCs after treatment with Y-27632 for 4 hours.

    Figure 3 YAP protein expression in NSCs after Y-27632 treatment (western blot assay).

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    References

    Ahmed Z, Berry M, Logan A (2009) ROCK inhibition promotes adult retinal ganglion cell neurite outgrowth only in the presence of growth promoting factors. Mol Cell Neurosci 42:128-133.

    Boadas-Vaello P, Verdú E (2015) Epigallocatechin-3-gallate treatment to promote neuroprotection and functional recovery after nervous system injury. Neural Regen Res 10:1390-1392.

    Cao X, Pfaff SL, Gage FH (2008) YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev 22:3320-3334.

    Deng Z, Huang Z, Yuan M, Yang K, Pang Y (2014) Baculovirus induces host cell aggregation via a Rho/Rok-dependent mechanism. J Gen Virol 95:2310-2320.

    Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD, McKerracher L (2002) Rho signaling pathway targeted to promote spinal cord repair. J Neurosci 22:6570-6577.

    Dill PE, Liang N, Pende M (2015) New insights into the pathophysiology of the tuberous sclerosis complex: crosstalk of mTOR- and hippo-YAP pathways in cell growth. Rare Dis 3:e1016701.

    Feng PL, Wang J, Yang ZJ, Liu XH, Zhong YS (2013) Effect of Y-27632 on the cultured retinal neurocytes of rats. Int J Ophthalmol 6:15-18.

    Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409:341-346.

    Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23:1416-1423.

    Fournier AE, Nakamura F, Kawamoto S, Goshima Y, Kalb RG, Strittmatter SM (2000) Semaphorin3A enhances endocytosis at sites of receptor-F-actin colocalization during growth cone collapse. J Cell Biol 149:411-422.

    Günther R, Saal KA, Suhr M, Scheer D, Koch JC, B?hr M, Lingor P, T?nges L (2014) The rho kinase inhibitor Y-27632 improves motor performance in male SOD1(G93A) mice. Front Neurosci 8:304.

    GrandPré T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403:439-444.

    Guignandon A, Faure C, Neutelings T, Rattner A, Mineur P, Linossier MT, Laroche N, Lambert C, Deroanne C, Nusgens B, Demets R, Colige A, Vico L (2014) Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells. FASEB J 28:4077-4087.

    Harvey K, Tapon N (2007) The Salvador-Warts-Hippo pathway-an emerging tumour-suppressor network. Nat Rev Cancer 7:182-191.

    Hirose M, Ishizaki T, Watanabe N, Uehata M, Kranenburg O, Moolenaar WH, Matsumura F, Maekawa M, Bito H, Narumiya S (1998) Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J Cell Biol 141:1625-1636.

    Hou XL, Chen Y, Yin H, Duan WG (2015) Combination of fasudil and celecoxib promotes the recovery of injured spinal cord in rats better than celecoxib or fasudil alone. Neural Regen Res 10:1836-1840.

    Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S (2000) Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol 57:976-983.

    Ivanov AI, Samarin SN, Bachar M, Parkos CA, Nusrat A (2009) Protein kinase C activation disrupts epithelial apical junctions via ROCKII dependent stimulation of actomyosin contractility. BMC Cell Biol 10:36.

    K?nigs V, Jennings R, Vogl T, Horsthemke M, Bachg AC, Xu Y, Grobe K, Brakebusch C, Schwab A, B?hler M, Knaus UG, Hanley PJ (2014) Mouse macrophages completely lacking Rho subfamily GTPases (RhoA, RhoB, and RhoC) have severe lamellipodial retraction defects, but robust chemotactic navigation and altered motility. J Biol Chem 289:30772-30784.

    Kawano Y, Kaneko-Kawano T, Shimamoto K (2014) Rho family GTPase-dependent immunity in plants and animals. Front Plant Sci 5:522.

    Kono K, Tamashiro DA, Alarcon VB (2014) Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev Biol 394:142-155.

