• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      冶煉企業(yè)周邊農(nóng)田土壤的多環(huán)芳烴污染及其細(xì)菌群落效應(yīng)

      2016-12-12 01:41:57吳宇澄林先貴朱清禾曾軍丁慶旻
      生態(tài)毒理學(xué)報(bào) 2016年2期
      關(guān)鍵詞:芳烴農(nóng)田群落

      吳宇澄,林先貴,,朱清禾,曾軍,丁慶旻

      1. 中國科學(xué)院南京土壤研究所 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點(diǎn)實(shí)驗(yàn)室,南京 210008 2. 中國科學(xué)院南京土壤研究所-香港浸會(huì)大學(xué)土壤與環(huán)境聯(lián)合開放實(shí)驗(yàn)室,南京 210008

      ?

      冶煉企業(yè)周邊農(nóng)田土壤的多環(huán)芳烴污染及其細(xì)菌群落效應(yīng)

      吳宇澄1,2,林先貴1,2,,朱清禾1,2,曾軍1,2,丁慶旻1,2

      1. 中國科學(xué)院南京土壤研究所 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點(diǎn)實(shí)驗(yàn)室,南京 210008 2. 中國科學(xué)院南京土壤研究所-香港浸會(huì)大學(xué)土壤與環(huán)境聯(lián)合開放實(shí)驗(yàn)室,南京 210008

      多環(huán)芳烴是一類持久性有機(jī)污染物,進(jìn)入土壤后可能產(chǎn)生多方面生態(tài)效應(yīng)。為研究多環(huán)芳烴對(duì)土壤微生物的影響,選取南京某冶煉企業(yè)周邊農(nóng)田樣品,在分析污染物含量基礎(chǔ)上,采用高通量測(cè)序、定量PCR等方法綜合評(píng)價(jià)了土壤細(xì)菌多樣性和組成以及多環(huán)芳烴降解細(xì)菌豐度等特征。17個(gè)土壤樣品中,多環(huán)芳烴總量為0.25 ~ 31.08 mg·kg-1,并具有隨污染源距離增加而降低的空間分布特征。與土壤理化性質(zhì)如pH相比較,多環(huán)芳烴污染對(duì)土壤細(xì)菌的總體多樣性和群落組成影響不顯著。進(jìn)一步分析發(fā)現(xiàn)多環(huán)芳烴與潛在降解微生物的相對(duì)豐度和降解功能基因(芳香環(huán)羥基化雙加氧酶,PAH-RHDα)拷貝數(shù)顯著正相關(guān)。污染較重樣品的克隆、測(cè)序分析表明,土壤中PAH-RHDα基因主要屬于革蘭氏陽性細(xì)菌nidA3/fadA1類群,且與分支桿菌相關(guān)序列較為接近。這些結(jié)果綜合評(píng)價(jià)了冶煉企業(yè)周邊農(nóng)田土壤多環(huán)芳烴污染對(duì)微生物群落的影響,提示土壤污染在多環(huán)芳烴潛在降解細(xì)菌中的富集作用,將為后續(xù)污染土壤生物修復(fù)提供重要科學(xué)依據(jù)。

      多環(huán)芳烴;土壤細(xì)菌;芳香環(huán)羥基化雙加氧酶;分枝桿菌;群落效應(yīng)

      Received 26 October 2015 accepted 16 November 2015

      多環(huán)芳烴(polycyclic aromatic hydrocarbons,PAHs)是一類具有稠合苯環(huán)結(jié)構(gòu)的有機(jī)污染物,主要來自化石燃料,特別是煤的燃燒、車輛尾氣以及一些生物質(zhì)燃燒過程[1]。工業(yè)排放是環(huán)境中多環(huán)芳烴的重要來源,可導(dǎo)致附近農(nóng)田土壤的污染[2-3],并進(jìn)而通過食物鏈傳遞導(dǎo)致人體健康風(fēng)險(xiǎn)。

