• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    STABILITY AND HOPF BIFURCATION OF A PREDATOR-PREY BIOLOGICAL ECONOMIC SYSTEM

    2016-12-07 08:58:59LIUWeiLIBiwenLIZhenweiWANGGan
    數(shù)學(xué)雜志 2016年6期
    關(guān)鍵詞:劉煒食餌微分

    LIU Wei,LI Bi-wen,LI Zhen-wei,WANG Gan

    (School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

    STABILITY AND HOPF BIFURCATION OF A PREDATOR-PREY BIOLOGICAL ECONOMIC SYSTEM

    LIU Wei,LI Bi-wen,LI Zhen-wei,WANG Gan

    (School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

    In this paper,we mainly study the Hopf-bifurcation and the stability of differentialalgebraic biological economic system with predator harvesting.By using the method of stability thoery and Hopf bifurcation theorem dynamical systems and differential algebraic system,we find some related conclusions about stability and Hopf-bifurcation.We have improved the ratio-dependent predator-prey system,take economic effectμas the bifurcation parameter and make a numerical simulation by using Matlab at last,so the conclusions are made more practical.

    stability;economic system;Hopf bifurcation;harvesting

    2010 MR Subject Classification:34D20;34K18

    Document code:AArticle ID:0255-7797(2016)06-1160-13

    1 Introduction

    According to the lack of biological resources on the earth,more and more people increasingly realized the importance of the modelling and research of biological system.The predator-prey was one of the most popular models that many researchers[1-8]studied and acquired some valuable characters of dynamic behavior.For example,the stability of equilibrium,Hopf bifurcation,flip bifurcation,limit cycle and other relevant conducts.At the same time,the development and utilization of biological resources and artificial arrest was researched commonly in the fields of fishery,wildlife and forestry management by some experts[9-11].Most of them choose differential equations and difference equations to research biological models.It is well known that economic profit become more and more important and take a fundamental gradually situation in social development.In recent years,biological economic systems were researched by many authors[12-16],who describe the system by differential-algebraic equations or differential-difference-algebraic equations.

    Basic analysis model which applied by differential-algebraic equations and differentialdifference-algebraic equations are familiar at present.However,there still exist some disadvantages in many systems such as harvesting function.In this paper,the main research isthe stability and Hopf bifurcation of a biological-algebraic biological economic system,which is changed in some details and meaningful.

    Our basic model is based on the following ratio-dependent predator-prey system with harvest

    where u and v represent the predator density and prey density at time t,respectively,∈,θ and α are all positive constants,and r1and r2stand for the densities of predator and prey populations,and E represents harvesting effort.αEv denotes that the harvests for predator population are proportional to their densities at time t.

    In 1954,Gordon[17]studied the effect of the harvest effort on ecosystem form an economic perspective and proposed the following economic principle:

    Associated with system(1.1),an algebraic equation which considers the economic profit m of the harvest effort on predator can be established as follows

    where E(t)represents the harvest effort,p denotes harvesting reward per unit harvesting effort for unit weight,c represents harvesting cost per unit harvesting effort.Combining the economic theory of fishery resources,we can establish a differential algebraic biological economic system

    Nevertheless,the capture effect to predator is not always shown in the liner in nature based on many factors that can affect the predation such as the ability of search,illness and death.Therefore,the harvesting function of system(1.2)is modified as follows

    To simplify system(1.2),we use these dimensionless variables

    and then obtain the following system

    For simplicity,let

    where Z=(x,y)T,μis a bifurcation parameter,which will be defined in the follows.

    In this paper,we discuss the effects of the economic profit on the dynamics of system (1.4)in the region={(x,y,E)|x>0,y>0,E>0}.

    Next,the paper will be organized as follows.In Section 2,the stability of the positive equilibrium point is discussed by corresponding characteristic equation of system(2.2).In Section 3,we provide Hopf bifurcation analysis of system(1.4).In Section 4,we use numerical simulations to illustrate the effectiveness of result.Then give a brief conclusion in Section 5.

    2 Local Stability Analysis of System(1.4)

    It is obvious that there exists an equilibrium inif only if this point χ0:=(x0,y0,E0)Tis a real solution of the equations

    By the calculation,we get

    where

    According to this analysis procedure,this essay only concentrate on the interior equilibrium of system(1.4).Based on the ecology meaningful of the interior equilibrium,the predator and the harvest effort to predator are all exist that it is the key point to the study. Thus,a simple assumption that the inequality 0<μ<r2G0holds in this paper.Following, we use the linear transformation χT=QMT,where

    From Section 1,we obtain

    For system(2.2),we consider the local parametric ψ,which defined as follows

    where

    h:R2→R3is a smooth mapping.Then we can obtain the parametric system(2.2)as follows:

    More details about the definition can be found in[18].Based on system(2.3),we can get Jacobian matrix E(M0),which takes the form of

    Then the following theorem summarizes the stability of the positive equilibrium point of system(1.4).

