• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CHEN-RICCI INEQUALITIES FOR SUBMANIFOLDS OF GENERALIZED COMPLEX SPACE FORMS WITH SEMI-SYMMETRIC METRIC CONNECTIONS

    2016-12-07 08:58:52HEGuoqing
    數(shù)學(xué)雜志 2016年6期
    關(guān)鍵詞:安徽師范大學(xué)流形計(jì)算機(jī)科學(xué)

    HE Guo-qing

    (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241000,China)

    CHEN-RICCI INEQUALITIES FOR SUBMANIFOLDS OF GENERALIZED COMPLEX SPACE FORMS WITH SEMI-SYMMETRIC METRIC CONNECTIONS

    HE Guo-qing

    (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241000,China)

    In this paper,we study Chen-Ricci inequalities for submanifolds of generalized complex space forms endowed with a semi-symmetric metric connection.By using algebraic techniques,we establish Chen-Ricci inequalities between the mean curvature associated with a semisymmetric metric connection and certain intrinsic invariants involving the Ricci curvature and k-Ricci curvature of submanifolds,which generalize some of Mihai andzgr’s results.

    Chen-Ricci inequality;k-Ricci curvature;generalized complex space form;semisymmetric metric connection

    2010 MR Subject Classification:53C40

    Document code:AArticle ID:0255-7797(2016)06-1133-09

    1 Introduction

    Since the celebrated theory of Nash[1]of isometric immersion of a Riemannian manifold into a suitable Euclidean space gave very important and effective motivation to view each Riemannian manifold as a submanifold in a Euclidean space,the problem of discovering simple sharp relationships between intrinsic and extrinsic invariants of a Riemannian submanifold becomes one of the most fundamental problems in submanifold theory.The main extrinsic invariant of a submanifold is the squared mean curvature and the main intrinsic invariants of a manifold include the Ricci curvature and the scalar curvature.There were also many other important modern intrinsic invariants of(sub)manifolds introduced by Chen such as k-Ricci curvature(see[2-4]).

    In 1999,Chen[5]proved a basic inequality involving the Ricci curvature and the squared mean curvature of submanifolds in a real space form Rm(C).This inequality is now called Chen-Ricci inequality[6].In[5],Chen also defined the k-Ricci curvature of a k-plane section of TxMn,x∈M,where Mnis a submanifold of the real space form Rn+p(C).And he proved a basic inequality involving the k-Ricci curvature and the squared mean curvature of the submanifold Mn.These inequalities described relationships between the intrinsicinvariants and the extrinsic invariants of a Riemannian submanifold and drew attentions of many people.Similar inequalities are studied for different submanifolds in various ambient manifolds(see[7-10]).

    On the other hand,Hayden[11]introduced a notion of a semi-symmetric connection on a Riemannian manifold.Yano[12]studied Riemannaian manifolds endowed with a semisymmetric connection.Nakao[13]studied submanifolds of Riemannian manifolds with a semi-symmetric metric connection.Recently,Mihai andzgr[14,15]studied Chen inequalities for submanifolds of real space forms admitting a semi-symmetric metric connection and Chen inequalities for submanifolds of complex space forms and Sasakian space forms with a semi-symmetric metric connection,respectively.Motivated by studies of the above authors,in this paper we establish Chen-Ricci inequalities for submanifolds in generalized complex forms with a semi-symmetric metric connection.

    2 Preliminaries

    Let Nn+pbe an(n+p)-dimensional Riemannian manifold with Riemannian metric g and a linear connectionon Nn+p.If the torsion tensordefined by

    for a 1-form φ,then the connectionis called a semi-symmetric connection.Furthermore, ifsatisfies=0,thenis called a semi-symmetric metric connection.Letdenote the Levi-Civita connection with respect to the Riemannian metric g.In[12]Yano gave a semi-symmetric metric connectionwhich can be written as

    Let Mnbe an n-dimensional submanifold of Nn+pwith a semi-symmetric metric connectionand the Levi-Civita connection.On the submanifold Mnwe consider the induced semi-symmetric metric connection denoted by?and the induced Levi-Civita connection denoted by?'.The Gauss formulas with respect to?and?',respectively,can be written as

    for any vector fields X,Y on Mn,where h'is the second fundamental form of Mnin Nn+pand h is a(0,2)-tensor on Mn.According to formula(7)in[13],h is also symmetric.

    for any vector fields X,Y,Z,Won Mn,where α is a(0,2)-tensor field defined by

    Denote by λ the trace of α.The Gauss equation for the submanifold Mnin Nn+pis

    for any vector fields X,Y,Z,Won Mn.In[13],the Gauss equation with respect to the semi-symmetric metric connection is

    In Nn+pwe can choose a local orthonormal frame{e1,···,en,en+1,···,en+p}such that restricting to Mn,e1,···,enare tangent to Mn.Setting=g(h(ei,ej),er),then the squared length of h is

    The mean curvature vector of Mnassociated toh(ei,ei)and the mean curvature vector of Mnassociated to

    Let π?TxMnbe a 2-plane section for any x∈Mnand K(π)be the sectional curvature of π associated to the induced semi-symmetric metric connection?.The scalar curvature τ at x with respect to?is defined by

    The following lemmas will be used in the paper.