      多環(huán)芳烴對(duì)土壤生態(tài)系統(tǒng)具有廣泛的影響,如引起土壤動(dòng)物死亡[4],抑制植物生長[5],損害土壤功能如硝化等[6]。微生物作為土壤生態(tài)系統(tǒng)中廣泛存在、最為活躍的組成部分,和PAHs污染物之間存在復(fù)雜的相互作用。一方面,PAHs污染具有微生物群落效應(yīng),體現(xiàn)為對(duì)土壤微生物多樣性、組成及生理功能的潛在影響[7-8],反映污染物對(duì)微生物的潛在毒害效應(yīng);另一方面,部分微生物可通過多種酶學(xué)機(jī)制如芳香環(huán)羥基化雙加氧酶(PAH ring-hydroxylating dioxygenase, PAH-RHD)等轉(zhuǎn)化PAHs[9],是控制土壤有機(jī)污染物的關(guān)鍵因素。但是,目前對(duì)PAHs土壤微生物群落效應(yīng)的認(rèn)識(shí),多基于極端污染情況[10],未考慮污染物的老化過程[7],不能反映一般污染條件下的微生物響應(yīng)規(guī)律。

      冶煉企業(yè)是重要的多環(huán)芳烴工業(yè)排放源,其周邊土壤往往存在PAHs污染[11]。本研究系統(tǒng)采集南京市郊某冶煉企業(yè)周邊農(nóng)田土壤,測(cè)定污染物含量,采用高通量測(cè)序和定量PCR方法深入解析土壤細(xì)菌群落多樣性和組成,并分析潛在PAHs降解細(xì)菌的響應(yīng)情況。研究的主要目的在于分析工業(yè)排放導(dǎo)致農(nóng)田土壤PAHs污染的微生物群落效應(yīng),其結(jié)果將為評(píng)價(jià)PAHs的微生物生態(tài)毒性以及污染土壤生物修復(fù)提供科學(xué)依據(jù)。

      1 材料與方法(Materials and methods)

      1.1 樣品采集

      南京市郊某大型冶煉企業(yè),其煉焦、熱電等生產(chǎn)部門產(chǎn)生的廢氣排入大氣,是潛在的多環(huán)芳烴排放源。該企業(yè)東、南方主要為農(nóng)田,受到大氣沉降的影響,存在一定污染風(fēng)險(xiǎn)。以廠區(qū)為起點(diǎn),在該區(qū)域盛行下風(fēng)向沿偏東、偏南兩個(gè)方向開展采樣,共設(shè)置17個(gè)樣點(diǎn)(MS-1~MS-17,圖1)。其中,MS-1、MS-2最接近潛在污染源(熱電廠煙囪,約500 m);偏南方向包括MS-3至MS-10,最遠(yuǎn)處距污染源約5 km;偏東方向包括MS-11至MS-17,最遠(yuǎn)處距污染源約4.5 km。各采樣點(diǎn)均為蔬菜地。采樣于2014年12月進(jìn)行,采用手動(dòng)土壤采樣器按5點(diǎn)采樣法收集5 m×5 m范圍內(nèi)表層農(nóng)田土壤(0~10 cm),充分混勻成為一個(gè)混合土樣。土樣一部分經(jīng)風(fēng)干、磨細(xì)后用于PAHs及理化性質(zhì)分析,另一部分置于-20 ℃保存,用于微生物生態(tài)研究。

      圖1 冶煉企業(yè)周邊采樣點(diǎn)分布Fig. 1 Soil sampling sites around the steel plant

      1.2 土壤理化性質(zhì)測(cè)定

      采用酸度計(jì)測(cè)定土壤的pH值(水土比5:1);標(biāo)準(zhǔn)方法分析土壤總碳、總氮、全磷、全鉀[12];采用2 mol·L-1KCl溶液提取土壤無機(jī)氮(銨態(tài)氮、硝態(tài)氮),流動(dòng)分析儀(SKALAR)測(cè)定。

      1.3 土壤多環(huán)芳烴的提取與分析

      測(cè)定土壤中15種USEPA優(yōu)先控制多環(huán)芳烴的含量,即萘、苊、芴、菲、蒽、熒蒽、芘、苯并[a]蒽、屈、苯并[b]熒蒽、苯并[k]熒蒽、苯并[a]芘、茚并[1,2,3-cd]芘、二苯并蒽和苯并[g, h, i]苝。具體方法為:稱取10 g干土,用60 mL二氯甲烷在索氏裝置上提取24 h,30 ℃旋轉(zhuǎn)蒸干。加入2 mL環(huán)己烷溶解,取0.5 mL溶解液過硅膠柱,加入正己烷/二氯甲烷混合液(1:1)洗脫。洗脫液經(jīng)氮?dú)獯蹈?,用乙腈溶解并定容? mL。