    Kubo T, Hata K, Yamaguchi A, Yamashita T (2007) Rho-ROCK inhibitors as emerging strategies to promote nerve regeneration. Curr Pharm Des 13:2493-2499.

    Li Z, Theus MH, Wei L (2006) Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Dev Growth Differ 48:513-523.

    Liao JK, Seto M, Noma K (2007) Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol 50:17-24.

    Lingor P, T?nges L, Pieper N, Bermel C, Barski E, Planchamp V, B?hr M (2008) ROCK inhibition and CNTF interact on intrinsic signalling pathways and differentially regulate survival and regeneration in retinal ganglion cells. Brain 131:250-263.

    Liu BP, Fournier A, GrandPré T, Strittmatter SM (2002) Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297:1190-1193.

    McClatchey AI, Giovannini M (2005) Membrane organization and tumorigenesis—the NF2 tumor suppressor, Merlin. Genes Dev 19:2265-2277.

    McGee AW, Strittmatter SM (2003) The Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends Neurosci 26:193-198.

    Minase T, Ishima T, Itoh K, Hashimoto K (2010) Potentiation of nerve growth factor-induced neurite outgrowth by the ROCK inhibitor Y-27632: a possible role of IP3 receptors. Eur J Pharmacol 648:67-73.

    Paxinos G, Franklin KB (2013) The Mouse Brain in Stereotaxic Coordinates. San Diego: Elsevier.

    Prinjha R, Moore SE, Vinson M, Blake S, Morrow R, Christie G, Michalovich D, Simmons DL, Walsh FS (2000) Neurobiology: Inhibitor of neurite outgrowth in humans. Nature 403:383-384.

    Roloff F, Scheiblich H, Dewitz C, Dempewolf S, Stern M, Bicker G (2015) Enhanced neurite outgrowth of human model (NT2) neurons by small-molecule inhibitors of Rho/ROCK signaling. PLoS One 10:e0118536.

    Sandvig A, Berry M, Barrett LB, Butt A, Logan A (2004) Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 46:225-251.

    Schmandke A, Schmandke A, Strittmatter SM (2007) ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Neuroscientist 13:454-469.

    Copyedited by Slone-Murphy J, Frenchman B, Yu J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.184499

    How to cite this article: Jia XF, Ye F, Wang YB, Feng DX (2016) ROCK inhibition enhances neurite outgrowth in neural stem cells by upregulating YAP expression in vitro. Neural Regen Res 11(6)∶983-987.

    Funding: This study was supported by the National Natural Science Foundation of China (General Program), No. 30872602.

    *Correspondence to: Da-xiong Feng, M.D., fdxlz2002@163.com.