    Lemma 2.1(see[13])If U is a tangent vector field on Mn,we have H=H',h=h'.

    Lemma 2.2(see[13])Let Mnbe an n-dimensional submanifold of an(n+p)-dimensional Riemannian manifold Nn+pwith the semi-symmetric metric connectionThen

    (i)Mnis totally geodesic with respect to the Levi-Civita connection and with respect to the semi-symmetric metric connection if and only if U is tangent to Mn.

    (ii)Mnis totally umbilical with respect to the Levi-Civita connection if and only if Mnis totally umbilical with respect to the semi-symmetric metric connection.

    Lemma 2.3(see[10])Let f(x1,x2,···,xn)be a function on Rndefined by

    If x1+x2+···+xn=2ε,then we have

    with the equality holding if and only if x1=x2+xn+···+xn=ε.

    A 2m-dimensional almost Hermitian manifold(N,J,g)is said to be a generalized complex space form(see[16,17])if there exists two functions F1and F2on N such that

    for X,Y,Z,W on M,where M is a submanifold of N.

    Let M be an n-dimensional submanifold of a 2m-dimensional generalized complex space form N(F1,F2).We set JX=PX+FX for any vector field X tangent to M,where PX and FX are tangential and normal components of JX,respectively.

    3 Chen-Ricci Inequality

    In this section,we establish a sharp relation between the Ricci curvature along the direction of an unit tangent vector X and the mean curvature||H||with respect to the semi-symmetric metric connect

    Theorem 3.1 Let Mn,n≥2,be an n-dimensional submanifold of a 2m-dimensional generalized complex space form N(F1,F2)endowed with the semi-symmetric metric connectionFor each unit vector X∈TxM,we have

    (1)

    (2)If H(x)=0,then a unit tangent vector X at x satisfies the equality case of(3.1)if and only if X∈N(x)={X∈TxM:h(X,Y)=0,?Y∈TxM}.

    (3)The equality of inequality(3.1)holds identically for all unit tangent vectors at x if and only if in the case of n=0,i,j=1,2···,n;r=n+1,···,2m,or in the case of n=2,

    Proof (1)Let X∈TxM be an unit tangent vector at x.We choose an orthonormal basis e1,···,en,en+1···,e2msuch that e1,···,enare tangent to M at x and e1=X.

    When we set X=W=ei,Y=Z=ej,i,j=1,···,n,ij in(2.5)and(2.8),we have

    Using(3.2),we get

    We consider the maximum of the function

    From Lemma 2.3 we know the solution()of this problem must satisfy

    So it follows that

    From(3.3)and(3.5)we have

    (2)For the unit vector X at x,if the equality case of inequality(3.1)holds,using(3.3), (3.4)and(3.5)we have

    The converse is obvious.

    (3)For all unit vector X at x,the equality case of inequality(3.1)holds.Let X= ei,i=1,2···n,as in(2),we have

    We can distinguish two cases:

    (b)in the case of n=2,we have

    The converse is trivial.

    Corollary 3.2 If the equality case of inequality(3.1)holds for all unit tangent vector X of Mn,then we have

    (1)the equality case of inequality(3.1)holds for all unit tangent vector X of Mnif and only if Mnis a totally umbilical submanifold;

    (2)if U is a tangent field on Mnand n≥3,Mnis a totally geodesic submanifold.

    Proof (1)For n=2,from Theorem 3.1 we know the equality case of inequality(3.1) holds for all unit tangent vector X of M2if and only if M2is a totally umbilical submanifold with respect to the semi-symmetric metric connection.Then from Lemma 2.2,M2is a totally umbilical submanifold with respect to the Levi-Civita connection.

    For n≥3,from Theorem 3.1 we know the equality case of inequality(3.1)holds for all unit tangent vector X of Mnif and only=0,?i,j,r.According to formula(7)from [13],we have+krgij,where krare real-valued functions on M.Thus we have=krgij.So Mnis a totally umbilical submanifold.

    (2)If U is a tangent vector field on Mn,from Lemma 2.1 we have h'=h.For n≥3, from Theorem 3.1 the equality case of inequality(3.1)holds for all unit tangent vector X of Mnif and only if=0,?i,j,r.Thus we have=0,?i,j,r.So Mnis a totally geodesic submanifold.