      采用超快速液相色譜(島津UFLC-20系統(tǒng))檢測(cè)土壤多環(huán)芳烴的含量。流動(dòng)相為乙腈/水混合液,流速為0.8 mL·min-1,柱溫40 ℃。分離柱為反相Waters C18-PAH專用柱(4.6 mm×250 mm,粒徑5 μm),熒光檢測(cè)器檢測(cè)。

      1.4 土壤DNA提取

      采用FastDNA SPIN Kit for Soil試劑盒(MP Biomedicals)提取土壤DNA,微量分光光度計(jì)(NanoDrop 2000)和電泳法檢測(cè)DNA的質(zhì)量。為避免共提取的土壤腐殖質(zhì)等雜質(zhì)干擾PCR反應(yīng),DNA提取液經(jīng)10倍稀釋后用于下游分析。

      1.5 細(xì)菌16S rRNA基因高通量測(cè)序及數(shù)據(jù)分析

      采用通用引物519F和907R擴(kuò)增細(xì)菌16S rRNA基因片段。正向引物序列中包含5 bp的條形碼(barcode)序列。PCR反應(yīng)體系為50 μL,包括25 μL Taq DNA聚合酶預(yù)混液(Takara), 1 μL模板(約50 ng基因組DNA),1 μL正向及反向引物,23 μL ddH2O。PCR擴(kuò)增條件為95 ℃ 3 min;95 ℃ 45 s, 56 ℃ 45 s, 72 ℃ 60 s,35個(gè)循環(huán);72 ℃ 7 min。PCR產(chǎn)物經(jīng)純化后,構(gòu)建測(cè)序文庫,采用Illumina MiSeq系統(tǒng)進(jìn)行雙向高通量測(cè)序。

      基于QIIME分析平臺(tái)進(jìn)行高通量數(shù)據(jù)分析。序列經(jīng)拼接、比對(duì)后在97%相似性水平劃分操作分類單元(operational taxonomic unit,OTU),在此基礎(chǔ)上計(jì)算多樣性指數(shù),包括observed species,Chao1,Phylogenetic Diversity (PD),Shannon和Simpson多樣性指數(shù)等;通過與Greengene database數(shù)據(jù)庫比較確定序列的系統(tǒng)學(xué)分類。

      1.6 PAH-RHDα基因定量PCR分析

      參照文獻(xiàn)報(bào)道方法[13],采用定量PCR方法測(cè)定各樣品革蘭氏陽性和陰性細(xì)菌PAH-RHDα基因的拷貝數(shù)。定量PCR標(biāo)準(zhǔn)品的制備方法為:克隆目標(biāo)基因(具體方法見1.7),提取質(zhì)粒后測(cè)定濃度并計(jì)算拷貝數(shù),梯度稀釋制備標(biāo)準(zhǔn)曲線(拷貝數(shù)范圍107~101μL-1)。定量PCR標(biāo)準(zhǔn)曲線R2>0. 99,擴(kuò)增效率>80%。

      定量PCR采用Sybr Green方法,總反應(yīng)體系為25 μL,包含12.5 μL TransStart Green qPCR SuperMix(全式金),2 μL土壤DNA和10 pmol引物。反應(yīng)程序?yàn)槿椒ǎ?5 ℃預(yù)變性3 min;94 ℃ 15 s,55℃退火 45 s,95℃延伸30 s并讀取熒光信號(hào),共進(jìn)行40個(gè)循環(huán);隨后進(jìn)行熔解曲線分析和電泳評(píng)價(jià)擴(kuò)增單一性。

      1.7 革蘭氏陽性細(xì)菌PAH-RHDα基因克隆、測(cè)序與序列分析

      PCR擴(kuò)增革蘭氏陽性細(xì)菌的PAH-RHDα基因,經(jīng)割膠純化后克隆至pEASY-T1載體,并轉(zhuǎn)化感受態(tài)大腸桿菌。根據(jù)菌落顏色隨機(jī)挑選陽性克隆并測(cè)序,所獲序列經(jīng)去除載體和引物部分后,用Mothur軟件進(jìn)行比對(duì)和劃分操作分類單元。采用MEGA6軟件,以Maximum likelihood (ML)方法重建PAH-RHDα基因的系統(tǒng)發(fā)育樹。

