李彥生,金 劍,王光華,劉曉冰
(中國科學(xué)院 東北地理與農(nóng)業(yè)生態(tài)研究所 黑土區(qū)農(nóng)業(yè)生態(tài)重點實驗室,黑龍江 哈爾濱 150081)
?
作物防御UV-B輻射傷害的機理
李彥生,金 劍,王光華,劉曉冰
(中國科學(xué)院 東北地理與農(nóng)業(yè)生態(tài)研究所 黑土區(qū)農(nóng)業(yè)生態(tài)重點實驗室,黑龍江 哈爾濱 150081)
自上世紀80年代中期發(fā)現(xiàn)南極“臭氧洞”及平流臭氧層耗竭現(xiàn)象以來,有關(guān)UV-B影響生物和生態(tài)系統(tǒng)的研究逐漸成為氣候變化研究關(guān)注的熱點之一。過去40年里,針對UV-B增加對作物的潛在影響,研究者們展開了大量深入細致的研究。研究發(fā)現(xiàn), 自然和增強的UV-B降低作物產(chǎn)量的幅度一般不會超過20%,這種有限的產(chǎn)量損失反映了作物自身特有的防御UV-B損傷的機制。本文從植(作)物對UV-B輻射增強表現(xiàn)的4個層次,即植物形態(tài)、生理、生物化學(xué)和分子水平變化的光形態(tài)建成和脅迫響應(yīng),對作物防御UV-B輻射傷害的可能機制予以綜述,并提出了今后需要注重研究的幾個方向,旨為抗UV-B育種和農(nóng)藝措施制定提供具有現(xiàn)實價值的信息和理論依據(jù)。參117。
UV-B輻射;植物形態(tài);UV-B吸收化合物;抗氧化防御系統(tǒng);基因表達
地球表面紫外線(UV-B)(280 nm~315 nm)的增加是全球氣候變化研究關(guān)注的一個重要熱點[1-2]。大量研究表明:UV-B的增加對水生和陸地生物均有不良作用,并影響生態(tài)系統(tǒng)間的互作[3-7]。
GISS模型表明:相對于1979年-1992年時期,北半球2010年-2020年春季UV-B將增加14%,南半球增加40%[8]。McKenzie等[9]預(yù)測,隨著蒙特利爾議定書成功的實施,大氣平流層臭氧層將逐漸得到恢復(fù),但是,即使到本世紀中葉也很難恢復(fù)到上世紀80年代的水平。而且,自然和人類活動引起的N2O釋放仍將嚴重威脅臭氧層的穩(wěn)定性[10]。此外,全球農(nóng)業(yè)的集約化,包括作物種植密度的提高、施肥量的增加將強烈影響作物冠層和群體接受的UV-B水平,由此影響作物的生長發(fā)育[11-12]。
自上世紀80年代中期發(fā)現(xiàn)南極“臭氧洞”及平流臭氧層耗竭現(xiàn)象以來,有關(guān)UV-B影響生物和生態(tài)系統(tǒng)的研究逐漸成為熱點[1,6]。過去40年里,針對UV-B長期增加對作物的潛在影響,研究者們展開了大量深入細致的研究。多數(shù)結(jié)果表明,UV-B輻射的增強降低光合作用,抑制作物蒸騰,損傷葉綠體功能,障礙花和花粉發(fā)育,減少蛋白質(zhì)合成,引起核酸和脂質(zhì)損傷,抑制關(guān)鍵生理過程及降低作物生物量和產(chǎn)量[13-19]。
研究發(fā)現(xiàn),自然和增強的UV-B降低作物產(chǎn)量的幅度一般不會超過20%[1]。這種有限的產(chǎn)量損失反映了作物自身特有的防御UV-B損傷的機制,包括(1)UV-B吸收物質(zhì)積累[20-21],(2)酶及非酶抗氧化防御[22-23],(3)DNA修復(fù)酶的活化[24]。
有關(guān)UV-B輻射對植物水分代謝、呼吸作用和礦質(zhì)營養(yǎng)吸收等方面的影響已有相關(guān)專題評述[13-14],本文僅從植物對UV-B輻射增強表現(xiàn)的光形態(tài)建成和脅迫響應(yīng)兩大方面4個層次,即植物形態(tài)、生理、生物化學(xué)和分子水平變化,對作物防御UV-B輻射傷害的可能機制予以綜述。
已有研究表明,光形態(tài)建成反應(yīng)引起植物結(jié)構(gòu)和化學(xué)組成的變化,從而改變UV輻射穿透植物的過程,是植物適應(yīng)周邊輻射變化的一種響應(yīng)[1]。其中,葉片表皮對UV輻射的衰減作用是多數(shù)植物避免UV-B危害的主要機制。UV-B增強以及自然UV輻射降低了玉米、高粱等作物品種的葉面積和葉片厚度(比葉重)[25-26]。Qi等[27]發(fā)現(xiàn)葉片厚度與葉片UV-B吸收物質(zhì)的總量呈顯著正相關(guān)關(guān)系,這些物質(zhì)主要出現(xiàn)在葉片的上表皮和下表皮中,但上表皮是UV-B衰減的主要場所。
葉片表皮層類黃酮的積累降低UV-B輻射表皮透射比[28],一般而言,透射比高的植物不耐UV-B輻射。Feng等[29]指出大豆品種晉豆耐UV-B增強的部分原因是葉片類黃酮含量高、葉片小和角質(zhì)層厚。大麥類黃酮突變體對UV-B輻射的敏感性降低,盡管其葉片的類黃酮含量比突變后每株僅僅高出7%[30]。角質(zhì)層的蠟質(zhì)和木質(zhì)素同樣起著吸收UV輻射保護葉片的作用[31]。由于蠟質(zhì)層是響應(yīng)UV-B輻射的重要表皮特征,耐性強的類型在UV-B輻射時蠟質(zhì)含量增加,而敏感型品種蠟質(zhì)含量減少[5]。
許多研究指出,葉片中的苯丙烷類化合物,主要包括類黃酮、花色素苷和相關(guān)的酚類,是葉片葉肉組織防御UV-B損傷的重要物質(zhì)[20,32]。UV-B增強的條件下,植物對UV-B輻射最一致的響應(yīng)是UV-B吸收物質(zhì)含量的增加。UV-B吸收物質(zhì)在葉片的表皮毛狀體和表皮細胞中積累最多[22]。這些物質(zhì)具有有效的自由基凈化能力,可以直接增強植物對UV-B輻射的光保護功能[23]。
對UV-B具有相當耐性的擬南芥突變體,主要表現(xiàn)就是類黃酮及其它酚類化合物的積累[33]。類黃酮不僅是UV-B的過濾物質(zhì),也是抗氧化物質(zhì),它可以通過吸收上表皮組織的UV-B輻射防止敏感器官受到傷害,而缺少這些物質(zhì)會導(dǎo)致嚴重的氧化脅迫[34]。當受到UV-B輻射時,小麥、大豆葉片的類黃酮總量增加[20,35]。酚類化合物含量與UV-B吸收能力呈顯著相關(guān)性,較高UV-B條件下,植物品種間產(chǎn)生這些化合物的能力不同[36]。
然而,Kreft等[37]表明,UV-B輻射增強降低蕎麥蕓香苷含量,而蕓香苷是一種具有抗氧化特性的類黃酮物質(zhì)。Yao等[38]研究發(fā)現(xiàn)UV-B對蕎麥葉片蕓香苷含量的影響,取決于葉片的位置和UV-B輻射的強度。但是無論UV-B強度高低,植株上部葉片的蕓香苷含量均高于下部葉片,因為上部葉片比下部葉片受到更多的輻射。
研究發(fā)現(xiàn),黃瓜、小麥和大豆品種間類黃酮化合物組成和含量存在差異[4,35,39]。Zu等[40]利用UV-B燈輻射分析了20個大豆品種的表現(xiàn),發(fā)現(xiàn)7個品種類黃酮總量增加,5個品種含量降低,8個品種含量沒有變化。由于沒有考慮每一種類黃酮化合物的含量水平,UV-B輻射很可能在不增加類黃酮總量的同時影響著某種特定類黃酮化合物的合成。例如Warren等[41]報道了UV-B輻射后某些類黃酮化合物是選擇性合成的。UV-B增強后,植物葉片表皮細胞、蠟質(zhì)層和葉毛中不同類黃酮化合物含量和比例發(fā)生明顯變化,尤其是具有鄰位羥基B環(huán)的類黃酮物質(zhì),如櫟皮黃酮葡萄糖苷、藤黃菌素和綠原酸等[42]。