    久久久精品免费免费高清| 性高湖久久久久久久久免费观看| 欧美老熟妇乱子伦牲交| 制服丝袜香蕉在线| 成人亚洲精品一区在线观看| 日韩成人伦理影院| 亚洲国产精品999| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 草草在线视频免费看| 精品国产一区二区久久| 香蕉国产在线看| 天天操日日干夜夜撸| 亚洲一区二区三区欧美精品| 国产不卡av网站在线观看| 欧美激情 高清一区二区三区| 国产精品久久久久久久电影| 欧美日韩一区二区视频在线观看视频在线| 久久人妻熟女aⅴ| 91午夜精品亚洲一区二区三区| 18在线观看网站| 超色免费av| 看非洲黑人一级黄片| 精品久久蜜臀av无| 久久久国产一区二区| 国产综合精华液| 18禁在线无遮挡免费观看视频| 成年人午夜在线观看视频| 久久久久国产精品人妻一区二区| 秋霞在线观看毛片| 亚洲精品456在线播放app| 久久精品国产亚洲av天美| 国产精品麻豆人妻色哟哟久久| 亚洲丝袜综合中文字幕| 尾随美女入室| 欧美最新免费一区二区三区| 男女免费视频国产| 国产精品无大码| 日本vs欧美在线观看视频| 又粗又硬又长又爽又黄的视频| av一本久久久久| 国产免费视频播放在线视频| a级毛色黄片| 自线自在国产av| 午夜免费观看性视频| 熟女电影av网| 人人妻人人澡人人看| 亚洲内射少妇av| 青春草亚洲视频在线观看| 亚洲高清免费不卡视频| 亚洲人与动物交配视频| 黑人巨大精品欧美一区二区蜜桃 | 99热国产这里只有精品6| 国产麻豆69| 777米奇影视久久| 亚洲精品久久午夜乱码| www日本在线高清视频| 99热这里只有是精品在线观看| 欧美亚洲日本最大视频资源| 97在线人人人人妻| 精品一品国产午夜福利视频| 久久久欧美国产精品| 岛国毛片在线播放| 男女下面插进去视频免费观看 | 丰满饥渴人妻一区二区三| 丝瓜视频免费看黄片| 日韩欧美一区视频在线观看| 日本黄色日本黄色录像| 免费高清在线观看日韩| 母亲3免费完整高清在线观看 | 99精国产麻豆久久婷婷| 寂寞人妻少妇视频99o| 熟女电影av网| 免费观看av网站的网址| 欧美精品一区二区大全| 欧美日韩成人在线一区二区| 又大又黄又爽视频免费| 99久久中文字幕三级久久日本| xxx大片免费视频| 色哟哟·www| 91在线精品国自产拍蜜月| 99九九在线精品视频| 午夜91福利影院| 大片免费播放器 马上看| 色婷婷久久久亚洲欧美| 国产69精品久久久久777片| 狠狠精品人妻久久久久久综合| 精品亚洲成a人片在线观看| 热99久久久久精品小说推荐| 亚洲,欧美,日韩| 日韩人妻精品一区2区三区| 国产一区亚洲一区在线观看| 久久久精品94久久精品| 午夜免费鲁丝| 热re99久久国产66热| 黄色视频在线播放观看不卡| 久久久久久人妻| 捣出白浆h1v1| 日本av免费视频播放| xxx大片免费视频| 好男人视频免费观看在线| 国产亚洲一区二区精品| 久久人人爽人人片av| 少妇人妻精品综合一区二区| 国产精品久久久久久精品电影小说| 欧美xxxx性猛交bbbb| 欧美成人午夜精品| 午夜激情av网站| 成人无遮挡网站| 我要看黄色一级片免费的| 人妻少妇偷人精品九色| 久久久久久久大尺度免费视频| 久久精品熟女亚洲av麻豆精品| 国产av一区二区精品久久| 亚洲久久久国产精品| 国产成人精品无人区| 国产极品粉嫩免费观看在线| 日日撸夜夜添| 又粗又硬又长又爽又黄的视频| 日本爱情动作片www.