    4 k-Ricci Curvature

    In this section,we establish a sharp relation between the k-Ricci curvature and the mean curvature||H||with respect to the semi-symmetric metric connect

    Let L be a k-plane section of TxMn,x∈Mn,and X be a unit vector in L.We choose an orthonormal frame e1,···,ekof L such that e1=X.In[5]the k-Ricci curvature of L at X is defined by

    The scalar curvature of a k-plane section L is given by

    For an integer k,2≤k≤n,the Riemannian invariant Θkon Mnat x∈Mndefined by

    where L runs over all k-plane sections in TxM and X runs over all unit vectors in L.From (2.6),(4.1)and(4.2)for any k-plane section Li1···ikspanned by{ei1,···,eik},it follows that

    and

    From(4.3),(4.4)and(4.5),we have

    Theorem 4.1 Let Mn,n≥3,be an n-dimensional submanifold of a 2m-dimensional generalized complex space form N(F1,F2)endowed with a semi-symmetric connectionThen we have

    Proof For x∈Mn,let{e1,···,en}and{en+1,···,e2m}be an orthonormal basis ofandM,respectively,where en+1is parallel to the mean curvature vector H.

    From(3.2),we have

    Setting||P||2=(Jei,ej).From(2.6),it follows that

    Then equation(4.8)can be also written as

    We choose an orthonormal basis{e1,···,en,en+1,···,e2m}such that e1,···,endiagonalize the shape operator Aen+1,i.e.,

    and Aer=(),i,j=1······n;r=n+2,···,2m,traceAer=0.So(4.9)turns into

    On the other hand,we get

    which implies

    From(4.10)and(4.11),it follows that

    which means

    Using Theorem 4.1 and(4.6)we can obtain the following theorem.

    Theorem 4.2 Let Mn,n≥3,be an n-dimensional submanifold of a 2m-dimensional generalized complex space form N(F1,F2)endowed with a semi-symmetric connectionThen for any integer k,2≤k≤n,and for any point x∈M,we have

    Proof Let{e1,···,en}be an orthonormal basis of TxMnat x∈Mn.The k-plane section spanned by ei1,···,eikis denoted by Li1···ik.

    Then from(4.6)and(4.12),we have

    Remark 4.3 For F1=F2=C(C is constant)in Theorem 3.1,we obtain a Chen-Ricci inequality for submanifolds of complex space forms with a semi-symmetric metric connection.

    For F1=F2=C(C is constant)in Theorem 4.1 and Theorem 4.2,the results can be found in[15].

    References

    [1]Nash J F.The imbedding problem for Riemannian manifolds[J].Ann.Math.,1956,63:20-63.

    [2]Chen B Y.Some pinching and classification theorems for minimal submanifolds[J].Arch.Math. (Basel),1993,60(6):568-578.

    [3]Chen B Y.Strings of Riemannian invariants,inequalities,ideal immersions and their applications[J]. Third Pacific Rim Geom.Conf.(Seoul),1996:7-60.

    [4]Chen B Y.Riemannian submanifolds[M].North-Holland,Amsterdam:Handbook Diff.Geom.,2000, 1:187-418.

    [5]Chen B Y.Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions[J].Glasg.Math.J.,1999,41(1):33-41.

    [6]Tripathi M M.Chen-Ricci inequality for submanifolds of contact metric manifolds[J].J.Adv.Math. Studies,2008,1(1-2):111-135.

    [7]Chen B Y.On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms[J]. Arch.Math.(Basel),2000,74:154-160.

    [8]Matsumoto K,Mihai I,Oiaga A.Ricci curvature of submanifolds in complex space forms[J].Rev. Roumaine Math.Pures Appl.,2001,46:775-782.

    [9]Mihai I.Ricci curvature of submanifolds in Sasakian space forms[J].J.Aust.Math.Soc.,2002, 72(2):247-256.

    [10]Zhang Pan,Zhang Liang,Song Wei-dong.Some remarks on geometric inequalities for submanifolds of a riemannian manifold of quasi-constant curvature[J].J.Math.,2016,36(3):445-457.

    [11]Haydan H A.Subspaces of a space with torsion[J].Proc.London Math.Soc.,1932,34:27-50.

    [12]Yano K.On semi-symmetric metric connection[J].Rev.Roumaine Math.Pures Appl.,1970,15: 1579-1586.

    [13]Nakao Z.Submanifolds of a Riemanian with semi-symmetric metric connections[J].Proc.Amer. Math.Soc.,1976,54:261-266.

    [16]Tricerri F,Vanhecke L.Curvature tensors on almost Hermitian manifolds[J].Trans.Amer.Math. Soc.,1981,267(2):365-397.