Winter和 Rostas[43]證實,兩種櫟皮類黃酮物質(zhì)含量在UV-B增強條件下顯著增加,進一步研究發(fā)現(xiàn)UV-B增強有利于櫟皮黃酮葡萄糖苷的積累,而不利于花色素葡萄糖苷的積累。Gould等[44]報道,離體純化的花色素苷提取液具有極強的抗氧化物質(zhì)特性,并能凈化活細胞中的活性氧,提出花色素苷是唯一的提高凈化H2O2速率的類黃酮類物質(zhì),其防御UV輻射的機制可能包括對UV的吸收或者凈化活性氧,也可能是兩者并存。
然而,由于有關(guān)類黃酮類化合物在植物體內(nèi)的功能方面的知識相當有限,我們對苯丙烷類化合物水平自然差異的功能性意義理解不足,導(dǎo)致大田條件下該種物質(zhì)積累總量和其特種化合物積累動態(tài)之間的關(guān)系尚未明確,且植物間或品種間吸收UV化合物含量存在差異,是否呈現(xiàn)出顯著的生理代謝意義迄今尚不清晰。因此,有必要開展吸收UV-B化合物的組成、總體含量及其在葉片分布的相關(guān)研究。
UV-B促進脂質(zhì)氧化作用產(chǎn)物的形成,破壞自然脂質(zhì)可溶性抗氧化物,誘導(dǎo)編碼抗氧化物基因的表達[13]。研究證實,植物組織和細胞通過多種抗氧化物酶的上調(diào)來保護源于UV-B氧化脅迫的傷害[48]。組成抗氧化物防御系統(tǒng)的酶主要有超氧化物歧化酶(SOD; EC 1.15.1.1),過氧化氫酶(CAT; EC1.11.1.6),愈傷木酚過氧化物酶(POD;EC1.11.1.7),抗壞血酸過氧化物酶(APX; EC1.11.1.11),谷胱甘肽還原酶(GR; EC1.6.4.2)和脫氫抗壞血酸還原酶 (DHAR; EC1.8.5.1)[49]。
SOD快速將自由基氧轉(zhuǎn)化為H2O2,并繼而由CAT轉(zhuǎn)化為水和氧氣。SOD對UV-B 輻射響應(yīng)的報道結(jié)果并不一致。例如,UV-B輻射下,菜豆、小麥、擬南芥和水稻的SOD活性提高[3,50],大麥和大豆沒有變化[51],而向日葵子葉的SOD活性降低[52]。
CAT是過氧化物酶體的主要組成,對底物親和力較低。H2O2分解替代途徑是通過細胞中的APX來催化H2O2。APX 是專一的過氧化物酶,其以氧化抗壞血酸成單脫氫抗壞血酸為代價催化H2O2分解[53]。APX同工酶至少分布在4個亞細胞結(jié)構(gòu)中,即基質(zhì)、類囊體膜、微體和細胞溶質(zhì)[54]。通過系列反應(yīng)去除H2O2的過程稱之為抗壞血酸-谷胱甘肽循環(huán)。
有研究報道,UV-B輻射時,擬南芥幼苗合成抗氧化物的酶包括POD、APX 和 SOD[55]。Liu 和 McClure[56]發(fā)現(xiàn)為適應(yīng)由于UV-B增強而導(dǎo)致的氧化脅迫,POD活性會增高,而SOD的活性變化則因UV-B輻射強度不同而具有差異。
雖然植物受UV-B輻射后是如何產(chǎn)生活性氧的原因尚不清楚,但至少NADPH 氧化酶參與了此過程[55]。直接證據(jù)是UV-B輻射后3個菜豆品種的葉片、莖稈和根系均誘導(dǎo)產(chǎn)生NADP-蘋果酸酶[57]。而NADP-蘋果酸酶可能通過為木質(zhì)素和類黃酮的生物合成提供NADPH, 在防御UV-B輻射反應(yīng)中起到主動作用?;蛟S僅測定酶的總活性不能完全反映UV誘導(dǎo)的結(jié)構(gòu)專一變化或者酶的其他組成的改變。例如,UV-B能夠有區(qū)別的調(diào)節(jié)酶的同工酶,包括POD、CAT、SOD和 APX。因此,有必要深入研究解決這些問題。
Logemann等[58]發(fā)現(xiàn)UV誘導(dǎo)產(chǎn)生的酶為莽草酸途徑提供碳骨架,而這些酶在UV-B脅迫下以ATP的形式為合成有利于細胞發(fā)揮正常功能的物質(zhì)提供能量[59]。同時進行UV-B+Cd 處理會導(dǎo)致菠菜丙二醛(MDA)積累增加,表明處理導(dǎo)致細胞質(zhì)膜發(fā)生氧化損害和功能的喪失[23]。Wang等[60]指出,MDA 含量的增加是植物響應(yīng)不同脅迫包括UV-B脅迫的敏感指標之一。
層次聚類分析結(jié)果表明,SOD活性變化是大豆品種對UV-B增強最為敏感的生理指標,其他指標依次是膜滲透性、類黃酮含量、MDA含量、葉綠素a和葉綠素b含量[40]。Zu等[61]進一步研究認為,UV-B誘導(dǎo)的氧化脅迫主要通過間接作用影響植物體,如抑制抗氧化防御系統(tǒng)功能的發(fā)揮或激活可以產(chǎn)生活性氧的酶(如NADPH 氧化酶)。
雖然,Yannarelli等[62]證明HO 活性的增加與蛋白質(zhì)表達和轉(zhuǎn)錄水平的增強有關(guān)。多數(shù)抗氧化物研究中相關(guān)抗氧化酶反應(yīng)的酶活性研究結(jié)果和相應(yīng)mRNA水平上的研究結(jié)果并不一致,而且植物如何響應(yīng)、適應(yīng)環(huán)境變化的機制尚不清楚[16,50]。
非酶反應(yīng)的防御系統(tǒng)主要是低分子量的抗氧化物,包括脯氨酸、抗壞血酸、谷胱甘肽、α-生育酚和類胡羅卜素。脯氨酸是公認的滲透脅迫保護物質(zhì),研究發(fā)現(xiàn)它也有解毒活性氧的功能[63],而且大豆葉片脯氨酸積累的增加與UV-B誘導(dǎo)的氧化脅迫及其Ni的解毒作用相聯(lián)[64]??箟难猁}或谷胱甘肽,作為過氧化物酶反應(yīng)的電子受體,也起到類似類黃酮的作用[65]??箟难?AsA)是主要的抗氧化物,其直接與羥基自由基、超氧化物和單價氧反應(yīng),并作為最有影響的抗氧化物質(zhì)還原α-生育酚的氧化形態(tài)。已經(jīng)觀察到有些植物對UV-B的響應(yīng)是AsA總量增加[3,66],而UV-B對玉米幼苗的 AsA 含量沒有影響[67]。質(zhì)外體中的AsA的一個主要功能是氧化還原緩沖作用,可以保護質(zhì)膜免于氧化損傷,并觸發(fā)分子響應(yīng)機制[68]。谷胱甘肽是含硫化合物,其在植物防御氧化傷害中起著一定作用,Wefers 和 Sies[69]指出AsA和谷胱甘肽可能參與幾種保護機制,氧化/還原形態(tài)的AsA和谷胱甘肽通過轉(zhuǎn)運子在葉綠體膜上運轉(zhuǎn),而轉(zhuǎn)運子的活性會受到脅迫而改變。
研究表明,UV-B輻射誘導(dǎo)生物膜、多不飽和脂肪酸和磷脂脂質(zhì)體發(fā)生脂質(zhì)氧化現(xiàn)象非常明顯[70]。已有大量數(shù)據(jù)證明UV輻射改變膜結(jié)構(gòu)和功能的途徑,包括膜透性的變化、K-ATPase和過氧化脂質(zhì)的抑制以及膜抗性的降低等[35]。有關(guān)UV輻射促進膜變化的生理效應(yīng)尚不確定,沒有證據(jù)表明UV輻射對膜的傷害與細胞死亡有關(guān),因為UV輻射引起膜的變化可能在誘導(dǎo)花色素苷合成中起作用。過氧化氫在生物膜上擴散會導(dǎo)致細胞傷害,而UV-B處理后脂質(zhì)過氧化作用和H2O2氧化作用增強[71-72]。