      1.8 數(shù)據(jù)分析

      用SPSS13.0進(jìn)行相關(guān)性分析,雙側(cè)檢驗(yàn)判斷顯著性;CANOCO 4.5軟件進(jìn)行典范對(duì)應(yīng)分析(canonical correspondence analysis, CCA)。

      2 結(jié)果(Results)

      2.1 土壤理化性質(zhì)

      土壤理化性質(zhì)分析結(jié)果如表1所示。由各因子變異系數(shù)可見,17個(gè)樣品的全磷、銨態(tài)氮、硝態(tài)氮和PAHs總量性質(zhì)存在較大差異,而總碳、總氮、碳氮比和全鉀總體變化不大。pH值的變化幅度為4.74~7.66,表現(xiàn)出較高的土壤酸堿性差異。

      2.2 土壤PAHs含量及組成特征

      所有土壤樣品中均檢出多環(huán)芳烴,15種PAHs總量(Σ15PAHs)為0.25~31.08 mg·kg-1(表1)。最靠近排放源的MS-1和MS-2中,Σ15PAHs接近7 mg·kg-1。隨著距離增加,土壤PAHs含量迅速降低。在偏東方向,Σ15PAHs由MS-11的1.72 mg·kg-1逐漸降至MS-15至MS-17的0.30 mg·kg-1左右;在偏南方向,除MS-9外,PAHs總量處于0.51~0.96 mg·kg-1之間。所有樣品中,MS-9的PAHs總量最高,達(dá)31.08 mg·kg-1。

      圖2 熒蒽/(熒蒽+芘)和茚并[1,2,3-cd]芘/(茚并[1,2,3-cd]芘+苯并[g,h,i]苝)的十字交叉圖 注:多環(huán)芳烴比值范圍參照文獻(xiàn)[14-15]。Fig. 2 Cross plot of Fla/(Fla+Pyr) and IcdP/(IcdP+BghiP) ratio Note: The diagnostic ratios are referred to [14-15].

      表1 各樣點(diǎn)土壤基本性質(zhì)及多環(huán)芳烴含量

      按環(huán)數(shù)統(tǒng)計(jì)PAHs組成,接近污染源樣品(MS-1和MS-2)和偏南方向樣點(diǎn)(MS-3至MS-10)中均以4環(huán)及以上PAHs為主,偏東部分樣點(diǎn)中三環(huán)及以下的低環(huán)組分比例較高(表1)。計(jì)算熒蒽/(熒蒽+芘)(Fla/(Fla+Pyr))和茚并[1,2,3-cd]芘/(茚并[1,2,3-cd]芘+苯并[g,h,i]苝)(IcdP/(IcdP+BghiP))比值,并作十字交叉圖(圖2)。圖中大部分樣點(diǎn)聚為一群,體現(xiàn)出煤炭及化石燃料燃燒的特征;偏南方向5個(gè)樣點(diǎn)(MS-5,MS-7至MS-10)明顯偏離,其中MS-9部分呈現(xiàn)石油源特征。

      2.3 土壤細(xì)菌群落多樣性與組成

      17個(gè)土壤樣品共獲得22.5萬余條16S rRNA基因序列,各樣品序列數(shù)為8 786~20 433條。基于OTU計(jì)算各樣品多樣性指數(shù)并與環(huán)境因子作相關(guān)分析,結(jié)果顯示PAHs與細(xì)菌多樣性指數(shù)間無顯著相關(guān)性,在土壤因子中僅有pH與各多樣性指數(shù)間存在顯著正相關(guān)(表2)。

      各土壤在門水平的細(xì)菌群落組成如圖3所示。該區(qū)域農(nóng)田土壤的優(yōu)勢(shì)細(xì)菌有變形菌門(Proteobacteria)、擬桿菌門(Bacteroidetes)、放線菌門(Actinobacteria)、酸桿菌門(Acidobacteria)等。CCA排序圖中,第一和第二排序軸共解釋32.3%的群落變異,pH和總磷兩個(gè)因子對(duì)細(xì)菌組成影響顯著(P<0.05)。MS-9與MS-5的細(xì)菌群落組成與其他樣點(diǎn)分異較大,pH中性的土壤MS-1、MS-2、MS-3、MS-4、MS-10聚在一起,位于CCA圖的右側(cè),而其他更偏酸性的土壤則聚集在圖中的左側(cè)。