在线观看| 亚洲综合精品二区| 黄网站色视频无遮挡免费观看| 亚洲美女搞黄在线观看| 涩涩av久久男人的天堂| 午夜免费男女啪啪视频观看| 成年人免费黄色播放视频| 99精国产麻豆久久婷婷| 亚洲一码二码三码区别大吗| 国产黄色免费在线视频| 看非洲黑人一级黄片| 亚洲国产精品专区欧美| av又黄又爽大尺度在线免费看| 日本猛色少妇xxxxx猛交久久| 9色porny在线观看| 亚洲欧美日韩卡通动漫| 一区二区三区乱码不卡18| 热re99久久精品国产66热6| 晚上一个人看的免费电影| 久久精品国产亚洲av天美| tube8黄色片| 精品视频人人做人人爽| 国产精品国产av在线观看| 国产毛片在线视频| 少妇高潮的动态图| 国产成人精品在线电影| 日本免费在线观看一区| 人人妻人人澡人人看| 久久人人爽av亚洲精品天堂| 在线观看www视频免费| 日本91视频免费播放| 97在线人人人人妻| 男女无遮挡免费网站观看| 午夜影院在线不卡| 久久国产精品男人的天堂亚洲 | 国产黄频视频在线观看| 久久久久精品久久久久真实原创| 26uuu在线亚洲综合色| 国产成人免费观看mmmm| av免费在线看不卡| 国产日韩一区二区三区精品不卡| 男女国产视频网站| 制服人妻中文乱码| 久久久久久久精品精品| 精品少妇内射三级| 国产片特级美女逼逼视频| 曰老女人黄片| 欧美xxxx性猛交bbbb| 青春草国产在线视频| 天堂俺去俺来也www色官网| 熟妇人妻不卡中文字幕| 伊人久久国产一区二区| 国产精品麻豆人妻色哟哟久久| 国产免费又黄又爽又色| 赤兔流量卡办理| 午夜免费男女啪啪视频观看| 成年人免费黄色播放视频| 女人久久www免费人成看片| 久久女婷五月综合色啪小说| 国产高清不卡午夜福利| 交换朋友夫妻互换小说| 母亲3免费完整高清在线观看 | videos熟女内射| 国产成人精品一,二区| 在线观看免费视频网站a站| 国产精品人妻久久久久久| 伦精品一区二区三区| 欧美激情极品国产一区二区三区 | 国产视频首页在线观看| 国产精品一区二区在线不卡| 综合色丁香网| 精品一区二区三区四区五区乱码 | 精品人妻一区二区三区麻豆| tube8黄色片| 少妇被粗大的猛进出69影院 | 伊人亚洲综合成人网| 美女大奶头黄色视频| 两性夫妻黄色片 | 久久影院123| 久久97久久精品| 99久久综合免费| 欧美 亚洲 国产 日韩一| av女优亚洲男人天堂| 国产乱来视频区| 亚洲av综合色区一区| 欧美成人午夜免费资源| 99精国产麻豆久久婷婷| 国产白丝娇喘喷水9色精品| 精品国产露脸久久av麻豆| 国产精品一国产av| 极品人妻少妇av视频| 日日爽夜夜爽网站| 建设人人有责人人尽责人人享有的| 欧美97在线视频| 美女脱内裤让男人舔精品视频| 亚洲av国产av综合av卡| 亚洲av福利一区| 欧美 亚洲 国产 日韩一| 黄色 视频免费看| 80岁老熟妇乱子伦牲交| 免费av不卡在线播放| 观看av在线不卡| 色婷婷av一区二区三区视频| 男女国产视频网站| 黑人欧美特级aaaaaa片| 最近手机中文字幕大全| 啦啦啦啦在线视频资源| 熟妇人妻不卡中文字幕| 80岁老熟妇乱子伦牲交| 国产免费一级a男人的天堂| 日韩精品有码人妻一区| 美女xxoo啪啪120秒动态图| 狂野欧美激情性bbbbbb| 国产深夜福利视频在线观看| 国产在线免费精品| 国产精品一国产av| 成人漫画全彩无遮挡| 丝袜美足系列| 久久久久网色| 欧美日韩亚洲高清精品| 两个人免费观看高清视频| 女人久久www免费人成看片| 日韩av在线免费看完整版不卡| 久久这里只有精品19| 精品少妇内射三级| 999精品在线视频| 