因此,植物對光氧化脅迫的適應(yīng)是多因素、多因子參與的防御過程?;钚匝跣纬珊蛢艋纳钊胩接懹兄诶斫庵参锓烙^程的各種關(guān)系。鑒于越來越多的研究表明活性氧參與UV-B輻射導(dǎo)致的傷害,明確活性氧去除機制對UV研究顯得相當重要[45]。但是,有關(guān)自然UV-B輻射和去除UV-B輻射狀態(tài)下,UV-B輻射對酶活性和抗氧化物質(zhì)的影響研究并不多見[18,50]。
眾所周知,植物激素在控制細胞分裂、伸長,調(diào)節(jié)生長發(fā)育和形態(tài)建成以及產(chǎn)量形成中起著關(guān)鍵作用[73]。已經(jīng)確認高等植物有5大類植物激素,此外茉莉酸(JA)、水楊酸(SA)、油菜素內(nèi)酯(BR)和多胺(PA)也被列入植物激素類[74]。
植物激素的合成與作用受到環(huán)境因子的調(diào)控,實際上,激素是植物對逆境響應(yīng)基因表達的初始因子[75]。研究發(fā)現(xiàn),UV-B輻射強度的微量增加就會對IAA、細胞分裂素和 ABA等內(nèi)源激素的合成、轉(zhuǎn)運和分配產(chǎn)生顯著影響,其結(jié)果是細胞伸長受到限制、氣孔關(guān)閉及光合速率下降。因為UV-B輻射增強導(dǎo)致的光氧化自由基傷害會降低IAA和GA含量,卻又增強了IAA氧化酶的活性,從而進一步加深了來自于自由基的傷害[76-77]。
株高的降低是評估UV-B輻射敏感度的常用指標,UV-B 輻射顯著矮化大豆,主要是節(jié)間長度變短而不是節(jié)數(shù)的減少[78]。向日葵幼苗表現(xiàn)出類似現(xiàn)象,Ros等認為是光氧化抑制內(nèi)源激素IAA的合成,進而影響細胞壁的伸展[79]。UV-B 輻射可能直接影響細胞分裂和內(nèi)在的生長特性,Caldwell[80]發(fā)現(xiàn)促進植物軸向生長而抑制伸長的乙烯在UV-B輻射條件下含量增多。但是,具體原因尚不清楚。
Dayan等[81]認為GA 信號是煙草節(jié)間伸長、形成層活性和纖維分化的基礎(chǔ)。光敏色素調(diào)節(jié)著植物發(fā)芽和幼苗建成中的GA合成,但是,在UV光譜區(qū),Pr和Pfr的吸收光譜沒有區(qū)別,因此該類光感器不參與大豆的節(jié)間伸長。研究發(fā)現(xiàn),突變體水稻品種的上部節(jié)間的GA含量明顯高,說明GA參與節(jié)間的伸長[82-83]。UV-B去除以及外援噴施GA3莧菜幼苗同樣有類似現(xiàn)象,包括下胚軸長度增加[84]。因此,UV-B輻射引起的節(jié)間長度伸長很可能是受到內(nèi)源激素變化的調(diào)節(jié),但是引起遺傳機制和生物化學(xué)合成變化的過程尚不明了。
Peng和 Zhou[85]研究了UV-B增強條件下,稀土元素鑭對大豆幼苗內(nèi)源激素含量的影響,發(fā)現(xiàn)La (III) + UV-B 處理的植株IAA 和 GA 含量高于單純UV-B處理,而IAA活性和GA 含量低于對照。ABA的一個功能是調(diào)節(jié)氣孔保衛(wèi)細胞的活性。一般而言,脅迫狀態(tài)下,植株組織ABA的積累可以降低氣孔傳導(dǎo)、引起氣孔關(guān)閉,抑制光合作用。已有研究表明,UV-B輻射導(dǎo)致氣孔關(guān)閉并增加氣孔阻力[86],其原因是保衛(wèi)細胞的K+溢出以及氣孔調(diào)節(jié)的激素ABA的變化[87]。ABA 誘導(dǎo)氣孔的關(guān)閉需要H2O2以及NO的參與,而UV-B輻射提高了葉綠體膜的透性,導(dǎo)致膨壓喪失,解除ABA合成的限制作用從而出現(xiàn)ABA的積累[88]。
SA被認為是重要的信號分子,其在脅迫狀態(tài)下調(diào)節(jié)許多生理過程,在改善非生物脅迫對作物的傷害中起著重要作用[89]。Belkhadi等[90]發(fā)現(xiàn)浸泡SA 的幼苗避免了葉綠素的破壞,葉面噴施SA同樣增加色素的含量[91]。研究表明,UV輻射狀態(tài)下,植物大量積累SA,并直接為各種抗氧化反應(yīng)提供信號[89]。已有報道表明,多種脅迫條件下SA 能夠誘導(dǎo)抗氧化物活性[74,92],Choudhury 和 Panda[93]觀察到SA處理導(dǎo)致植株 CAT,POD和 SOD 活性降低。
Li等[94]發(fā)現(xiàn) SA能夠緩解UV-B 對大豆幼苗生長、色素含量的不利影響。SA處理可以顯著降低由于UV-B 輻射引起的脂質(zhì)過氧化作用,致使SOD活性提高,POD活性降低,而CAT活性不受影響。由此提出,SA不僅是潛在的抗氧化物而且是保持細胞質(zhì)膜完整性的穩(wěn)定劑,以此提高植物對UV-B脅迫的抗性。Ervin[95]也報道外源SA施用可以緩解UV-B輻射對草地早熟禾的危害程度。Mahdavian等[96]指出SA能夠通過增加葉綠素含量降低UV輻射對植株光合器官的脅迫程度。Stratmann等[97]報道UV輻射影響JA含量,導(dǎo)致基因表達和昆蟲采食交疊。然而,UV-B輻射誘導(dǎo)的植物激素包括SA和JA提高植物抗性的機理尚不清楚。
DNA的吸收光譜使其成為UV-B輻射傷害的主要靶標,即使很低的輻射劑量也能殺死缺少DNA修復(fù)途徑的突變體[98]。研究認為,UV-B輻射的直接傷害源于DNA分子對UV-B輻射的吸收,導(dǎo)致DNA產(chǎn)生二聚體和單聚體的DNA光產(chǎn)物引起細胞傷害,并直接傷害蛋白質(zhì)[99],而間接傷害則是通過自由基和活性氧的產(chǎn)生[100]。Hargreaves等[101]指出DNA并非直接吸收UV-A 輻射,但仍然通過存在的DNA光產(chǎn)物產(chǎn)生次級光反應(yīng)或者是間接的光致敏反應(yīng),引起DNA損傷。DNA損傷測定表明,UV-B輻射引發(fā)較多熒光穿透葉片致使細胞大面積受到干擾[20]。
植物修復(fù)機制包括DNA傷害的切補修復(fù)或嘧啶二聚體作為光裂合酶的修復(fù)(由UV-A和光合有效輻射活化)[102]。DNA吸收UV-B輻射引起光致轉(zhuǎn)換,生成環(huán)丁(烷)嘧啶二聚體(CPDs)和嘧啶二聚體。由于DNA 和 RNA 聚合酶不能辨識這些光生產(chǎn)物,經(jīng)過CPD光裂合酶的消除對于DNA復(fù)制和轉(zhuǎn)錄就十分必要[98]。