      在屬的水平,與Σ15PAHs顯著正相關(guān)(P<0.05),且至少一個(gè)樣品中相對(duì)豐度在0.5%以上的細(xì)菌有12個(gè),其中已有文獻(xiàn)報(bào)道具有PAHs降解能力的是分枝桿菌(Mycobacterium)[16]、紅球菌(Rhodococcus)[17]、Actinomadura[18]、Nocardioides[19]等4個(gè)。如果排除PAHs總量異常偏高的MS-9,則僅有分枝桿菌的相對(duì)豐度與Σ15PAHs顯著正相關(guān)(圖5a)。

      表2 多樣性指數(shù)與土壤性質(zhì)及多環(huán)芳烴總量間的相關(guān)性

      注:*和**分別表示顯著(P<0.05)和極顯著相關(guān)(P<0.01)。

      Note: * and ** indicate significance at the level of P<0.05 and P<0.01, respectively.

      圖4 細(xì)菌和環(huán)境因子的CCA分析Fig. 4 Canonical correspondence analysis of bacterial community in PAHs-contaminated soils

      2.4 PAH-RHDα基因豐度和組成

      定量PCR檢測(cè)中,各樣品中革蘭氏陰性菌均低于檢測(cè)限。革蘭氏陽性菌PAH-RHDα基因擴(kuò)增產(chǎn)物經(jīng)熔解曲線和電泳分析為單一峰(條帶),表明實(shí)驗(yàn)結(jié)果不受引物二聚體或非特異擴(kuò)增的影響。17個(gè)土壤樣品中,革蘭氏陽性菌PAH-RHDα基因拷貝數(shù)范圍為每克干土0.39×104~1.6×105拷貝,并與土壤中的多環(huán)芳烴總量顯著正相關(guān)(圖5b)。

      選擇PAH-RHDα基因豐度較高的MS-1、MS-2 和MS-9樣品進(jìn)行基因克隆和測(cè)序分析,共獲得55個(gè)序列,經(jīng)序列比對(duì)后在95%相似性劃分為4個(gè)OTU,其中OTU-1和OTU-2占所獲序列的91%。在系統(tǒng)發(fā)育樹上,這些序列與分支桿菌M. vanbaalenii和M. rhodesiae的nidA3B3基因最為接近,同屬于雙加氧酶的nidA3/fadA1類群(圖6)。

      圖5 PAHs含量與(a)分支桿菌相對(duì)豐度和(b)革蘭氏陽性細(xì)菌PAH-RHDα基因豐度的關(guān)系Fig. 5 Correlations between PAHs concentration and (a) relative abundance of Mycobacterium and (b) copies of GP PAH-RHDα gene

      圖6 三個(gè)土壤中革蘭氏陽性細(xì)菌PAH-RHDα基因的系統(tǒng)發(fā)育樹 注:本研究所獲序列以RHDα OTU開頭,括號(hào)中數(shù)字為OTU包含序列數(shù)。Fig. 6 Maximum likelihood tree of GP bacterial PAH-RHDα gene recovered from MS-1, MS-2 and MS-9 Note: The sequences recovered in this study begin with RHDα OTU. The numbers in the parentheses represent the number of sequences comprising the OTU.

      3 討論(Discussion)