    Theorem 2.1 For system(2.2)

    (ii)If(r2-μ)2<4r1andμ<minthe positive equilibrium point of system(1.4)is a sink;otherwise when<μ<r2G0,the positive equilibrium point of system(1.4)is a source.

    Proof First,the characteristic equation of the matrix E(M0)can be written as

    Now donate?by

    Remark 1 The local stability of χ0is equivalent to the local stability of M0.

    Remark 2 When the roots of eq.(2.4)exist zero real parts,system(1.4)will occur bifurcation,which will be discussed in Section 3.

    3 Hopf Bifurcation Analysis of the Positive Equilibrium

    In this section,we discuss the Hopf bifurcation from the equilibrium point χ0by choosing μas the bifurcation parameter.Based on the Hopf bifurcation theorem in[19],we need find some sufficient conditions.

    According to the definition of?,we obtain

    where

    here,we assume that A2+B≥0 in this paper.

    Thus,for eq.(2.4),if B>0 and 0<μ<min{r2G0,J+}.Eq.(2.4)has one pair of imaginary roots.When B>0,A>0,J-<r2G0and J-<μ<min{r2G0,J+},eq.(2.4) has one pair of imaginary roots.

    In the case of meet the above conditions,we can get the roots as follows:

    where

    By calculating,we obtain

    Eq.(3.1)indicates that eq.(2.2)occurs Hopf bifurcation atμ0.

    In order to calculate the Hopf bifurcation,we need to lead the normal form of system (2.2)as follows

    From eq.(2.3),we have

    Then we can easily obtain

    where

    and

    Then we get

    Thus we have

    Then we obtain

    Substituting M0,μ0into above,we have

    Now,we get

    Finally,we obtain

    Thus we have eq.(3.3)

    Comparing with the normal form(3.2),we chosse the nonsingular matrix

    then we use the linear transformation H=N,noticing ω0=,we derive the normal form as follows

    where H=(u1,u2)T.Then

    According to the Hopf bifurcation theorem in[19],now we only need to calculate the value of a

    Next,there are two cases should be discussed.That is a>0 and a<0.Based on the Hopf bifurcation theorem in[19],we obtain Theorem 3.1.

    Theorem 3.1 For the system(2.2),there exist an ε>0 and two small enough neighborhoods P1and P2of χ0(μ),where P1?P2.

    (i)If

    then

    (1)whenμ0<μ<μ0+ε,χ0(μ)is unstable,and repels all the points in P2;

    (2)whenμ0-ε<μ<μ0,there exist at least one periodic solution in1,which is the closure of P1,one of them repel all the points in1{χ0(μ)},and also have another periodic solution(may be the same that)repels all the points in P21,and χ0(μ)is locally asymptotically stable.

    (ii)If

    then

    (1)whenμ0-ε<μ<μ0,χ0(μ)is locally asymptotically stable,and repels all the points in P2;

    (2)whenμ0<μ<μ0+ε,there exist at least one periodic solution in1,one of them repel all the points in1{χ0(μ)},and also have another periodic solution(may be the same that)repels all the points in P21,and χ0(μ)is unstable.

    Proof Theorem 3.1 can be similarly proved as the Hopf bifurcation theorem in[19],so we omit the process here.

    4 Numerical Simulations

    In this section,we give a numerical example of system(1.4)with the parameters r1= 3,r2=1,c=1,β=0.195,then system(1.4)becomes

    By simple computing,the only positive equilibrium point of above system is

    and the Hopf bifurcation valueμ0=

    Therefore,by Theorem 3.1,we can easily show that the positive equilibrium point χ0(μ) of system(4.1)is locally asymptitically stable whenμ=0.505<μ0as is illustrated by computer simulations in Fig.1;periodic solutions occur from χ0(μ)whenμ=0.5195<μ0as is illustrated in Fig.2;the positive equilibrium point χ0(μ)of system(4.1)is unstable whenμ=0.535>μ0as is illustrated in Fig.3.

    Figure 1:Whenμ=0.505<μ0,that show the positive equilibrium point χ0(μ)is locally asymptotically stable.