久久毛片免费看一区二区三区| 国产熟女欧美一区二区| 亚洲欧美成人综合另类久久久| 午夜福利视频精品| 亚洲国产色片| 国产亚洲一区二区精品| 国产免费又黄又爽又色| 国产免费现黄频在线看| 婷婷色麻豆天堂久久| 亚洲伊人久久精品综合| 青青草视频在线视频观看| 国产精品熟女久久久久浪| 亚洲国产看品久久| 大香蕉久久成人网| 日韩中文字幕视频在线看片| 一区二区三区乱码不卡18| 日日啪夜夜爽| 97超碰精品成人国产| 高清黄色对白视频在线免费看| 欧美另类一区| 三级国产精品片| 国产毛片在线视频| 日本wwww免费看| 午夜福利影视在线免费观看| 免费少妇av软件| 亚洲精品视频女| 在线观看美女被高潮喷水网站| 国产一级毛片在线| 成年人免费黄色播放视频| 少妇被粗大猛烈的视频| 久久韩国三级中文字幕| videos熟女内射| 国产福利在线免费观看视频| 一本—道久久a久久精品蜜桃钙片| 一边亲一边摸免费视频| 最后的刺客免费高清国语| 黄色 视频免费看| 波野结衣二区三区在线| 少妇人妻久久综合中文| 99久久精品国产国产毛片| 成人综合一区亚洲| 男女啪啪激烈高潮av片| 久久久精品94久久精品| 欧美成人午夜精品| 一区二区日韩欧美中文字幕 | 国产精品国产三级专区第一集| 高清av免费在线| 精品国产国语对白av| 蜜桃国产av成人99| 久久毛片免费看一区二区三区| 久久国产精品大桥未久av| 人人妻人人澡人人看| 国内精品宾馆在线| 久热这里只有精品99| 久久人妻熟女aⅴ| 久久久精品94久久精品| 欧美 日韩 精品 国产| www.av在线官网国产| 欧美人与性动交α欧美精品济南到 | 成年人午夜在线观看视频| 考比视频在线观看| 国产精品无大码| 午夜老司机福利剧场| 日韩欧美一区视频在线观看| 亚洲av欧美aⅴ国产| 一级片'在线观看视频| 97精品久久久久久久久久精品| 国产毛片在线视频| 免费播放大片免费观看视频在线观看| 久久 成人 亚洲| 国产精品久久久av美女十八| 母亲3免费完整高清在线观看 | 大香蕉久久成人网| 一区二区三区乱码不卡18| 男人添女人高潮全过程视频| 国产精品 国内视频| 两个人看的免费小视频| 国产欧美日韩一区二区三区在线| 亚洲av电影在线进入| 亚洲国产欧美在线一区| 久久99热6这里只有精品| 久久久久精品人妻al黑| 精品一区二区三区四区五区乱码 | 国产麻豆69| 一本大道久久a久久精品| 久久久久国产精品人妻一区二区| 国产精品麻豆人妻色哟哟久久| 99精国产麻豆久久婷婷| 免费播放大片免费观看视频在线观看| 午夜免费鲁丝| 免费少妇av软件| 午夜av观看不卡| 咕卡用的链子| 韩国精品一区二区三区 | 亚洲精品国产色婷婷电影| 国产精品久久久久久精品电影小说| 极品少妇高潮喷水抽搐| 免费女性裸体啪啪无遮挡网站| 亚洲国产av新网站| 久久久久网色| 久久久欧美国产精品| 国产黄频视频在线观看| 国精品久久久久久国模美| 亚洲精品456在线播放app| 午夜视频国产福利| 天天躁夜夜躁狠狠久久av| √禁漫天堂资源中文www| 久久久久久人妻| 美女大奶头黄色视频| 亚洲成人手机| 在线观看免费视频网站a站| 国产女主播在线喷水免费视频网站| 中文精品一卡2卡3卡4更新| 久久国内精品自在自线图片| 在线观看一区二区三区激情| 美女脱内裤让男人舔精品视频| 99热国产这里只有精品6| av国产精品久久久久影院| 女的被弄到高潮叫床怎么办| 看免费成人av毛片| 日日撸夜夜添| 在线 av 中文字幕| 亚洲精品久久成人aⅴ小说| 男女啪啪激烈高潮av片| 