現(xiàn)已明確,UV-B增強引起參與苯丙烷類化合物途徑的苯丙烷類化合物基因和酶的上調(diào)[103]。由于查耳酮(花色素)合酶(CHS; EC 2.3.1.74)是催化類黃酮生物合成的第一步反應(yīng),遺傳改進CHS的表達就可能增加防御UV-B輻射傷害的類黃酮類化合物的產(chǎn)生。大豆的CHS是由多基因家族(至少8個)編碼(GmCHS1-GmCHS8)。Shimizu等[104]報道,除GmCHS2外,其它成員的表達都受到白光的誘導(dǎo)并在UV-B作用下增強。研究表明,在現(xiàn)實的UV-B水平下,Rubisco 水平的減少是導(dǎo)致光合速率降低的主要原因[14],而且光合基因表達很可能是下調(diào)的[105]。
Casati和 Walbot[59]發(fā)現(xiàn)UV-B輻射導(dǎo)致幾種與光合有關(guān)的玉米基因表達減弱,而抗氧化物相關(guān)的基因表達增強。研究同樣發(fā)現(xiàn)UV-B增強了參與脂肪酸代謝和氧脂類生物合成的基因表達[106]。利用微芯片技術(shù)已經(jīng)分別鑒定出玉米和擬南芥中100多個響應(yīng)基因[107]。Yannarelli等[62]表明HO mRNA 上調(diào)方式與UV-B響應(yīng)的其他基因類似。但是,UV-B輻射活化實際信號轉(zhuǎn)導(dǎo)的途徑并不十分清楚[97]。
早期研究表明,植物MYB轉(zhuǎn)錄因子調(diào)節(jié)植物花色素苷和櫟鞣紅生物合成,剛毛的分化,決定表皮細胞的形狀和GA-基因的活化[108-109]。Shimizu[104]分離鑒定了GmMYB29 基因亞家族的基因表達,發(fā)現(xiàn)其對UV-B輻射呈現(xiàn)出顯著的上調(diào)特征。GmMZB29 基因家族至少由4個緊密相關(guān)的基因組成,可以分成2組,A組基因表達在開始UV-B輻射兩個小時后達到高峰,且GmCUS mRNA積累保持增加。
有研究發(fā)現(xiàn),在UV-B處理之前噴施抗氧化物質(zhì)能夠阻礙與病原菌有關(guān)基因的轉(zhuǎn)錄增加并降低光合基因轉(zhuǎn)錄[110]。說明對UV-B輻射響應(yīng)而言,活性氧參與導(dǎo)致轉(zhuǎn)錄水平變化的途徑。為評估活性氧誘導(dǎo)HO-1轉(zhuǎn)錄水平中的作用,Yannarelli等[16]探討了AsA 處理對UV-B影響的作用方式,與活性氧調(diào)節(jié)HO-1基因表達對UV-B響應(yīng)一致,AsA處理干擾了轉(zhuǎn)錄的增加。
顯然,測定高等植物的DNA傷害,分析DNA傷害修復(fù)與生產(chǎn)力的關(guān)系,對評估UV-B增強的影響相當重要。但植物對UV-B響應(yīng)的分子基礎(chǔ)尚不完全明了,一般認為是受體分子和響應(yīng)信號轉(zhuǎn)導(dǎo)對細胞器的信號感知的結(jié)果,并部分調(diào)節(jié)著基因表達。Xu等[21]并未觀察到蛋白質(zhì)影響信號轉(zhuǎn)導(dǎo),因為多數(shù)參與信號轉(zhuǎn)導(dǎo)的蛋白質(zhì)豐度極低。另外,mRNA 水平的研究并不能解釋最終蛋白質(zhì)的數(shù)量和質(zhì)量變化。mRNA和蛋白質(zhì)水平之間的關(guān)系并不緊密,尤其是對葉綠體基因而言,其通常是受到后轉(zhuǎn)錄水平的控制[111]。此外,許多蛋白質(zhì)經(jīng)翻譯后修飾,諸如,信號肽去除、磷酸化和糖酵解過程,其對蛋白質(zhì)的活性及其亞細胞的局部化至關(guān)重要。因此,mRNA水平變化本身并不足以評估對UV-B的響應(yīng),有必要在蛋白質(zhì)水平研究UV-B的影響。而這方面的研究相對有限,多數(shù)研究集中在單個蛋白質(zhì),諸如PR-1蛋白,GR、抗壞血酸過氧化酶和SOD、NR 和血紅素氧化酶[45,55,62]。所以,有必要從蛋白組角度深入研究UV-B響應(yīng)的分子基礎(chǔ)。
綜上,研究者們從光形態(tài)建成和脅迫響應(yīng)方面探討了作物對UV-B輻射的適應(yīng)或防御機制,但是多數(shù)結(jié)果趨于少數(shù)因素的研究,綜合進行系統(tǒng)評價的研究鮮有報道,而這對未來選育具有抗性作物品種具有積極的意義。
很多植物和作物品種能夠適應(yīng)UV-B輻射的增強。Sullivan等[32]研究了400種植物(品種),指出有2/3對UV-B敏感,1/3表現(xiàn)為較高的耐(抗)性。小麥、玉米、大豆、水稻和高粱對UV-B輻射的響應(yīng)品種間存在明顯差異[26,39,61,112-116]。品種間對UV-B敏感性的差異可能源于對UV-B輻射不同的適應(yīng)或防御機制,為利用遺傳工程培育品種或改進農(nóng)藝措施應(yīng)對UV-B輻射增強降低作物產(chǎn)量的潛在危險奠定了重要基礎(chǔ)。
總體來講,植物具有系列響應(yīng)UV-B的機制來防御、緩解或修復(fù)UV-B傷害,包括DNA修復(fù)、表皮層過濾、酶和非酶反應(yīng)的抗氧化防御以及植物激素的適應(yīng)作用等。然而,這些可能的作用機制在何等程度上起著作用,是否過濾篩選機制及適應(yīng)機制(諸如抗氧化物質(zhì)和內(nèi)源激素)之間是否存在交替作用或互作,尚有待深入研究。當然,剖析這種機制的路徑極具挑戰(zhàn)性。
由此,我們建議今后在測定分析相對傷害指數(shù)、形態(tài)變化、葉片上表皮蠟質(zhì)含量和產(chǎn)量等表觀評價指標基礎(chǔ)上,應(yīng)該系統(tǒng)深入開展耐UV-B的機理的研究,包括:
(1)葉片主要UV-B吸收物質(zhì)及抗氧化物對UV-B輻射的響應(yīng),包括黃酮、酚類化合物抗壞血酸鹽、α-生育酚、脯氨酸、花色素苷和谷胱甘肽等變化。
(2)UV-B輻射對葉片氧化狀態(tài)及主要抗氧化酶活性的影響,包括2-硫代巴比土酸反應(yīng)物(TBARS)、過氧化氫含量、膜滲漏變化、超氧化物歧化酶(SOD)、過氧化氫酶(CAT)、過氧化物酶(POD)、抗壞血酸過氧化物酶(APX)、谷胱甘肽還原酶(GR)和脫氫抗壞血酸還原酶(DHAR)變化。
(3)植物內(nèi)源激素種類及其活性對UV-B輻射的反應(yīng),包括脫落酸(ABA)、細胞分裂素(Cyt)活性、赤霉素(GA)、生長素(IAA)、乙烯、水楊酸(SA)活性變化。
(4)葉片響應(yīng)UV-B輻射的分子基礎(chǔ),包括UV-B去除對葉片DNA 和 RNA 的影響、UV-B增強對葉片DNA 和 RNA 的傷害和葉片蛋白質(zhì)組對UV-B輻射響應(yīng)的分析等。
此外,由于現(xiàn)今的多數(shù)研究是在溫室、植物生長箱或大田條件下,利用包層材料探討較低水平光合有效輻射的UV-B增強對某種植(作)物或品種的影響,由于UV-B和PAR的自然光譜的變化,所處的條件區(qū)別于正常的大田環(huán)境,從而影響傷害與修復(fù)機制的平衡[6]。而從UV-B去除的角度探討作物的響應(yīng)只是近十幾年的事情[117]。實際上,UV-B 去除可以更為現(xiàn)實地評價作物及其品種對現(xiàn)有UV輻射水平的敏感性,為作物適應(yīng)氣候變化提供更有實用價值的信息。然而,大田條件下有關(guān)農(nóng)作物UV-B去除的研究很少。