    Figure 2:Periodic solutions bifurcating from χ0(μ)whenμ=0.5195<μ0.

    Figure 3:Whenμ=0.535>μ0,that show the positive equilibrium point χ0(μ)is unstable.

    5 Conclusions

    Based on the above inference and calculation,we find that economic effect will influence the stability of differential-algebraic biological economic system.For instance,according to those statistics and graphs,if people fix the economic index at a high level,over the bifurcation value of Hopf-bifurcation,the system will become unstable that means people have destroyed the economic balance even led to the extinction of ecologic species.Therefore, with an aim to realize the harmonious sustainable development co-existence between man and nature,we should not seek economic effect blindly and control it within a certain limit, such as less than bifurcation value.

    In addition,we can make some improvements in our model.For example,we do not consider the influence of time delays and double harvesting that is,human harvesting will harvest predator and prey at the same time.So it is necessary for us to go on with our research in these aspects in the future.

    References

    [1]Chen B S,Liu Y Q.On the stable periodic solutions of single sepias models with hereditary effects[J]. Math.Appl.,1999,12:42-46.

    [2]Xiao D M,Li W X,Han M A.Dynamics in ratio-dependent predator-prey model with predator harvesting[J].J.Math.Anal.Appl.,2006,324(1):14-29.

    [3]Zhang Y,Zhang Q L.Chaotic control based on descriptor bioeconomic systems[J].Contr.Dec., 2007,22(4):445-452.

    [4]Pan K,Li B W.Existence of positive periodic solution for two-patches predator-prey impulsive diffusion delay system with functional response[J].J.Math.,2010,30(1):183-190.

    [5]Li P L,Yu C C,Zeng X W.The qualitative analysis of a class of predator-prey system with functional response[J].J.Math.,2006,26(2):217-222.

    [6]Qu Y,Wei J J.Bifurcation analysis in a predator-prey system with stage-structure and harvesting[J]. J.Franklin Institute,2010,347:1097-1113.

    [7]Rebaza J.Dynamical of prey threshold harvesting and refuge[J].J.Comput.Appl.Math.,2012, 236:1743-1752.

    [8]Gupta R P,Chandra P.Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting[J].J.Math.Anal.Appl.,2013,398:278-295.

    [9]Liu C,Zhang Q L,Zhang Y,Duan X D.Bifurcation and control in a differential-algebraic harvested prey-predator model with stage structure for predator[J].Int.J.Bifurcation Chaos,2008,18:3159-3168.

    [10]Chen L N,Tada Y,Okamoto H,Tanabe R,Ono A.Optimal operation solutions of power systems with transient stability constraints[J].IEEE Trans.Circuits Syst.,2001,48:327-339.

    [11]Liu X X,Li B W,Chen B S.Global stability for a predator-prey model with disease in the prey[J]. J.Math.,2013,33(1):69-73.

    [12]Zhang G D,Zhu L L,Chen B S.Hopf bifurcation and stability for a differential-algebraic biological economic system[J].Appl.Math.Comput.,2010,217:330-338.

    [13]Chen B S,Chen J J.Bifurcation and chaotic behavior of a discrete singular biological economic system[J].Appl.Math.Comput.,2012,219:2371-2386.

    [14]Liu W,Fu C J,Chen B S.Hopf bifurcation for a predator-prey biological economic system with Holling type II functional response[J].J.Franklin Institute,2011,348:1114-1127.

    [15]Liu W,Fu C J.Hopf bifurcation of a modified Leslie-Gower predator-prey system[J].Cogn Comput., 2013,5:40-47.

    [16]Zhang G D,Zhu L L,Chen B S.Hopf bifurcation in a delayed differential-algebraic biological economic system[J].Nonl.Anal.:Real World Appl.,2011,12:1708-1719.

    [17]Gordon H S.Economic theory of a common property resource:the fishery[J].J.Polit.Econ.,1954, 62(2):124-142.

    [18]Chen B S,Liao X X,Liu Y Q.Normal forms and bifurcations for the differential-algebraic systems[J]. Acta Math.Appl.Sinica,2000,23(3):429-443(in Chinese).

    [19]Gukenheimer J,Holmes P.Nonlinear oscillations,dynamical systems,and bifurcations of vector fields[M].New York:Springer-Verlag,1983.