      3.1 冶煉企業(yè)周邊農(nóng)田土壤PAHs污染特征

      本研究涉及17個(gè)農(nóng)田樣點(diǎn),距離污染源(熱電廠煙囪)距離從數(shù)百米至5 km不等。所有受試土壤中均檢出PAHs,含量變異較大。根據(jù)加拿大、荷蘭等國家現(xiàn)行土壤環(huán)境質(zhì)量標(biāo)準(zhǔn),接近排放源樣品中有4個(gè)(MS-1,MS-2,MS-3和MS-11)苯并[a]芘含量超出限定值(>0.1 mg·kg-1);以總量計(jì)算,接近排放源的樣品(MS-1至MS4,MS-11和MS12)接近或超過1 mg·kg-1(表1),污染程度相對(duì)較高。隨著距離的增加,PAHs總量迅速降低至1 mg·kg-1以內(nèi),呈現(xiàn)由近及遠(yuǎn)污染程度下降的趨勢(shì)。高污染土壤的Fla/(Fla+Pyr)比值接近燃煤特征值[15](圖2)。由于研究區(qū)域內(nèi)沒有其他高能耗企業(yè)或大量民用煤炭消耗,因此,該冶煉企業(yè)的排放可能是鄰近農(nóng)田土壤PAHs污染的主要原因。根據(jù)IcdP/(IcdP+BghiP)比值,偏東及偏南方向部分樣品PAHs具有化石燃料燃燒特征[15],這可能與這部分樣點(diǎn)臨近公路,受到車輛排放影響有關(guān)。MS-9樣品除PAHs總量外,苯并[a]芘含量高達(dá)4.0 mg·kg-1,是調(diào)查中所發(fā)現(xiàn)污染最嚴(yán)重的樣點(diǎn),由于其遠(yuǎn)離冶煉企業(yè),具體污染源尚待進(jìn)一步調(diào)查。

      3.2 多環(huán)芳烴對(duì)土壤細(xì)菌群落的影響

      高濃度多環(huán)芳烴污染土壤可以顯著改變微生物的多樣性[20]、群落組成[7]和生理活性[8]。但在農(nóng)田生態(tài)系統(tǒng)中,PAHs污染程度一般遠(yuǎn)低于前述研究[21-22];PAHs與土壤的相互作用影響其賦存形態(tài),將導(dǎo)致生物有效性的變化[23],這些因素可能導(dǎo)致不同的微生物響應(yīng)特征。本研究對(duì)某冶煉廠周邊農(nóng)田土壤中細(xì)菌群落的分析表明,相對(duì)于pH等土壤因子,PAHs污染未能明顯影響細(xì)菌多樣性和群落組成(表2,圖4),這可能與研究區(qū)域土壤污染水平相對(duì)不高和PAHs老化后生物有效性低有關(guān)。

      由于部分細(xì)菌具有PAHs降解功能,本研究重點(diǎn)分析了土壤中潛在PAHs降解菌的變化情況。從高通量測(cè)序數(shù)據(jù)中可以發(fā)現(xiàn)分支桿菌、紅球菌、Actinomadura、Nocardioides等革蘭氏陽性PAHs降解細(xì)菌的相對(duì)豐度與Σ15PAHs顯著正相關(guān)。另一方面,PAH-RHD是細(xì)菌降解PAHs的關(guān)鍵酶,其基因(PAH-RHDα)拷貝數(shù)通常反映了PAHs降解細(xì)菌的豐度[13],而高濃度多環(huán)芳烴往往導(dǎo)致土壤中PAH-RHDα基因的富集[24]。本研究未能檢出革蘭氏陰性菌PAH-RHDα基因,提示土壤中該類降解菌的數(shù)量較少。對(duì)PAHs含量較高土壤中革蘭氏陽性菌PAH-RHDα的克隆測(cè)序結(jié)果表明其組成單一,主要屬于nidA3/fadA1類群[25],與分支桿菌等細(xì)菌所含序列較為接近。因此,以分支桿菌為代表的革蘭氏陽性菌可能是該區(qū)域農(nóng)田土壤的主要PAHs降解微生物。

      微生物降解是土壤PAHs消減的主要機(jī)制,以分支桿菌為代表的PAHs降解細(xì)菌[26-27]已被用于污染土壤的生物強(qiáng)化修復(fù)。但是,微生物的降解能力受到包括土壤特性在內(nèi)的多種因素制約[28],不適宜的環(huán)境條件可能影響微生物強(qiáng)化等修復(fù)策略的效果。本研究的意義在于考察PAHs污染對(duì)農(nóng)田細(xì)菌群落的影響,主要揭示了自然污染狀態(tài)下PAHs降解細(xì)菌的富集,這些微生物可能較為適應(yīng)該冶煉企業(yè)周邊污染農(nóng)田的條件,在污染物降解中具有潛在作用。這些結(jié)果將為實(shí)施污染土壤生物修復(fù)提供重要的科學(xué)依據(jù)。