    [17]Vanhecke L.Almost Hermitian manifolds with J-invariant Riemann curvature tensor[J].Rend.Sem. Mat.Univ.Politec.Torino,1975,34:487-498.

    容有半對(duì)稱度量聯(lián)絡(luò)的廣義復(fù)空間中子流形上的Chen-Ricci不等式

    何國(guó)慶

    (安徽師范大學(xué)數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院,安徽蕪湖241000)

    本文研究了容有半對(duì)稱度量聯(lián)絡(luò)的廣義復(fù)空間中的子流形上的Chen-Ricci不等式.利用代數(shù)技巧,建立了子流形上的Chen-Ricci不等式.這些不等式給出了子流形的外在幾何量―關(guān)于半對(duì)稱聯(lián)絡(luò)的平均曲率與內(nèi)在幾何量―Ricci曲率及k-Ricci曲率之間的關(guān)系,推廣了Mihai和zgr的一些結(jié)果.

    Chen-Ricci不等式;k-Ricci曲率;廣義復(fù)空間;半對(duì)稱度量聯(lián)絡(luò)

    MR(2010)主題分類號(hào):53C40O186.12

    ?date:2014-09-13Accepted date:2015-11-09

    Supported by the Foundation for Excellent Young Talents of Higher Education of Anhui Province(2011SQRL021ZD).

    Biography:He Guoqing(1979-),female,born at Chaohu,Anhui,lecturer,major in differential geometry.