    一類捕食食餌微分經(jīng)濟(jì)系統(tǒng)的穩(wěn)定性與Hopf分支

    劉煒,李必文,李震威,汪淦

    (湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院,湖北黃石435002)

    本文主要研究了一個帶有對捕食者進(jìn)行捕獲的微分代數(shù)經(jīng)濟(jì)系統(tǒng)的穩(wěn)定性和Hopf分支問題.利用了動力系統(tǒng)和微分代數(shù)系統(tǒng)中的穩(wěn)定性理論和分支理論的方法,得到了穩(wěn)定性和Hopf分支穩(wěn)定性的相關(guān)結(jié)論.本文對Ratio-Dependent捕食食餌模型進(jìn)行了一定程度的完善,并且選取經(jīng)濟(jì)效益μ為分支參數(shù)進(jìn)行研究,最后利用Matlab進(jìn)行數(shù)值模擬,這樣使得到的結(jié)論更符合現(xiàn)實意義.

    穩(wěn)定性;經(jīng)濟(jì)系統(tǒng);Hopf分支;捕獲

    MR(2010)主題分類號:34D20;34K18O29;O193

    ?date:2014-04-03Accepted date:2014-11-11

    Supported by the Research Project of Hubei Provincial Department of Education of China under Grant(T201412).

    Biography:Liu Wei(1989-),female,born at Taiyuan,Shanxi,master,major in ordinary differential equations and control theory.