因此,開展大田條件下UV-B去除的研究,是一個很好的研究途徑,將為植物防御UV-B輻射機理和選擇抗性品種或應(yīng)對措施提供更加現(xiàn)實可靠的數(shù)據(jù)。由此,分析UV-B對作物抗性生理、DNA損傷以及蛋白代謝過程的影響,全面解析UV-B條件下,作物的基因-代謝-生理協(xié)調(diào)變化,揭示防御UV-B傷害的品種間差異的生理生化基礎(chǔ),明確作物抗(耐)UV-B基因型的關(guān)鍵特性和UV-B輻射誘導(dǎo)防御系統(tǒng)表達的機制,將為生物技術(shù)、傳統(tǒng)育種和農(nóng)藝栽培提供極有現(xiàn)實價值的信息,從而為抗UV-B育種和農(nóng)藝措施制定提供深入的理論依據(jù)。
[1] Ballaré C L,Caldwell M M,Flint S D,et al.Effects of solar ultraviolet radiation on terrestrial ecosystems.Patterns,mechanisms,and interactions with climate change[J].Photochemical and Photobiological Sciences,2011,10(2):226-241.
[2] Zhang L,Allen Jr L H,Vaughana M M,et al.Solar ultraviolet radiation exclusion increases soybean internode lengths and plant height[J].Agricultural and Forest Meteorology,2014,184:170-178.
[3] Dai Q,Yan B,Huang S,et al.Response of oxidative stress defense systems in rice (Oryzasativa) leaves with supplemental UV‐B radiation[J].Physiologia Plantarum,1997,101(2):301-308.
[4] 梁 濱,周 青.UV-B輻射對植物類黃酮影響的研究進展[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2007,15(3):191-194.
[5] Kakani V G,Reddy K R,Zhao D,et al.Senescence and hyperspectral reflectance of cotton leaves exposed to ultraviolet‐B radiation and carbon dioxide[J].Physiologia Plantarum,2004,121(2):250-257.
[6] Caldwell M M,Bornman J F,Ballaré C L,et al.Terrestrial ecosystems,increased solar ultraviolet radiation,and interactions with other climate change factors[J].Photochemical and Photobiological Sciences,2007,6(3):252-266.
[7] Rastogi R P,Singh S P,Incharoensakdi A,et al.Ultraviolet radiation-induced generation of reactive oxygen species,DNA damage and induction of UV-absorbing compounds in the cyanobacteriumRivulariasp.HKAR-4[J].South African Journal of Botany,2014,90:163-169.
[8] Taalas P,Kaurola J,Kylling A,et al.The impact of greenhouse gases and halogenated species on future solar UV radiation doses[J].Geophysical Research Letters,2000,27(8):1127-1130.
[9] McKenzie R L,Aucamp P J,Bais A F,et al.Ozone depletion and climate change:impacts on UV radiation[J].Photochemical & Photobiological Sciences,2011,10(2):182-198.
[10] IPCC 2007.Climate change[D].2007:The physical science basis.Agenda,2007,6.
[11] Tevini M.UV-B effects on plants[M].In:Agrawal S B,Agrawal M(eds).Environmental pollution and plant responses.Lewis Publishers,Boca Raton,2000.
[12] Zepp R G,Erickson Iii D J,Paul N D,et al.Effects of solar UV radiation and climate change on biogeochemical cycling:interactions and feedbacks[J].Photochemical & Photobiological Sciences,2011,10:261-279.
[13] 彭 祺,周 青.植物次生代謝響應(yīng)UV-B輻射脅迫的生態(tài)學(xué)意義[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2009,17(3):610-615.
[14] 張君瑋,周 青.UV-B輻射對植物水分代謝的影響[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2009,17(4):829-833.
[15] He J M,She X P,Meng Z N,et al.Reduction of rubisco amount by UV—B radiation is related to increased H2O2content in leaves of mung bean seedlin[J].Journal of Plant Psiology and Molecular Biology,2004,30(3):291-296.
[16] Yannarelli G G,Gallego S M,Tomaro M L.Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons[J].Environmental and Experimental Botany,2006,56(2):174-181.