    猜你喜歡
    安徽師范大學(xué)流形計(jì)算機(jī)科學(xué)
    緊流形上的Schr?dinger算子的譜間隙估計(jì)
    《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
    迷向表示分為6個(gè)不可約直和的旗流形上不變愛因斯坦度量
    探討計(jì)算機(jī)科學(xué)與技術(shù)跨越式發(fā)展
    Nearly Kaehler流形S3×S3上的切觸拉格朗日子流形
    Hemingway’s Marriage in Cat in the Rain
    淺談?dòng)?jì)算機(jī)科學(xué)與技術(shù)的現(xiàn)代化運(yùn)用
    電子制作(2017年2期)2017-05-17 03:55:01
    重慶第二師范學(xué)院計(jì)算機(jī)科學(xué)與技術(shù)專業(yè)簡(jiǎn)介
    《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
    基于多故障流形的旋轉(zhuǎn)機(jī)械故障診斷
    国产又黄又爽又无遮挡在线| 男女做爰动态图高潮gif福利片| 18禁裸乳无遮挡免费网站照片| 久久香蕉精品热| 一级毛片久久久久久久久女| 精品国产亚洲在线| 免费观看的影片在线观看| 国产蜜桃级精品一区二区三区| 亚洲中文日韩欧美视频| 69人妻影院| 国模一区二区三区四区视频| 久久热精品热| 可以在线观看的亚洲视频| 国产三级黄色录像| 国产爱豆传媒在线观看| 欧美激情久久久久久爽电影| 老司机午夜福利在线观看视频| 最新中文字幕久久久久| 一区福利在线观看| 亚洲国产高清在线一区二区三| 一本精品99久久精品77| 热99在线观看视频| 成人毛片a级毛片在线播放| 国产在线男女| 日韩欧美精品免费久久 | 久99久视频精品免费| 欧美黑人巨大hd| 神马国产精品三级电影在线观看| 欧美日韩黄片免| 一夜夜www| 特级一级黄色大片| 嫩草影院新地址| 亚洲精品一卡2卡三卡4卡5卡| 欧美午夜高清在线| 少妇裸体淫交视频免费看高清| 国产成人aa在线观看| 精品一区二区三区视频在线观看免费| 琪琪午夜伦伦电影理论片6080| 精品国内亚洲2022精品成人| 免费看美女性在线毛片视频| 在线天堂最新版资源| 久久久久国内视频| av中文乱码字幕在线| 一本综合久久免费| a级毛片a级免费在线| 网址你懂的国产日韩在线| 欧美成狂野欧美在线观看| 特级一级黄色大片| 亚洲欧美日韩高清专用| 久久精品国产自在天天线| 又爽又黄a免费视频| 精品久久久久久久久av| av福利片在线观看| 久久久久国内视频| 亚洲人成网站在线播放欧美日韩| 日韩亚洲欧美综合| 两个人的视频大全免费| 别揉我奶头~嗯~啊~动态视频| 免费在线观看影片大全网站| 欧美色视频一区免费| 国产黄片美女视频| 三级毛片av免费| 久久久久亚洲av毛片大全| 欧美高清性xxxxhd video| 久久久久久久久久黄片| 日本一本二区三区精品| 亚洲自偷自拍三级| 激情在线观看视频在线高清| 成人鲁丝片一二三区免费| 少妇丰满av| 日日摸夜夜添夜夜添小说| 午夜日韩欧美国产| aaaaa片日本免费| 国产欧美日韩精品亚洲av| av欧美777| 人人妻,人人澡人人爽秒播| 日本成人三级电影网站| 国产精品99久久久久久久久| 日日摸夜夜添夜夜添av毛片 | 一进一出抽搐gif免费好疼| 麻豆久久精品国产亚洲av| 身体一侧抽搐| 全区人妻精品视频| 久久国产精品影院| 日本熟妇午夜| 人人妻人人看人人澡| 九色国产91popny在线| 亚洲男人的天堂狠狠| 成人鲁丝片一二三区免费| 亚洲av免费高清在线观看| 午夜福利视频1000在线观看| 久久九九热精品免费| 午夜免费激情av| 午夜精品在线福利| 午夜精品在线福利| 别揉我奶头~嗯~啊~动态视频| 男人和女人高潮做爰伦理| 亚洲欧美日韩高清专用| av女优亚洲男人天堂| 给我免费播放毛片高清在线观看| 欧美激情在线99| 欧美zozozo另类| 女人十人毛片免费观看3o分钟| 琪琪午夜伦伦电影理论片6080| 国产av不卡久久| 亚洲国产欧洲综合997久久,| 国产精品,欧美在线| 日韩欧美一区二区三区在线观看| avwww免费| 亚洲精品在线观看二区| 国产精品一区二区性色av| 国产一区二区三区视频了| 亚洲专区国产一区二区| 欧美精品啪啪一区二区三区| 丁香六月欧美| 成年女人毛片免费观看观看9| 性色avwww在线观看| 久久久久久久精品吃奶| 国产一区二区在线av高清观看| 国产精品免费一区二区三区在线| 