• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      OPTIMAL EXISTENCE OF SYMMETRIC POSITIVE SOLUTIONS FOR A FOURTH-ORDER SINGULAR BOUNDARY VALUE PROBLEM

      2016-12-07 08:59:13ZHANGYanhong
      數(shù)學雜志 2016年6期
      關鍵詞:福州大學艷紅四階

      ZHANG Yan-hong

      (School of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China)

      OPTIMAL EXISTENCE OF SYMMETRIC POSITIVE SOLUTIONS FOR A FOURTH-ORDER SINGULAR BOUNDARY VALUE PROBLEM

      ZHANG Yan-hong

      (School of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China)

      In this paper,we study a fourth-order singular boundary value problem.Using the Leggett-Williams fixed point theorem together with constructing a special cone,we establish optimal existence of symmetric positive solutions for a fourth-order singular boundary value problem under certain conditions,which generalizes optimal existence of symmetric positive solutions to singular boundary value problem.

      symmetric positive solutions;boundary value problem;cone

      2010 MR Subject Classification:34B15;34B25

      Document code:AArticle ID:0255-7797(2016)06-1209-06

      1 Introduction

      We consider existence of symmetric positive solutions for a fourth-order singular boundary value problem:

      which describes the deformations of an elastic beam with both endpoints fixed,where f: (0,1)×(0,+∞)→(0,+∞)is conditions and f(t,x)=f(1-t,x)for each(0,1)×(0,+∞). f(t,x(t))may be singular at t=0 and/or t=1.

      Here symmetric positive solutions for a fourth-order singular boundary value problem (1)satisfying x(t)=x(1-t)and x(t)>0,t∈(0,1).

      Boundary value problems arise in a variety of different areas of applied mathematics and physics(see[1,2]and the references therein).Recently many authors studied the existence of positive solutions for four-order singular boundary value problems for example [3-13]and the references therein.Most of these results are obtained via transforming the four-order boundary value problems into a second-order boundary value problems,and thenapplying the Leray-Schauder continuation method,the topologial degree theory,the fixed point theorems on cones,the critical point theory,or the lower and upper solution method. However results about the existence of symmetric positive solutions to singular boundary value problem(1)are few.Motivated by the results in[9,11]we try to establish optimal existence of symmetric positive solutions to problem(1)by applying Leggett-Williams fixed point theorem.

      2 Preliminary

      We consider problem(1)in a Banach space C[0,1]equipped with the norm‖x‖=|x(t)|.A function x(t)∈C[0,1]is said to be a concave function if x(τt1+(1-τ)t2)≥ τx(t1)+(1-τ)x(t2)for all t1,t2,τ∈[0,1].We denote

      Let K be a cone of C[0,1]and m,n be constants,0<m<n.Define

      Let G(t,s)be the Green's function of the corresponding boundary value problem(1),i.e.,

      After a simple calculation,we get

      (IV)(see[9])q(t)G(τ(s),s)≤G(t,s)≤G(τ(s),s),q(t)=min{t2,(1-t)2},t∈[0,1].

      Lemma 2.1(see[14])Let A:K→K be a completely continuous operator,u be a nonnegative continuous concave function on K,and satisfies u(x)≤‖x‖for all x∈In addition,assume that there exist 0<d<m<n≤r satisfy the following conditions:

      (iii)u(Ax)>m for x∈K(u,m,r)and‖Ax‖>n; then A has at least three fixed points x1,x2,x3onsatisfy‖x1‖<d,m<u(x2),and‖x3‖>d for u(x3)<m.

      3 Main Results

      Theorem 3.1 Suppose the following conditions hold:

      (H1)f∈C((0,1)×[0,+∞),[0,+∞)),f(t,x)≤g(t)h(x),g∈C((0,1),[0,+∞)),h∈C([0,+∞),[0,+∞));

      then problem(1)has triple symmetric positive solutions x1,x2,x3satisfy‖x1‖<d,m<u(x2),and‖x3‖>d for u(x3)<m.

      Proof Denote K={x∈C+[0,1]:x(t)is convex function and x(t)=x(1-t),t∈[0,1]},then K is a cone of C+[0,1].

      Define operator A:K→K by Ax(t)=G(t,s)f(s,x(s))ds.Obviously Ax(t)≥ 0,(Ax)''(t)<0 for 0<t<1,and for x∈K,

      consequently Ax∈K,that is A:K→K.By Arzela-Ascoli theorem,we can prove A:K→K is completely continuous.

      From(H1)and 3)in(H3),for any x∈we know that

      Thus condition(i)of Lemma 2.1 holds.

      Next from(H1)and 1)in(H3),for any x∈we have

      Finally we prove u(Ax)>m for x∈K(u,m,r)and‖Ax‖>4m.

      From 2)in(H3),for x∈K(u,m,r)and‖Ax‖>4m,we know that

      Therefore condition(iii)of Lemma 2.1 holds too.The proof is completed.

      RemarkTheorem 3.1 also holds when nonlinearity f(t,x(t))is nonsingular at t=0 and t=1.