    猜你喜歡
    劉煒食餌微分
    捕食-食餌系統(tǒng)在離散斑塊環(huán)境下強(qiáng)迫波的唯一性
    一類具有修正的Leslie-Gower項的捕食-食餌模型的正解
    雪韻
    擬微分算子在Hp(ω)上的有界性
    具有兩個食餌趨化項的一個Ronsenzwing-MacArthur捕食食餌模型的全局分歧
    冬天,走丟了
    上下解反向的脈沖微分包含解的存在性
    一類帶有交叉擴(kuò)散的捕食-食餌模型的正解
    我有一個夢
    知之為知之,不知為不知
    亚洲国产欧美在线一区| 亚洲性久久影院| 亚洲国产精品久久男人天堂| 老司机影院成人| 日本免费a在线| 久久亚洲精品不卡| 天天躁夜夜躁狠狠久久av| 小说图片视频综合网站| 精品久久久久久久久久免费视频| 亚洲精品粉嫩美女一区| www日本黄色视频网| 亚洲真实伦在线观看| 精品不卡国产一区二区三区| 精品国内亚洲2022精品成人| 三级毛片av免费| 禁无遮挡网站| 岛国在线免费视频观看| or卡值多少钱| 亚洲av.av天堂| 国产亚洲5aaaaa淫片| 1000部很黄的大片| 国产精品三级大全| 少妇人妻一区二区三区视频| 永久网站在线| 99久久九九国产精品国产免费| 美女 人体艺术 gogo| 日本免费a在线| 亚洲内射少妇av| 久久精品国产自在天天线| 国产三级中文精品| 美女脱内裤让男人舔精品视频 | 亚洲欧美日韩卡通动漫| 国产成年人精品一区二区| 日韩中字成人| 波多野结衣高清无吗| av在线蜜桃| 三级男女做爰猛烈吃奶摸视频| av在线老鸭窝| 99久久人妻综合| 免费看日本二区| 欧美成人精品欧美一级黄| 亚洲欧美精品综合久久99| 久久韩国三级中文字幕| 舔av片在线| 亚洲av成人av| 日韩欧美一区二区三区在线观看| 日本-黄色视频高清免费观看| 伦精品一区二区三区| 成人综合一区亚洲| 精品久久久久久久久久免费视频| 久久精品国产亚洲网站| 国产淫片久久久久久久久| 国产成人a∨麻豆精品| 狠狠狠狠99中文字幕| 综合色丁香网| 精品久久国产蜜桃| av又黄又爽大尺度在线免费看 | 一卡2卡三卡四卡精品乱码亚洲| 午夜福利视频1000在线观看| 91久久精品国产一区二区成人| 久久精品综合一区二区三区| 国产精品国产三级国产av玫瑰| 国产一区二区三区av在线 | 91在线精品国自产拍蜜月| 变态另类丝袜制服| 男人舔女人下体高潮全视频| 亚洲成人精品中文字幕电影| 国产亚洲5aaaaa淫片| 男人舔奶头视频| 国产乱人视频| 亚洲欧美精品自产自拍| 国产午夜福利久久久久久| 在线观看免费视频日本深夜| 国产老妇女一区| 免费av不卡在线播放| 国产极品精品免费视频能看的| 日韩欧美在线乱码| a级一级毛片免费在线观看| 欧美潮喷喷水| 中文在线观看免费www的网站| 成年免费大片在线观看| 麻豆精品久久久久久蜜桃| a级毛色黄片| 色视频www国产| 久99久视频精品免费| 亚洲四区av| 毛片一级片免费看久久久久| 美女xxoo啪啪120秒动态图| 国国产精品蜜臀av免费| 精品午夜福利在线看| 亚洲18禁久久av| 国产国拍精品亚洲av在线观看| av国产免费在线观看| 少妇被粗大猛烈的视频| 99久久精品热视频| 国产精品久久久久久精品电影| eeuss影院久久| 最新中文字幕久久久久| 久久99热这里只有精品18| 亚洲成人中文字幕在线播放| av免费观看日本| 午夜a级毛片| 搡女人真爽免费视频火全软件| 精品不卡国产一区二区三区| 夜夜看夜夜爽夜夜摸| 日本黄色视频三级网站网址| 国产成人精品久久久久久| av福利片在线观看| 黄色日韩在线| www.av在线官网国产| 国语自产精品视频在线第100页| 国产午夜精品论理片| 晚上一个人看的免费电影| av女优亚洲男人天堂| 国产片特级美女逼逼视频| 秋霞在线观看毛片| 老司机福利观看| 色尼玛亚洲综合影院| 久久久久久久久久久丰满| 黄色欧美视频在线观看| 国产伦精品一区二区三区四那| 精品人妻一区二区三区麻豆| 丝袜喷水一区| 一级毛片aaaaaa免费看小| 国产成人午夜福利电影在线观看| 国产激情偷乱视频一区二区| 国产探花极品一区二区| h日本视频在线播放| 高清午夜精品一区二区三区 | 岛国毛片在线播放| 国产黄片美女视频| 国产午夜福利久久久久久| 男人舔奶头视频| 精华霜和精华液先用哪个| 久久久久久九九精品二区国产| kizo精华| 别揉我奶头 嗯啊视频| 床上黄色一级片| 夜夜爽天天搞| 麻豆国产av国片精品| 人体艺术视频欧美日本| 免费av观看视频| 久久精品国产亚洲av涩爱 | 