久久精品夜夜夜夜夜久久蜜豆| av中文乱码字幕在线| 欧美日本亚洲视频在线播放| 精品乱码久久久久久99久播| 精品一区二区免费观看| 一a级毛片在线观看| 婷婷色综合大香蕉| 久久精品久久久久久噜噜老黄 | 欧美日韩乱码在线| 成人特级av手机在线观看| 欧美黑人欧美精品刺激| 成人三级黄色视频| 美女大奶头视频| 欧美日本亚洲视频在线播放| 亚洲乱码一区二区免费版| 亚洲欧美日韩无卡精品| 无遮挡黄片免费观看| 好男人电影高清在线观看| 动漫黄色视频在线观看| 中文亚洲av片在线观看爽| av在线蜜桃| 久久久久久九九精品二区国产| 99视频精品全部免费 在线| 欧美绝顶高潮抽搐喷水| 欧美日韩中文字幕国产精品一区二区三区| 精品午夜福利在线看| 日本黄色视频三级网站网址| 国产成人欧美在线观看| 噜噜噜噜噜久久久久久91| 色哟哟·www| av在线天堂中文字幕| 狠狠狠狠99中文字幕| 美女高潮喷水抽搐中文字幕| 亚洲熟妇熟女久久| 人人妻人人澡欧美一区二区| 亚洲自拍偷在线| 伊人久久精品亚洲午夜| 精品国内亚洲2022精品成人| 老司机深夜福利视频在线观看| 国产av麻豆久久久久久久| 91在线观看av| 免费看光身美女| 亚洲 欧美 日韩 在线 免费| 亚洲av成人不卡在线观看播放网| 国产极品精品免费视频能看的| 亚洲 欧美 日韩 在线 免费| 人人妻人人澡欧美一区二区| 国产主播在线观看一区二区| 亚洲精品亚洲一区二区| 一级a爱片免费观看的视频| 国产伦精品一区二区三区视频9| 亚洲av美国av| 国产欧美日韩精品亚洲av| 99在线人妻在线中文字幕| 亚洲性夜色夜夜综合| 99国产精品一区二区蜜桃av| 午夜老司机福利剧场| 欧美日韩福利视频一区二区| 免费在线观看成人毛片| 国产在视频线在精品| 波多野结衣巨乳人妻| 欧美激情久久久久久爽电影| 国产爱豆传媒在线观看| 色噜噜av男人的天堂激情| 久久精品综合一区二区三区| 性色av乱码一区二区三区2| 国内毛片毛片毛片毛片毛片| 久久久久久久精品吃奶| 给我免费播放毛片高清在线观看| 18禁黄网站禁片午夜丰满| 国产精品伦人一区二区| 级片在线观看| 啦啦啦韩国在线观看视频| 国产精品99久久久久久久久| 婷婷精品国产亚洲av| 免费在线观看影片大全网站| 久久人人精品亚洲av| 五月玫瑰六月丁香| 天美传媒精品一区二区| 日本一二三区视频观看| 老司机午夜福利在线观看视频| 亚洲不卡免费看| 久久久久久久久中文| 人妻制服诱惑在线中文字幕| 精品国产亚洲在线| ponron亚洲| avwww免费| 国产成年人精品一区二区| 日韩欧美免费精品| 一区二区三区免费毛片| 国产单亲对白刺激| 婷婷丁香在线五月| 国产综合懂色| 国产免费男女视频| 精品不卡国产一区二区三区| 国产午夜精品久久久久久一区二区三区 | 亚洲欧美精品综合久久99| 国产精品电影一区二区三区| 夜夜看夜夜爽夜夜摸| 国产精品av视频在线免费观看| 一二三四社区在线视频社区8| 亚洲性夜色夜夜综合| 俺也久久电影网| 极品教师在线视频| 看片在线看免费视频| 国产伦在线观看视频一区| 身体一侧抽搐| 久久精品夜夜夜夜夜久久蜜豆| 色噜噜av男人的天堂激情| 亚洲精品粉嫩美女一区| 69人妻影院| 桃色一区二区三区在线观看| 免费观看精品视频网站| 欧美日韩综合久久久久久 | 热99re8久久精品国产| 一夜夜www| 一级作爱视频免费观看| 国产久久久一区二区三区| 久久久久国产精品人妻aⅴ院| 嫩草影视91久久| 精品一区二区免费观看| 观看美女的网站| 国产成人aa在线观看| 脱女人内裤的视频| 欧美绝顶高潮抽搐喷水| 又粗又爽又猛毛片免费看| 亚洲激情在线av| 狠狠狠狠99中文字幕| 亚洲av免费高清在线观看| 成熟少妇高潮喷水视频| 欧美乱色亚洲激情| 日韩免费av在线播放| 久久精品国产清高在天天线| 制服丝袜大香蕉在线| 亚洲人与动物交配视频| 又爽又黄a免费视频| 亚洲国产精品合色在线| 99久久久亚洲精品蜜臀av| 午夜a级毛片| 一夜夜www| 最近在线观看免费完整版| 亚洲不卡免费看| 亚洲va日本ⅴa欧美va伊人久久| 国产精品综合久久久久久久免费| 噜噜噜噜噜久久久久久91| 午夜精品在线福利| 亚洲精品乱码久久久v下载方式| 窝窝影院91人妻| 网址你懂的国产日韩在线| 日本与韩国留学比较| 国产一区二区激情短视频| 精品免费久久久久久久清纯| 国产成人aa在线观看| 怎么达到女性高潮| 老司机深夜福利视频在线观看| 两个人的视频大全免费| 日韩欧美三级三区| 亚洲七黄色美女视频| 亚洲人成伊人成综合网2020| 亚洲精品乱码久久久v下载方式| 好看av亚洲va欧美ⅴa在| 亚洲精品在线观看二区| 黄片小视频在线播放| 午夜福利在线观看吧| 99久国产av精品| 