[17] Feng H,Li S,Xue L,et al.The interactive effects of enhanced UV-B radiation and soil drought on spring wheat[J].South African Journal of Botany,2007,73(3):429-434.
[18] Xu C P,Natarajan S,Sullivan J H.Impact of solar ultraviolet-B radiation on the antioxidant defense system in soybean lines differing in flavonoid contents[J].Environmental and Experimental Botany,2008,63(1-3):39-48.
[19] Fan C X,Hu H Q,Wang L H,et al.Enzymological mechanism for the regulation of lanthanum chloride on flavonoid synthesis of soybean seedlings under enhanced ultraviolet-B radiation[J].Environmental Science and Pollution Research International,2014,21(14):8792-8800.
[20] Mazza C A,Boccalandro H E,Giordano C V,et al.Functional significance and induction by solar radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops[J].Plant Physiology,2000,122(1):117-125.
[21] Xu C,Sullivan J H,Garrett W M,et al.Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents[J].Phytochemistry,2008,69(1):38-48.
[22] Zancan S,Suglia I,La Rocca N,et al.Effects of UV-B radiation on antioxidant parameters of iron-deficient barley plants[J].Environmental and Experimental Botany,2008,63(1-3):71-79.
[23] Li X,Zhang L,Li Y,et al.Changes in photosynthesis,antioxidant enzymes and lipid peroxidation in soybean seedlings exposed to UV-B radiation and/or Cd[J].Plant and Soil,2012,352(1):377-387.
[24] Kim B G,Kim J H,Kim J,et al.Accumulation of flavonols in response to ultraviolet-B irradiation in soybean is related to induction of flavanone 3-beta-hydroxylase and flavonol synthase[J].Molecules and Cells,2008,25(2):247-252.
[25] Correia C M,Areal E L V,Torres-Pereira M S,et al.Intraspecific variation in sensitivity to ultraviolet-B radiation in maize grown under field conditions:II.Physiological and biochemical aspects[J].Field Crops Research,1999,62(2-3):97-105.
[26] Kataria S,Guruprasad K.Intraspecific variations in growth,yield and photosynthesis of sorghum varieties to ambient UV (280-400nm) radiation[J].Plant Science,2012,196:85-92.
[27] Qi Y,Bai S,Heisler G M.Changes in ultraviolet-B and visible optical properties and absorbing pigment concentrations in pecan leaves during a growing season[J].Agricultural and Forest Meteorology,2003,120(1-4):229-240.
[28] Tevini M,Braun J,Fieser G.The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation[J].Photochemistry and Photobiology,1991,53(3):329-333.
[29] Feng H,An L,Chen T,et al.The effect of enhanced ultraviolet-B radiation on growth,photosynthesis and stable carbon isotope composition (δ13C) of two soybean cultivars (Glycinemax) under field conditions[J].Environmental and Experimental Botany,2003,49(1):1-8.
[30] Reuber S,Bornman J,Weissenb?ck G.A flavonoid mutant of barley(HordeumvulgareL.) exhibits increased sensitivity to UV‐B radiation in the primary leaf[J].Plant,Cell and Environment,1996,19(5):593-601.
[31] Caldwell M M,Robberecht R,Flint S D.Internal filters:prospects for UV-acclimation in higher plants[J].Physiologia Plantarum,1983,58(3):445-450.
[32] Sullivan J H,Gitz D C,Liu-Gitz L,et al.Coupling short-term changes in ambient UV‐B levels with induction of UV-screening compounds[J].Photochemistry and Photobiology,2007,83(4):863-870.
[33] Bieza K,Lois R.An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics[J].Plant Physiology,2001,126(3):1105-1115.
[34] Peng Z F,Strack D,Baumert A,et al.Antioxidant flavonoids from leaves ofPolygonumhydropiperL[J].Phytochemistry,2003,62(2):219-228.
[35] Zu Y Q,Li Y,Chen H Y,et al.Intraspecific responses in crop growth and yield of 20 wheat cultivars to enhanced ultraviolet-B radiation under field conditions[J].Field Crops Research,2000,67(1):25-33.
[36] Levizou E,Manetas Y.Spectrophotometric assessment of leaf UV-B absorbing compounds and chemically determined total phenolic levels are strongly correlated[J].Canadian Journal of Botany,2002,80(6):690-694.
[37] Kreft S,Strukelj B,Gaberscik A,et al.Rutin in buckwheat herbs grown at different UV‐B radiation levels:comparison of two UV spectrophotometric and an HPLC method[J].Journal of Experimental Botany,2002,53(375):1801-1804.
[38] Yao Y,Xuan Z,Li Y,et al.Effects of ultraviolet-B radiation on crop growth,development,yield and leaf pigment concentration of tartary buckwheat (Fagopyrumtataricum) under field conditions[J].European Journal of Agronomy,2006,25(3):215-222.
[39] 馮虎元,安黎哲,徐世健,等.紫外線-B輻射增強對大豆生長、發(fā)育、色素和產(chǎn)量的影響[J].作物學(xué)報,2001,3(3):319-323.
[40] Zu Y Q,Li Y,Chen H Y,et al.Intraspecific differences in physiological response of 20 soybean cultivars to enhanced ultraviolet-B radiation under field conditions[J].Environmental and Experimental Botany,2003,50(1):87-97.
[41] Warren J M,Bassman J H,Fellman J K,et al.Ultraviolet-B radiation alters phenolic salicylate and flavonoid composition of Populus trichocarpa leaves[J].Tree Physiology,2003,23(8):527-535.
[42] Harborne J B,Williams C A.Advances in flavonoid research since 1992[J].Phytochemistry,2000,55(6):481-504.
[43] Winter T R,Rostás M.Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense[J].Environmental Pollution,2008,155(2):290-297.
[44] Gould K S,McKelvie J,Markham K R.Do anthocyanins function as antioxidants in leaves? Imaging of H2O2in red and green leaves after mechanical injury[J].Plant,Cell and Environment,2002,25(10):1261-1269.
[45] Kalbina I,StridA.Supplementary ultraviolet-B irradiation reveals differences in stress responses between Arabidopsis thaliana ecotypes[J].Plant,Cell and Environment,2006,29(5):754-763.
[46] Green R,Fluhr R.UV-B-induced PR-1 accumulation is mediated by active oxygen species[J].The Plant Cell,1995,7(2):203-212.
[47] Mackerness S A H,Surplus S L,Blake P,et al.Ultraviolet-B-induced stress and changes in gene expression in Arabidopsis thaliana:role of signalling pathways controlled by jasmonic acid,ethylene and reactive oxygen species[J].Plant,Cell and Environment,1999,22(11):1413-1423.
[48] Chen K,Feng H,Zhang M,et al.Nitric oxide alleviates oxidative damage in the green algaChlorella pyrenoidosa caused by UV-B radiation[J].Folia Microbiologica,2003,48(3):389-393.
[49] 閆生榮,周 青.紫外輻射與復(fù)合脅迫對植物抗氧化酶系統(tǒng)的影響[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2007,15(3):195-197.
[50] Agrawal S B,Rathore D.Changes in oxidative stress defense system in wheat (TriticumaestivumL.) and mung bean (VignaradiataL.) cultivars grown with and without mineral nutrients and irradiated by supplemental ultraviolet-B[J].Environmental and Experimental Botany,2007,59(1):21-33.