欧美日本亚洲视频在线播放| 久久99蜜桃精品久久| 3wmmmm亚洲av在线观看| 久久精品国产自在天天线| 久久亚洲精品不卡| 国产精品国产三级国产av玫瑰| 3wmmmm亚洲av在线观看| 丰满的人妻完整版| 高清日韩中文字幕在线| 婷婷六月久久综合丁香| 丰满人妻一区二区三区视频av| 联通29元200g的流量卡| 国产在线男女| 国产亚洲精品av在线| 看免费成人av毛片| 欧美日韩一区二区视频在线观看视频在线 | 一个人看的www免费观看视频| 亚洲欧美日韩高清在线视频| 午夜视频国产福利| 色综合色国产| 在线a可以看的网站| 在线天堂最新版资源| 男的添女的下面高潮视频| 美女大奶头视频| 欧美bdsm另类| 91麻豆精品激情在线观看国产| 男女下面进入的视频免费午夜| 亚洲美女视频黄频| 97超视频在线观看视频| 少妇的逼好多水| 亚洲无线在线观看| 观看美女的网站| av在线播放精品| 欧美成人a在线观看| 色播亚洲综合网| 亚洲高清免费不卡视频| 久久人人爽人人片av| 中文字幕制服av| 国产亚洲av片在线观看秒播厂 | 日本三级黄在线观看| 中文字幕免费在线视频6| 欧洲精品卡2卡3卡4卡5卡区| 精品无人区乱码1区二区| 亚洲成a人片在线一区二区| 色尼玛亚洲综合影院| 久久久a久久爽久久v久久| 成人综合一区亚洲| 国产精品乱码一区二三区的特点| 老师上课跳d突然被开到最大视频| 亚洲av不卡在线观看| 真实男女啪啪啪动态图| 亚洲国产日韩欧美精品在线观看| 女的被弄到高潮叫床怎么办| 亚洲av不卡在线观看| 中文字幕人妻熟人妻熟丝袜美| 特大巨黑吊av在线直播| 中文字幕人妻熟人妻熟丝袜美| 国产精品永久免费网站| 久久久久久久亚洲中文字幕| 久久久欧美国产精品| 黄色配什么色好看| 国产爱豆传媒在线观看| 成年女人看的毛片在线观看| 国内少妇人妻偷人精品xxx网站| 一进一出抽搐gif免费好疼| 黄片无遮挡物在线观看| 日日撸夜夜添| 久久精品影院6| 日韩成人av中文字幕在线观看| 青青草视频在线视频观看| 欧美xxxx黑人xx丫x性爽| 久久午夜亚洲精品久久| 麻豆乱淫一区二区| 亚洲图色成人| 一级毛片aaaaaa免费看小| 免费人成在线观看视频色| 亚洲欧美日韩东京热| 国产女主播在线喷水免费视频网站 | 国产女主播在线喷水免费视频网站 | 久久精品人妻少妇| 欧美日本亚洲视频在线播放| 国产高清激情床上av| 听说在线观看完整版免费高清| 精品午夜福利在线看| 国产av不卡久久| 最近视频中文字幕2019在线8| 最近视频中文字幕2019在线8| 嫩草影院入口| 午夜爱爱视频在线播放| 久久99热6这里只有精品| 亚洲美女搞黄在线观看| 日韩大尺度精品在线看网址| 成年版毛片免费区| 日韩欧美 国产精品| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品人妻久久久久久| 欧美不卡视频在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美精品自产自拍| 亚洲欧美精品专区久久| 亚洲自偷自拍三级| 99国产精品一区二区蜜桃av| 国内精品宾馆在线| 欧美成人精品欧美一级黄| kizo精华| av.在线天堂| www.色视频.com| 深爱激情五月婷婷| 男人和女人高潮做爰伦理| 亚洲av不卡在线观看| 成人一区二区视频在线观看| 看十八女毛片水多多多| 国产精品福利在线免费观看| 五月玫瑰六月丁香| а√天堂www在线а√下载| 国产精品久久久久久av不卡| 在线免费十八禁| 男人狂女人下面高潮的视频| 久久久久久久久久久丰满| 免费人成在线观看视频色| 黄色欧美视频在线观看| 亚洲欧美成人精品一区二区| 亚洲最大成人中文| 我的老师免费观看完整版| 国产真实伦视频高清在线观看| 精品一区二区三区人妻视频| 久久久午夜欧美精品| 2021天堂中文幕一二区在线观| 看十八女毛片水多多多| 少妇高潮的动态图| 美女脱内裤让男人舔精品视频 | 中文在线观看免费www的网站| 久久久国产成人精品二区| 国产视频内射| 一级av片app| 精品久久久久久久久久免费视频| 老师上课跳d突然被开到最大视频| 秋霞在线观看毛片| 极品教师在线视频| 直男gayav资源| 久久久精品大字幕| 尤物成人国产欧美一区二区三区| 欧美xxxx性猛交bbbb| 免费在线观看成人毛片| 91久久精品国产一区二区成人| 成人特级黄色片久久久久久久| 可以在线观看毛片的网站| 欧美日韩国产亚洲二区| 国产白丝娇喘喷水9色精品| 九九在线视频观看精品| 看十八女毛片水多多多| 两个人的视频大全免费| 