久久久久免费精品人妻一区二区| 九九在线视频观看精品| 国产免费av片在线观看野外av| 亚洲无线在线观看| 一进一出抽搐动态| 亚洲欧美日韩高清在线视频| 又紧又爽又黄一区二区| 国产野战对白在线观看| 国产亚洲欧美在线一区二区| a在线观看视频网站| 亚洲av不卡在线观看| 人人妻人人看人人澡| 日韩人妻高清精品专区| АⅤ资源中文在线天堂| 亚洲五月天丁香| 黄色丝袜av网址大全| 看十八女毛片水多多多| av国产免费在线观看| 男女之事视频高清在线观看| 99精品久久久久人妻精品| 又爽又黄a免费视频| 三级男女做爰猛烈吃奶摸视频| 久久久久亚洲av毛片大全| or卡值多少钱| 色视频www国产| 9191精品国产免费久久| 久久精品人妻少妇| 综合色av麻豆| x7x7x7水蜜桃| 中文资源天堂在线| 亚洲成人精品中文字幕电影| 欧美日韩乱码在线| 欧美黄色淫秽网站| a级一级毛片免费在线观看| 色哟哟哟哟哟哟| 亚洲精品粉嫩美女一区| 亚洲av免费高清在线观看| 午夜精品一区二区三区免费看| 亚洲成人免费电影在线观看| 搡女人真爽免费视频火全软件 | 亚洲一区高清亚洲精品| 久久精品国产亚洲av涩爱 | 美女大奶头视频| 91在线精品国自产拍蜜月| 色av中文字幕| h日本视频在线播放| 欧美午夜高清在线| 一本久久中文字幕| 免费在线观看日本一区| 91久久精品电影网| 国产高清视频在线观看网站| 嫁个100分男人电影在线观看| 91麻豆av在线| 婷婷亚洲欧美| 国产主播在线观看一区二区| 成人无遮挡网站| 国产激情偷乱视频一区二区| 久久精品人妻少妇| 国产精品女同一区二区软件 | 欧美成狂野欧美在线观看| 亚洲在线自拍视频| 一区二区三区高清视频在线| 亚洲av日韩精品久久久久久密| 久99久视频精品免费| 中文字幕高清在线视频| 日韩精品青青久久久久久| 深爱激情五月婷婷| 中文字幕免费在线视频6| 一区二区三区激情视频| 国产亚洲欧美在线一区二区| 美女 人体艺术 gogo| 两性午夜刺激爽爽歪歪视频在线观看| 婷婷色综合大香蕉| 岛国在线免费视频观看| 亚洲精品乱码久久久v下载方式| 久久国产精品影院| 九九久久精品国产亚洲av麻豆| 性色avwww在线观看| 国产精品一区二区免费欧美| 九九在线视频观看精品| 久久人人爽人人爽人人片va | 国产精品电影一区二区三区| 亚洲精品亚洲一区二区| 国产伦人伦偷精品视频| 蜜桃久久精品国产亚洲av| 在线天堂最新版资源| 国产国拍精品亚洲av在线观看| 中亚洲国语对白在线视频| 别揉我奶头 嗯啊视频| 久久热精品热| 一夜夜www| 蜜桃亚洲精品一区二区三区| 精品福利观看| 丰满的人妻完整版| 一级作爱视频免费观看| 国内精品一区二区在线观看| 精品久久久久久久久亚洲 | 午夜影院日韩av| 深夜精品福利| 97超级碰碰碰精品色视频在线观看| 国产成+人综合+亚洲专区| 成人三级黄色视频| 久久婷婷人人爽人人干人人爱| 久久久久久国产a免费观看| 精品午夜福利视频在线观看一区| 国产黄片美女视频| 国产精品日韩av在线免费观看| bbb黄色大片| 精品熟女少妇八av免费久了| 又爽又黄a免费视频| 日本免费一区二区三区高清不卡| 久久久久久久午夜电影| 成年免费大片在线观看| 日本成人三级电影网站| 精品久久国产蜜桃| 婷婷丁香在线五月| 在线观看免费视频日本深夜| 免费高清视频大片| 欧美色欧美亚洲另类二区| 亚洲国产高清在线一区二区三| 久久久久久久午夜电影| 内地一区二区视频在线| 国产爱豆传媒在线观看| 免费人成视频x8x8入口观看| 精品国内亚洲2022精品成人| 精品人妻视频免费看| 免费人成视频x8x8入口观看| 欧美潮喷喷水| 国产三级在线视频| 性插视频无遮挡在线免费观看| 久久精品国产亚洲av天美| 成人国产一区最新在线观看| 长腿黑丝高跟| 欧美另类亚洲清纯唯美| 看十八女毛片水多多多| 露出奶头的视频| 极品教师在线视频| 三级国产精品欧美在线观看| 国产精品自产拍在线观看55亚洲| 国产精品久久久久久久久免 | 亚洲国产精品sss在线观看| 两个人视频免费观看高清| 日日摸夜夜添夜夜添小说| 久久欧美精品欧美久久欧美| 免费人成视频x8x8入口观看| 美女被艹到高潮喷水动态| 男女做爰动态图高潮gif福利片| 国产成人影院久久av| 日本一本二区三区精品| 午夜福利在线在线| 男女视频在线观看网站免费| 日日摸夜夜添夜夜添小说| 精华霜和精华液先用哪个| 简卡轻食公司| 黄色日韩在线| 国产一区二区三区在线臀色熟女| 中文字幕精品亚洲无线码一区| 国内精品一区二区在线观看| 天堂动漫精品| 99久久精品国产亚洲精品| 久久香蕉精品热| 91在线精品国自产拍蜜月| 1024手机看黄色片| 国产激情偷乱视频一区二区| 