[51] Mazza C A,Battista D,Zima A M,et al.The effects of solar ultraviolet‐B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses[J].Plant,Cell and Environment,1999,22(1):61-70.
[52] Costa H,Gallego S M,Tomaro M L.Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons[J].Plant Science,2002,162(6):939-945.
[53] Jiménez A,Hernández J A.,del Río L A,et al.Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves[J].Plant Physiology,1997,114(1):275-284.
[54] 梁嬋娟,陶文沂,周 青.UV-B輻射增強的環(huán)境植物學(xué)效應(yīng)研究[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2004,12(4):46-48.
[55] Rao M V,Paliyath G,Ormrod D P.Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana[J].Plant Physiology,1996,110(1):125-136.
[56] Liu L,McClure J W.Effects of UV-B on activities of enzymes of secondary phenolic metabolism in barley primary leaves[J].Physiologia Plantarum,1995,93(4):734-739.
[57] Pinto M E,Edwards G E,Riquelme A A,et al.Enhancement of nodulation in bean (Phaseolusvulgaris) by UV-B irradiation[J].Functional Plant Biology,2002,29(10):1189-1196.
[58] Logemann E,Wu S C,Schr?der J,et al.Gene activation by UV light,fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes[J].The Plant Journal,1995,8(6):865-876.
[59] Casati P,Walbot V.Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content[J].Plant Physiology,2003,132(4):1739-1754.
[60] Wang G H,Chen K,Chen L Z,et al.The involvement of the antioxidant system in protection of desert cyanobacterium Nostoc sp.against UV-B radiation and the effects of exogenous antioxidants[J].Ecotoxicology and Environmental Safety,2008,69(1):150-157.
[61] Zu Y G,Pang H H,Yu J H,et al.Responses in the morphology,physiology and biochemistry of Taxus chinensis var.mairei grown under supplementary UV-B radiation[J].Journal of Photochemistry and Photobiology B:Biology,2010,98(2):152-158.
[62] Yannarelli G G,Noriega G O,Batlle A,et al.Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species[J].Planta,2006,224(5):1154-1162.
[63] Matysik J,Bhalu B,Mohanty P.Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants[J].Current Science,2002,82(5):525-532.
[64] Prasad S M,Dwivedi R,Zeeshan M.Growth,photosynthetic electron transport,and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress[J].Photosynthetica,2005,43(2):177-185.
[65] Takahama U,Oniki T.Flavonoids and some other phenolics as substrates of peroxidase:physiological significance of the redox reactions[J].Journal of Plant Research,2000,113(3):301-309.
[66] Galatro A,Simontacchi M,Puntarulo S.Free radical generation and antioxidant content in chloroplasts from soybean leaves exposed to ultraviolet-B[J].Physiologia Plantarum,2001,113(4):564-570.
[67] Carletti P,Masi A,Wonisch A,et al.Changes in antioxidant and pigment pool dimensions in UV-B irradiated maize seedlings[J].Environmental and Experimental Botany,2003,50(2):149-157.
[68] Pignocchi C,Foyer C H.Apoplastic ascorbate metabolism and its role in the regulation of cell signalling[J].Current Opinion in Plant Biology,2003,6(4):379-389.
[69] Wefers H,Sies H.The protection by ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E[J].European Journal of Biochemistry,1988,174(2):353-357.
[70] Kochevar I E.UV-induced protein alterations and lipid oxidation in erythrocyte membranes[J].Photochemistry and Photobiology,1990,52(4):795-800.
[71] Mishra V,Mishra P,Srivastava G,et al.Effect of dimethoate and UV-B irradiation on the response of antioxidant defense systems in cowpea (VignaunguiculataL.) seedlings[J].Pesticide Biochemistry and Physiology,2011,100(2):118-123.
[72] Yang Y,Yao Y,Xu G,et al.Growth and physiological responses to drought and elevated ultraviolet‐B in two contrasting populations of Hippophae rhamnoides[J].Physiologia Plantarum,2005,124(4):431-440.
[73] Liu B,Liu X B,Wang C,et al.Endogenous hormones in seed,leaf,and pod wall and their relationship to seed filling in soybeans[J].Crop and Pasture Science,2010,61(2):103-110.
[74] Saruhan N,Saglam A,Kadioglu A.Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes[J].Acta Physiologiae Plantarum,2012,34(1):97-106.
[75] Zaffari G R,Peres L E P,Kerbauy G B.Endogenous levels of cytokinins,indoleacetic acid,abscisic acid,and pigments in variegated somaclones of micropropagated banana leaves[J].Journal of Plant Growth Regulation,1998,17(2):59-61.
[76] Huang S,Dai Q,Peng S,et al.Influence of supplemental ultraviolet-B on indoleacetic acid and calmodulin in the leaves of rice (OryzasativaL.)[J].Plant Growth Regulation,1997,21(1):59-64.
[77] 王春霞,劉亞力,李鳳梅,等.稀土硝酸鹽對生成超氧陰離子自由基的抑制作用[J].中國稀土學(xué)報,2000,18(3):286-288.
[78] Teramura A H,Murali N.Intraspecific differences in growth and yield of soybean exposed to ultraviolet-B radiation under greenhouse and field conditions[J].Environmental and Experimental Botany,1986,26(1):89-95.
[79] Ros J,Tevini M.Interaction of UV-radiation and IAA during growth of seedlings and hypocotyl segments of sunflower[J].Journal of Plant Physiology,1995,146(3):295-302.
[80] Caldwell M M,Teramura A H,Tevini M.Effects of increased solar ultraviolet radiation on terrrestrial plants[J].Ambio,1995,24(3):166-73.
[81] Dayan J,Voronin N,Gong F,et al.Leaf-induced gibberellin signaling is essential for internode elongation,cambial activity,and fiber differentiation in tobacco stems[J].The Plant Cell,2012,24(1):66-79.
[82] Luo A,Qian Q,Yin H,et al.EUI1,encoding a putative cytochrome P450 monooxygenase,regulates internode elongation by modulating gibberellin responses in rice[J].Plant and Cell Physiology,2006,47(2):181-191.
[83] Zhu Y,Nomura T,Xu Y,et al.Elongated uppermost internode encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice[J].The Plant Cell,2006,18(2):442-456.
[84] Sharma A,Guruprasad K.Similarities in the biochemical changes between solar UV exclusion and GA application in Amaranthus caudatus[J].Physiology and Molecular Biology of Plants,2009,15(4):367-370.
[85] Peng Q,Zhou Q.The endogenous hormones in soybean seedlings under the joint actions of rare earth element La (III) and ultraviolet-B stress[J].Biological Trace Element Research,2009,132(1-3):270-277.
[86] Bj?rn L O.Effects of ozone depletion and increased UV‐B on terrestrial ecosystems[J].International Journal of Environmental Studies,1996,51(3):217-243.
[87] Yang J H,Chen T,Wang X L.Effect of enhanced UV-B radiation on endogenous ABA and free proline contents in wheat leaves[J].Acta Ecologica Sinica,1999,20(1):39-42.
[88] Wang X Q,Ullah H,Jones A M,et al.G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells[J].Science,2001,292(5524):2070-2072.
[90] Belkhadi A,Hediji H,Abbes Z,et al.Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content inLinumusitatissimumL[J].Ecotoxicology and Environmental Safety,2010,73(5):1004-1011.