国产亚洲最大av| 国产69精品久久久久777片| 深夜精品福利| 精品午夜福利在线看| 免费日韩欧美在线观看| 免费人成在线观看视频色| 永久免费av网站大全| 一级a做视频免费观看| 水蜜桃什么品种好| 国产不卡av网站在线观看| 免费人妻精品一区二区三区视频| 人人澡人人妻人| 香蕉精品网在线| 少妇高潮的动态图| 国产精品秋霞免费鲁丝片| 性色avwww在线观看| 少妇精品久久久久久久| 纵有疾风起免费观看全集完整版| 九色成人免费人妻av| 欧美xxxx性猛交bbbb| 捣出白浆h1v1| 色哟哟·www| 久久精品国产a三级三级三级| 亚洲精品久久久久久婷婷小说| 91在线精品国自产拍蜜月| 午夜精品国产一区二区电影| 欧美最新免费一区二区三区| 多毛熟女@视频| 美女视频免费永久观看网站| 国产av精品麻豆| 在线观看三级黄色| 欧美xxxx性猛交bbbb| 亚洲,欧美,日韩| 国产国语露脸激情在线看| 国产免费一区二区三区四区乱码| 精品亚洲乱码少妇综合久久| 国产成人精品无人区| 久久久久久久精品精品| 免费少妇av软件| 国产精品无大码| 最近手机中文字幕大全| 午夜免费男女啪啪视频观看| 69精品国产乱码久久久| 精品卡一卡二卡四卡免费| 国产精品麻豆人妻色哟哟久久| 亚洲精品乱码久久久久久按摩| 久久精品久久精品一区二区三区| 日本欧美视频一区| 国产精品 国内视频| av在线播放精品| 久久久久久久亚洲中文字幕| 亚洲精品日韩在线中文字幕| 久久午夜福利片| 欧美人与善性xxx| 国产精品欧美亚洲77777| 国产精品蜜桃在线观看| 久久精品人人爽人人爽视色| 亚洲国产av影院在线观看| 亚洲欧美清纯卡通| 精品一区二区三卡| 中文欧美无线码| 卡戴珊不雅视频在线播放| 欧美精品高潮呻吟av久久| 久久久亚洲精品成人影院| 亚洲婷婷狠狠爱综合网| 久久精品熟女亚洲av麻豆精品| 街头女战士在线观看网站| 大香蕉97超碰在线| 国产在线视频一区二区| 亚洲内射少妇av| 国产精品蜜桃在线观看| 久久人妻熟女aⅴ| 91在线精品国自产拍蜜月| 欧美老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 伊人久久国产一区二区| 男女啪啪激烈高潮av片| 国产成人a∨麻豆精品| 热99久久久久精品小说推荐| 色婷婷av一区二区三区视频| 亚洲欧美一区二区三区国产| 日韩熟女老妇一区二区性免费视频| 中国三级夫妇交换| 侵犯人妻中文字幕一二三四区| 国产av精品麻豆| 啦啦啦中文免费视频观看日本| 免费少妇av软件| 免费播放大片免费观看视频在线观看| 亚洲国产精品成人久久小说| 欧美日本中文国产一区发布| 亚洲性久久影院| 日本wwww免费看| 在线免费观看不下载黄p国产| 色94色欧美一区二区| 有码 亚洲区| 男人舔女人的私密视频| 满18在线观看网站| 一二三四中文在线观看免费高清| 80岁老熟妇乱子伦牲交| 亚洲伊人久久精品综合| 亚洲精品中文字幕在线视频| 天天操日日干夜夜撸| 亚洲,一卡二卡三卡| 免费看不卡的av| 一边亲一边摸免费视频| 伊人久久国产一区二区| 91国产中文字幕| 婷婷色综合www| 国产免费现黄频在线看| 国产日韩一区二区三区精品不卡| 青春草视频在线免费观看| 美女主播在线视频| a级毛片黄视频| 女性生殖器流出的白浆| 丰满迷人的少妇在线观看| 亚洲丝袜综合中文字幕| 精品国产一区二区久久| 亚洲精品第二区| 免费高清在线观看日韩| 成人影院久久| 丁香六月天网| 亚洲色图 男人天堂 中文字幕 | 亚洲精品成人av观看孕妇| 