      4 Example

      Example 4.1The following boundary value problem:

      has triple symmetric positive solutions,where

      Proof Let f(t,x)=h(x)g(t),g(t)=Obviously g(t)is signular at t=0 and t=1.h(x)∈C[0,+∞).So(H1)holds.

      Since

      then(H2)holds.

      2)In(H3)is immediate,since we may take m=2 then

      3)In(H3)is immediate,since we may take r=100>2m=4 then

      Thus from Theorem 3.1,we know that problen(2)has triple symmetric positive solutions x1,x2,x3satisfy‖x1‖<2<u(x2),and‖x3‖>for u(x3)<2.

      References

      [1]Davis J M,Erbe L H,Henderson J.Multiplicity of positive solutions for higher order Sturm-Liouville problems[J].Rocky Mountain J.Math.,2001,31:169-184.

      [2]Liu L S,Sun Y.Positive solutions of singular boundary value problems for differential equations[J]. Acta Math.Sci.Ser.A.Chin.Ed.,2005,25(4):554-563.

      [3]Tang Rongrong.A class of fourth-order nonlinear boundary layer solution of singular perturbation boundary value equation[J].J.Math.,2007,27(4):385-390.

      [4]Alves E,Ma T F,Pelicer M L.Monotone positive solutions for a fourth order equation with nonlinear boundary conditions[J].Nonl.Anal.TMA,2009,71:3834-3841.

      [5]Graef J R,Yang B.Positive solutions of a nonlinear fourth order boundary value problem[J].Comm. Appl.Nonl.Anal.,2007,14(1):61-73.

      [6]Ma H L.Symmetric positive solutions for nonlocal boundary value problems of fourth order[J].Nonl. Anal.,2008,68:645-651.

      [7]Liu B.Positive solutions of fourth-order two-point boundary value problems[J].Appl.Math.Comput.,2004,148:407-420.

      [8]Ma R,Wang H.On the existence of positive solutions of fourth-order ordinary differential equations[J].Appl.Anal.,1995,59:225-231.

      [9]Pei M,Chang S K.Monotone iterative technique and symmetric positive solutions for a fourth-order boundary value problem[J].Math.Comput.Model.,2010,51:1260-1267.

      [10]Yang B.Positive solutions for the beam equation under certain boundary conditions,electron[J].J. Diff.Equ.,2005,78:1-8.

      [11]Yao Q.Positive solutions for eigenvalue problems of fourth-order elastic beam equations[J].Appl. Math.Lett.,2004,17:237-243.

      [12]Zhang X P.Existence and iteration of monotone positive solutions for an elastic beam with a corner[J].Nonl.Anal.RWA,2009,10:2097-2103.

      [13]Jankowski T,Jankowski R.Multiple solutions of boundary-value problems for fourth-order differential equations with deviating arguments[J].J.Optim.The.Appl.,2010,146:105-115.

      [14]Guo D J,Lakashmikantham V.Nonlinear problems in abstract cones[M].New York:Academic Press,1988.

      一類四階奇異邊值問題對稱正解的最優(yōu)存在性

      張艷紅

      (福州大學數(shù)學與計算機科學學院,福建福州350108)

      本文研究了一類四階奇異邊值問題.通過建立一個特定的錐,利用Leggett-Williams不動點定理,從而在一定的條件下得到一類四階奇異邊值問題對稱正解的最優(yōu)存在性,推廣了奇異邊值問題對稱正解的最優(yōu)存在性的結(jié)果.

      對稱正解;邊值問題;錐

      MR(2010)主題分類號:34B15;34B25O175

      ?date:2014-10-14Accepted date:2015-07-06

      Supported by the Science and Technology Development Fund of Fuzhou University(2014-XQ-30).

      Biography:Zhang Yanhong(1976-),female,born at Fuzhou,Fujian,associate professor,major in differential equation.

      猜你喜歡
      福州大學艷紅四階
      四階p-廣義Benney-Luke方程的初值問題
      難忘的一天
      馮艷紅作品
      大眾文藝(2021年20期)2021-11-10 06:04:54
      福州大學馬克思主義學院
      福州大學繼續(xù)教育學院
      A Note on Stage Structure Predator-Prey Model with Prey Refuge
      福州大學喜迎建校60周年
      帶參數(shù)的四階邊值問題正解的存在性
      四階累積量譜線增強方法的改進仿真研究
      基于四階累積量和簡化粒子群的盲分離算法
      大连市| 镇坪县| 无锡市| 南丰县| 抚州市| 大名县| 岐山县| 三原县| 县级市| 靖远县| 曲周县| 望江县| 年辖:市辖区| 电白县| 广水市| 崇仁县| 微博| 景谷| 双柏县| 林州市| 靖边县| 德兴市| 铁岭县| 平昌县| 涞源县| 民县| 全南县| 曲松县| 山东| 铜鼓县| 贡山| 和平县| 古丈县| 鹰潭市| 桐柏县| 昆山市| 通许县| 神池县| 石家庄市| 大洼县| 民县|