久久99精品国语久久久| 免费观看a级毛片全部| 久久久久久久久久黄片| 成人漫画全彩无遮挡| 午夜亚洲福利在线播放| 1024手机看黄色片| 精品久久久久久成人av| 亚洲av中文字字幕乱码综合| 亚洲成人av在线免费| 可以在线观看的亚洲视频| 欧美色欧美亚洲另类二区| 亚洲三级黄色毛片| 夜夜看夜夜爽夜夜摸| 久久人人精品亚洲av| 丰满人妻一区二区三区视频av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费看日本二区| 成人美女网站在线观看视频| 在线观看免费视频日本深夜| 神马国产精品三级电影在线观看| 美女大奶头视频| 国产一区二区激情短视频| 国产亚洲av嫩草精品影院| 欧美另类亚洲清纯唯美| 小蜜桃在线观看免费完整版高清| 欧美日本视频| 日本黄大片高清| 国产伦精品一区二区三区视频9| 久久中文看片网| 卡戴珊不雅视频在线播放| 啦啦啦啦在线视频资源| 97超碰精品成人国产| 日产精品乱码卡一卡2卡三| 91久久精品国产一区二区三区| 麻豆国产97在线/欧美| 青青草视频在线视频观看| 成人av在线播放网站| 精品久久久久久久久久免费视频| 欧美日韩国产亚洲二区| 精品一区二区三区人妻视频| 亚洲av.av天堂| 国产精品久久久久久av不卡| 校园春色视频在线观看| 内射极品少妇av片p| 欧美又色又爽又黄视频| 亚洲熟妇中文字幕五十中出| 免费观看的影片在线观看| 日本一本二区三区精品| 日本黄色视频三级网站网址| 亚洲综合色惰| av卡一久久| 老司机福利观看| 国产白丝娇喘喷水9色精品| 精品人妻视频免费看| 欧美一区二区亚洲| 亚洲成a人片在线一区二区| 国产亚洲精品av在线| 国产av在哪里看| 美女xxoo啪啪120秒动态图| 一级黄片播放器| 少妇的逼水好多| 大型黄色视频在线免费观看| 在线免费观看的www视频| 青青草视频在线视频观看| a级毛色黄片| 日韩,欧美,国产一区二区三区 | kizo精华| 午夜福利高清视频| 色哟哟·www| 亚洲人成网站在线播放欧美日韩| 国产极品精品免费视频能看的| 亚洲激情五月婷婷啪啪| 乱人视频在线观看| 精品人妻熟女av久视频| 中文字幕久久专区| 人体艺术视频欧美日本| 国产成人91sexporn| 毛片一级片免费看久久久久| 91精品国产九色| 国产精品99久久久久久久久| 久久99蜜桃精品久久| av在线播放精品| 精品日产1卡2卡| 亚洲,欧美,日韩| 日本色播在线视频| 黄色视频,在线免费观看| 在线免费观看不下载黄p国产| 国产精品永久免费网站| 人人妻人人澡人人爽人人夜夜 | 精品久久久久久久久亚洲| 国产黄色小视频在线观看| 成年免费大片在线观看| 欧美日本视频| 2022亚洲国产成人精品| av在线天堂中文字幕| 久久草成人影院| 国产精品一区二区在线观看99 | 免费不卡的大黄色大毛片视频在线观看 | 99久久中文字幕三级久久日本| 国产一区亚洲一区在线观看| 禁无遮挡网站| 青春草视频在线免费观看| 日韩人妻高清精品专区| 亚洲国产欧美人成| 久久久久性生活片| 尾随美女入室| 精华霜和精华液先用哪个| or卡值多少钱| 国产单亲对白刺激| 一个人看的www免费观看视频| 人妻夜夜爽99麻豆av| 欧美性猛交黑人性爽| 麻豆av噜噜一区二区三区| 一个人看视频在线观看www免费| 免费观看在线日韩| 一边亲一边摸免费视频| 国产片特级美女逼逼视频| 午夜视频国产福利| 亚洲精品乱码久久久久久按摩| 国产蜜桃级精品一区二区三区| 超碰av人人做人人爽久久| 一级毛片电影观看 | 日本欧美国产在线视频| 欧美成人一区二区免费高清观看| 一区福利在线观看| 亚洲丝袜综合中文字幕| 午夜免费男女啪啪视频观看| 国产极品精品免费视频能看的| 自拍偷自拍亚洲精品老妇| 成人午夜高清在线视频| 亚洲天堂国产精品一区在线| 精品人妻偷拍中文字幕| 超碰av人人做人人爽久久| 高清在线视频一区二区三区 | 欧美色欧美亚洲另类二区| 看免费成人av毛片| 我的女老师完整版在线观看| 国产美女午夜福利| 久久久久久久久久成人| 久久精品国产清高在天天线| 97热精品久久久久久| 亚洲在线观看片| 亚洲精品乱码久久久久久按摩| 久久人人爽人人爽人人片va| 精品人妻熟女av久视频| 九草在线视频观看| 深夜精品福利| 久久精品国产99精品国产亚洲性色| 国产精品不卡视频一区二区| 国产午夜精品久久久久久一区二区三区| 成年女人永久免费观看视频| 国产单亲对白刺激| 日韩视频在线欧美| 91午夜精品亚洲一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 