国产精品久久久久久精品电影| 午夜精品在线福利| 欧美精品啪啪一区二区三区| АⅤ资源中文在线天堂| 又爽又黄a免费视频| av中文乱码字幕在线| 美女cb高潮喷水在线观看| 日本熟妇午夜| 色综合站精品国产| 观看免费一级毛片| 久久精品国产自在天天线| 国产中年淑女户外野战色| 国产午夜福利久久久久久| 午夜福利在线观看吧| 国产熟女xx| 国产欧美日韩精品亚洲av| 精品午夜福利视频在线观看一区| 午夜福利在线观看免费完整高清在 | 日本与韩国留学比较| 给我免费播放毛片高清在线观看| 91狼人影院| 色综合站精品国产| 日本一本二区三区精品| 国产不卡一卡二| 好男人在线观看高清免费视频| 淫妇啪啪啪对白视频| 美女大奶头视频| aaaaa片日本免费| 国产一区二区三区视频了| 午夜亚洲福利在线播放| 老女人水多毛片| 男人舔女人下体高潮全视频| 国内精品久久久久久久电影| 国产视频一区二区在线看| 亚洲av电影在线进入| 99精品在免费线老司机午夜| 男女做爰动态图高潮gif福利片| xxxwww97欧美| 国产免费一级a男人的天堂| 一区二区三区免费毛片| 国产精品一区二区三区四区免费观看 | 国产精品美女特级片免费视频播放器| 日韩国内少妇激情av| 久久久久久久午夜电影| 男女那种视频在线观看| avwww免费| 中文字幕精品亚洲无线码一区| 国产老妇女一区| 欧美zozozo另类| 国产成+人综合+亚洲专区| 久久精品影院6| 国产色爽女视频免费观看| 国产精品av视频在线免费观看| 亚洲人成伊人成综合网2020| 亚洲第一区二区三区不卡| 一个人观看的视频www高清免费观看| 成人精品一区二区免费| 亚洲av美国av| 色综合欧美亚洲国产小说| 中文字幕av成人在线电影| 久久九九热精品免费| 久久精品国产亚洲av涩爱 | 舔av片在线| 人妻丰满熟妇av一区二区三区| 亚洲精品成人久久久久久| 成人性生交大片免费视频hd| 久久香蕉精品热| 性色av乱码一区二区三区2| 欧美潮喷喷水| 91麻豆精品激情在线观看国产| 国产精品亚洲av一区麻豆| 国产中年淑女户外野战色| 国产精品影院久久| 色精品久久人妻99蜜桃| 国产精品不卡视频一区二区 | 淫妇啪啪啪对白视频| avwww免费| 欧美3d第一页| 国产三级在线视频| 国产视频内射| 99国产极品粉嫩在线观看| 国产淫片久久久久久久久 | 久久精品国产亚洲av香蕉五月| 女人被狂操c到高潮| 久久欧美精品欧美久久欧美| 能在线免费观看的黄片| 成人av一区二区三区在线看| 亚洲精品久久国产高清桃花| 婷婷精品国产亚洲av| 亚洲aⅴ乱码一区二区在线播放| 人人妻人人看人人澡| 九九热线精品视视频播放| 少妇的逼水好多| 久久久久久国产a免费观看| 日日摸夜夜添夜夜添小说| 亚洲激情在线av| 黄色丝袜av网址大全| 国产一区二区在线观看日韩| 成年免费大片在线观看| 国产精品影院久久| 久久久国产成人免费| 九九在线视频观看精品| 亚洲精品影视一区二区三区av| 99国产精品一区二区三区| 国产精品三级大全| 国产精品野战在线观看| 琪琪午夜伦伦电影理论片6080| 久久久精品大字幕| 精品午夜福利在线看| 国产 一区 欧美 日韩| 国产精品,欧美在线| 级片在线观看| 婷婷六月久久综合丁香| 中文在线观看免费www的网站| 亚洲片人在线观看| 人妻久久中文字幕网| 91av网一区二区| 如何舔出高潮| 国产三级在线视频| 久久久久性生活片| 又粗又爽又猛毛片免费看| 51国产日韩欧美| 亚洲真实伦在线观看| 国产亚洲欧美98| 美女免费视频网站| 亚洲久久久久久中文字幕| 一区福利在线观看| av黄色大香蕉| 丰满人妻一区二区三区视频av| 99久国产av精品| 中文字幕人成人乱码亚洲影| 色av中文字幕| 久久这里只有精品中国| 精品久久久久久久久久久久久| 国产伦精品一区二区三区视频9| 欧美国产日韩亚洲一区| 免费电影在线观看免费观看| 精品一区二区三区av网在线观看| 亚洲,欧美精品.| 啦啦啦韩国在线观看视频| 国产一区二区激情短视频| 成人欧美大片| 极品教师在线免费播放| 亚洲,欧美,日韩| 夜夜爽天天搞| 一个人看的www免费观看视频| 国产黄色小视频在线观看| 网址你懂的国产日韩在线| 桃红色精品国产亚洲av| 亚洲人成网站在线播放欧美日韩| 久久久久九九精品影院| 色哟哟哟哟哟哟| 亚洲成人久久爱视频| 婷婷精品国产亚洲av在线| 精品午夜福利视频在线观看一区| 日韩欧美精品v在线| 蜜桃久久精品国产亚洲av| 亚洲av.av天堂| 日日夜夜操网爽| 欧美日韩中文字幕国产精品一区二区三区| 成人亚洲精品av一区二区| 久久亚洲精品不卡| 亚洲美女搞黄在线观看 | 国产精品久久电影中文字幕| 亚洲综合色惰| 啦啦啦韩国在线观看视频|