[91] Hayat S,Fariduddin Q,Ali B,et al.Effect of salicylic acid on growth and enzyme activities of wheat seedlings[J].Acta Agronomica Hungarica,2005,53(4):433-437.
[92] Mutlu S,Atici ?,Nalbantoglu B.Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance[J].Biologia Plantarum,2009,53(2):334-338.
[93] Choudhury S,Panda S K.Role of salicylic acid in regulating cadmium induced oxidative stress inOryzasativaL.roots[J].Bulgarian Journal of Plant Physiology,2004,30(3-4):95-110.
[94] Li X M,Ma L J,Bu N,et al.Effects of salicylic acid pre-treatment on cadmium and/or UV-B stress in soybean seedlings[J].Biologia Plantarum,2014,58(1):195-199.
[95] Ervin E H,Zhang X,Fike J H.Ultraviolet-B radiation damage on Kentucky Bluegrass II:Hormone supplement effects[J].HortScience,2004,39(6):1471-1474.
[96] Mahdavian K,Kalantari K,Ghorbanli M,et al.The effects of salicylic acid on pigment contents in ultraviolet radiation stressed pepper plants[J].Biologia Plantarum,2008,52(1):170-172.
[97] Stratmann J.Ultraviolet-B radiation co-opts defense signaling pathways[J].Trends in Plant Science,2003,8(11):526-533.
[98] Britt A B,May G D.Re-engineering plant gene targeting[J].Trends in Plant Science,2003,8(2):90-95.
[99] Bray C M,West C E.DNA repair mechanisms in plants:crucial sensors and effectors for the maintenance of genome integrity[J].New Phytologist,2005,168(3):511-528.
[100] Latifi A,Ruiz M,Zhang C C.Oxidative stress in cyanobacteria[J].FEMS Microbiology Reviews,2009,33(2):258-278.
[101] Hargreaves A,Taiwo F,Duggan O,et al.Near-ultraviolet photolysis of β-phenylpyruvic acid generates free radicals and results in DNA damage[J].Journal of Photochemistry and Photobiology B:Biology,2007,89(2-3):110-116.
[102] Taylor R M,Tobin A K,Bray C M.DNA damage and repair in plants[M].In:Lumsden PJ (Ed.).Plants and UV-B responses to environmental change.Cambridge:Cambridge University Press,1997.
[103] Ryan K G,Swinny E E,Markham K R,et al.Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves[J].Phytochemistry,2002,59(1):23-32.
[104] Shimizu T,Fujibe R,Senda M,et al.Molecular cloning and characterization of a subfamily of UV-B responsive MYB genes from soybean[J].Breeding science,2000,50(2):81-90.
[105] Jordan B R.Review:Molecular response of plant cells to UV-B stress[J].Functional Plant Biology,2002,29(8):909-916.
[106] Izaguirre M M,Scopel A L,Baldwin I T,et al.Convergent responses to stress.Solar ultraviolet-B radiation and Manduca sexta herbivory elicit overlapping transcriptional responses in field-grown plants of Nicotiana longiflora[J].Plant Physiology,2003,132(4):1755-1767.
[107] Casati P,Walbot V.Rapid transcriptome responses of maize (Zeamays) to UV-B in irradiated and shielded tissues[J].Genome Biology,2004,5(3):R16-R16.
[108] Oppenheimer D G,Herman P L,Sivakumaran S,et al.A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules[J].Cell,1991,67(3):483-493.
[109] Noda K I,Glover B J,Linstead P,et al.Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor[J].Nature,1994,369:661-664.
[110] Mackerness S A H,Surplus S L,Blake P,et al.Ultraviolet-B-induced stress and changes in gene expression in Arabidopsis thaliana:role of signaling pathways controlled by jasmonic acid,ethylene and reactive oxygen species[J].Plant Cell and Environment,1999,22(11):1413-1423.
[111] Mackerness S A H,Thomas B,Jordan B R.The effect of supplementary ultraviolet-B radiation on mRNA transcripts,translation and stability of chloroplast proteins and pigment formation inPisumsativumL[J].Journal of Experimental Botany,1997,48(3):729-738.
[112] Dai Q,Shaobing P,Chavez A Q,et al.Intraspecific responses of 188 rice cultivars to enhanced UVB radiation[J].Environmental and Experimental Botany,1994,34(4):433-442.
[113] Kumagai T,Hidema J,Kang H-S,et al.Effects of supplemental UV-B radiation on the growth and yield of two cultivars of Japanese lowland rice (OryzasativaL.) under the field in a cool rice-growing region of Japan[J].Agriculture,Ecosystems and Environment,2001,83(1):201-208.
[114] Li Y,He L,Zu Y.Intraspecific variation in sensitivity to ultraviolet-B radiation in endogenous hormones and photosynthetic characteristics of 10 wheat cultivars grown under field conditions[J].South African Journal of Botany,2010,76(3):493-498.
[115] Singh M,Singh S,Agrawal S.Intraspecific responses of six cultivars of wheat(TriticumaestivumL.) to supplemental ultraviolet-B radiation under field conditions[J].Acta Physiologiae Plantarum,2012,34(1):65-74.
[116] Baroniya S S,Kataria S,Pandey G,et al.Intraspecific variations in antioxidant defense responses and sensitivity of soybean varieties to ambient UV radiation[J].Acta Physiologiae Plantarum,2013,35(5):1521-1530.
[117] Zhang W W,Wang G H,Liu X B,et al.Effects of elevated O3exposure on seed yield,N concentration and photosynthesis of nine soybean cultivars (Glycinemax(L.)Merr.) in Northeast China[J].Plant Science,2014,226:172-181.
Preventive Mechanisms to UV-B Radiation Damages in Crops
LI Yansheng,JIN Jian,WANG Guanghua,LIU Xiaobing
(KeyLaboratoryofMollisolsAgroecology,NortheastInstituteofGeographyandAgroecology,CAS,Harbin150081,China)
Since the discovery of the Antarctic ‘ozone hole’ and general depletion of the stratospheric ozone layer in the mid-1980 s,significant interest in documenting the effects of UV-B radiation (280 nm~315 nm) on organisms and ecosystems has been one of the most important concern of global change.A substantial number of studies have been intensively conducted over the last several decades to assess the potential impacts of long-term increases in ultraviolet-B radiation on crop plants,and have shown a diverse range of responses.Direct effects of natural or enhanced levels of UV-B radiation on plant yield have been detected to be modest,with growth reductions generally not exceeding 20% under field conditions.This limited impact reflects the activity of protective mechanisms in crop plants.This article summarizes changes at the physiological,morphological,biochemical and molecular levels,and proposes several future avenues with an aim to better understand the mechanisms whereby solar UV-B radiation boosts the expression of natural plant defenses.It could provide important elements for biotechnological,traditional crop breeding and viable cropping strategies programs.
UV-B radiation; plant morphology; UV-absorbing compounds; antioxidant defense system; gene expression
10.11689/j.issn.2095-2961.2016.04.003
2095-2961(2016)04-0223-11
2016-01-25;
2016-04-14.
科技部支撐項目(2014BAD11B01-A01);黑龍江省科技廳重大項目(GA14B101-A01).
李彥生(1983-),男,吉林長春人,助理研究員,研究方向為作物生理生態(tài).
劉曉冰(1963-),男,黑龍江肇源人,研究員,博士生導(dǎo)師,研究方向為耕作與栽培.
X503.231
A