日本撒尿小便嘘嘘汇集6| 白带黄色成豆腐渣| 97超视频在线观看视频| 成年免费大片在线观看| 在线天堂最新版资源| 美女xxoo啪啪120秒动态图| 精品久久久久久久久久久久久| 特级一级黄色大片| 婷婷六月久久综合丁香| 亚洲人与动物交配视频| 亚洲欧美日韩东京热| 深夜精品福利| 国产视频内射| 国产白丝娇喘喷水9色精品| 精品久久久久久久久av| 亚洲精品456在线播放app| 亚洲国产高清在线一区二区三| 国产精品av视频在线免费观看| 欧美在线一区亚洲| 亚洲av成人精品一区久久| 久久欧美精品欧美久久欧美| 国产黄片视频在线免费观看| 真实男女啪啪啪动态图| 国产极品天堂在线| 99riav亚洲国产免费| 99精品在免费线老司机午夜| 国产真实伦视频高清在线观看| 日韩强制内射视频| 蜜桃久久精品国产亚洲av| 寂寞人妻少妇视频99o| 黄色视频,在线免费观看| 久久精品国产鲁丝片午夜精品| 日韩,欧美,国产一区二区三区 | 亚洲一区二区三区色噜噜| 国产一区二区亚洲精品在线观看| 国产人妻一区二区三区在| 在线观看66精品国产| 91久久精品国产一区二区三区| 少妇人妻精品综合一区二区 | 亚洲电影在线观看av| 免费观看人在逋| 99久久精品一区二区三区| 最新中文字幕久久久久| 非洲黑人性xxxx精品又粗又长| 成人永久免费在线观看视频| 一区福利在线观看| 午夜激情欧美在线| 不卡一级毛片| 免费搜索国产男女视频| 看片在线看免费视频| 免费电影在线观看免费观看| 色视频www国产| 国产午夜福利久久久久久| 国产视频首页在线观看| 精品人妻一区二区三区麻豆| 国产真实伦视频高清在线观看| 舔av片在线| 最近最新中文字幕大全电影3| 国产亚洲精品久久久久久毛片| 国产一区亚洲一区在线观看| 国产一级毛片在线| 12—13女人毛片做爰片一| 亚洲国产精品成人综合色| 久久草成人影院| 12—13女人毛片做爰片一| 69av精品久久久久久| 国产午夜精品一二区理论片| 日韩欧美一区二区三区在线观看| videossex国产| av在线亚洲专区| 高清日韩中文字幕在线| 久久久国产成人精品二区| 国产熟女欧美一区二区| 18禁在线播放成人免费| 久久久久久久亚洲中文字幕| 黄片wwwwww| 亚洲国产精品成人久久小说 | 久久国产乱子免费精品| av卡一久久| 国产成人一区二区在线| 哪里可以看免费的av片| 在线播放国产精品三级| 日本五十路高清| 国产老妇伦熟女老妇高清| 国产高清不卡午夜福利| 一夜夜www| av专区在线播放| 搡女人真爽免费视频火全软件| 欧美xxxx黑人xx丫x性爽| 久久亚洲国产成人精品v| 国产在视频线在精品| 国产 一区精品| 麻豆精品久久久久久蜜桃| 身体一侧抽搐| 欧美zozozo另类| 国产成人一区二区在线| 中文字幕熟女人妻在线| 国产色婷婷99| 亚洲自偷自拍三级| 天堂影院成人在线观看| 欧美日韩精品成人综合77777| 六月丁香七月| 国产免费男女视频| 亚洲国产欧美人成| 日本一本二区三区精品| 男女下面进入的视频免费午夜| 男插女下体视频免费在线播放| 可以在线观看毛片的网站| 国产精品一及| 亚洲国产精品国产精品| 美女大奶头视频| 在线免费观看不下载黄p国产| 日日摸夜夜添夜夜添av毛片| 成年女人永久免费观看视频| 国产在线精品亚洲第一网站| 日韩中字成人| 女人被狂操c到高潮| 久久热精品热| 在线免费十八禁| av在线蜜桃| 春色校园在线视频观看| 在线观看66精品国产| 91久久精品国产一区二区成人| 亚洲天堂国产精品一区在线| 国内揄拍国产精品人妻在线| 久久99热6这里只有精品| 国产三级中文精品| 国产精品美女特级片免费视频播放器| 91狼人影院| 日韩强制内射视频| 国产精品电影一区二区三区| 亚州av有码| 欧美最黄视频在线播放免费| 国产成人精品婷婷| 免费观看精品视频网站| 免费av毛片视频| 国产乱人偷精品视频| avwww免费| 极品教师在线视频| 美女大奶头视频| 精品无人区乱码1区二区| 国产高潮美女av| 一本久久精品| 亚洲av二区三区四区| 嫩草影院新地址| 色5月婷婷丁香| a级毛片a级免费在线| 国产欧美日韩精品一区二区| 国产亚洲91精品色在线| 最近最新中文字幕大全电影3| .国产精品久久| 欧美成人a在线观看| 欧美+日韩+精品| 深爱激情五月婷婷| 麻豆一二三区av精品| 国产精品,欧美在线| 成年av动漫网址| 久久国产乱子免费精品| 一级黄片播放器| 亚洲精品乱码久久久久久按摩| 天美传媒精品一区二区| 欧美最黄视频在线播放免费| 99热只有精品国产| 久久精品国产亚洲av天美| 久久精品久久久久久噜噜老黄 |