久久国产精品大桥未久av| 国产精品女同一区二区软件| 久久国产精品男人的天堂亚洲 | 九九爱精品视频在线观看| 成人手机av| 亚洲五月色婷婷综合| 中文天堂在线官网| 2021少妇久久久久久久久久久| 久久女婷五月综合色啪小说| 一区二区三区四区激情视频| 国产毛片在线视频| 91久久精品国产一区二区三区| 久久婷婷青草| 国产国拍精品亚洲av在线观看| 男人添女人高潮全过程视频| 爱豆传媒免费全集在线观看| 久久久国产欧美日韩av| 一级毛片 在线播放| 啦啦啦啦在线视频资源| 免费女性裸体啪啪无遮挡网站| 亚洲,一卡二卡三卡| 亚洲欧美成人精品一区二区| 又粗又硬又长又爽又黄的视频| av线在线观看网站| 日本色播在线视频| 秋霞在线观看毛片| 国产免费一级a男人的天堂| 久久精品国产综合久久久 | 男女高潮啪啪啪动态图| 97在线人人人人妻| 少妇被粗大猛烈的视频| 韩国高清视频一区二区三区| 国产精品 国内视频| av不卡在线播放| 性高湖久久久久久久久免费观看| 久久ye,这里只有精品| 免费人成在线观看视频色| 免费不卡的大黄色大毛片视频在线观看| 欧美3d第一页| 汤姆久久久久久久影院中文字幕| 国产成人aa在线观看| 亚洲av中文av极速乱| 国产精品一区www在线观看| av.在线天堂| 欧美精品亚洲一区二区| 大香蕉久久成人网| 中文字幕亚洲精品专区| 亚洲av男天堂| 成年女人在线观看亚洲视频| 2018国产大陆天天弄谢| 十八禁高潮呻吟视频| 国产极品粉嫩免费观看在线| 国产精品久久久久久精品古装| 亚洲精品久久久久久婷婷小说| a 毛片基地| 亚洲精品aⅴ在线观看| 亚洲四区av| 国产成人精品久久久久久| 国产片特级美女逼逼视频| 欧美日韩成人在线一区二区| 国产精品久久久久久久久免| 精品国产一区二区久久| 国产一区有黄有色的免费视频| 国产成人91sexporn| 亚洲美女搞黄在线观看| 26uuu在线亚洲综合色| 国产欧美日韩一区二区三区在线| 香蕉国产在线看| 99热这里只有是精品在线观看| 日韩av在线免费看完整版不卡| 97人妻天天添夜夜摸| 亚洲精品aⅴ在线观看| 在现免费观看毛片| 午夜福利在线观看免费完整高清在| 成人无遮挡网站| 99精国产麻豆久久婷婷| av国产久精品久网站免费入址| 国产精品.久久久| 亚洲欧美日韩卡通动漫| 久久久久精品人妻al黑| 亚洲情色 制服丝袜| 免费在线观看完整版高清| 久久影院123| 宅男免费午夜| 9色porny在线观看| 亚洲国产精品999| 欧美性感艳星| 国产毛片在线视频| 久久人人爽av亚洲精品天堂| 亚洲欧美成人精品一区二区| 中文字幕最新亚洲高清| 国产又色又爽无遮挡免| www.熟女人妻精品国产 | 亚洲国产精品专区欧美| 亚洲伊人色综图| 亚洲av男天堂| 亚洲欧美色中文字幕在线| 成人国产av品久久久| 婷婷成人精品国产| 亚洲美女黄色视频免费看| 另类精品久久| 日本午夜av视频| 免费黄网站久久成人精品| 一区二区av电影网| 十八禁高潮呻吟视频| 国产一区二区在线观看av| av在线app专区| 又粗又硬又长又爽又黄的视频| 极品少妇高潮喷水抽搐| 欧美日韩视频精品一区| a级毛色黄片| 国产黄频视频在线观看| 美女国产高潮福利片在线看| 欧美最新免费一区二区三区| 咕卡用的链子| 亚洲精品乱码久久久久久按摩| 欧美成人精品欧美一级黄| 各种免费的搞黄视频| 国产精品不卡视频一区二区| 久久精品久久精品一区二区三区| 欧美日韩综合久久久久久| 国产 精品1| 国产一区二区三区av在线| 欧美日韩亚洲高清精品|