      [1] 傅家謨, 盛國英. 環(huán)境有機(jī)地球化學(xué)初探[J]. 地學(xué)前緣, 1996, 3(1-2): 127-132

      Fu J M, Sheng G Y. Preliminary study on environmental organic geochemistry [J]. Earth Science Frontiers, 1996, 3(1-2): 127-132 (in Chinese)

      [2] 田靖, 朱媛媛, 楊洪彪, 等. 大型鋼鐵廠及其周邊土壤多環(huán)芳烴污染現(xiàn)狀調(diào)查、評(píng)價(jià)與源解析[J]. 環(huán)境化學(xué), 2013, 32(6): 1002-1008

      Tian J, Zhu Y Y, Yang H B, et al. Investigation, assessment and source analysis of polycyclic aromatic hydrocarbons (PAHs) pollution in soil from a large iron and steel plant and its surrounding areas in China [J]. Environmental Chemistry, 2013, 32(6): 1002-1008 (in Chinese)

      [3] 葛成軍, 安瓊, 董元華, 等. 南京某地農(nóng)業(yè)土壤中有機(jī)污染分布狀況研究[J]. 長江流域資源與環(huán)境, 2006, 15(3): 361-365

      Ge C J, An Q, Dong Y H, et al. Distribution of organic pollutants in agricultural soil in Nanjing City [J]. Resources and Environment in the Yangtze Basin, 2006, 15(3): 361-365 (in Chinese)

      [4] Sverdrup L E, Nielsen T, Krogh P H. Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility [J]. Environmental Science & Technology, 2002, 36(11): 2429-2435

      [5] Maliszewska-Kordybach B, Smreczak B. Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHs) - effect on plants [J]. Environmental Technology, 2000, 21(10): 1099-1110

      [6] Sverdrup L E, Ekelund F, Kroghet P H, et al. Soil microbial toxicity of eight polycyclic aromatic compounds: Effects on nitrification, the genetic diversity of bacteria, and the total number of protozoans [J]. Environmental Toxicology and Chemistry, 2002, 21(8): 1644-1650

      [7] Sawulski P, Clipson N, Doyle E. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil [J]. Biodegradation, 2014, 25(6): 835-847

      [8] de Menezes A, Clipson N, Doyle E. Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil [J]. Environmental Microbiology, 2012, 14(9): 2577-2588

      [9] Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds - from one strategy to four [J]. Nature Reviews Microbiology, 2011, 9(11): 803-816

      [10] Mukherjee S, Juottonen H, Siivonen P, et al. Spatial patterns of microbial diversity and activity in an aged creosote-contaminated site [J]. The ISME Journal, 2014, 8(10): 2131-2142

      [11] 彭曉春, 吳彥瑜, 謝莉. 廣東省醫(yī)療廢物焚燒廠周圍土壤多環(huán)芳烴特性[J]. 中國環(huán)境科學(xué), 2013, 33(S1): 108-122

      Peng X C, Wu Y Y, Xie L. Distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) around medical waste incineration plant in Guangdong Province [J]. China Environmental Science, 2013, 33(S1): 108-122 (in Chinese)

      [12] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京: 中國農(nóng)業(yè)科技出版社, 1999: 107-190

      [13] Cébron A, Norini M-P, Beguiristain T, et al. Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from gram positive and gram negative bacteria in soil and sediment samples [J]. Journal of Microbiological Methods, 2008, 73(2): 148-159

      [15] Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry, 2002, 33(4): 489-515

      [16] Zeng J, Lin X G, Zhang J, et al. Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium spp. and the degradation in soil [J]. Journal of Hazardous Materials, 2010, 183(1-3): 718-723

      [17] Sun G D, Xu Y, Liu Y, et al. Microbial community dynamics of soil mesocosms using Orychophragmus violaceus combined with Rhodococcus ruber Em1 for bioremediation of highly PAH-contaminated soil [J]. Applied Microbiology and Biotechnology, 2014, 98(24): 10243-10253

      [18] Subramanian A, Menon S. Novel polyaromatic hydrocarbon (PAH) degraders from oil contaminated soil samples [J]. International Journal of Advanced Research, 2015, 3(7): 999-1006

      [19] Saito A, Iwabuchi T, Harayama S. A novel phenanthrene dioxygenase from Nocardioides sp. strain KP7: Expression in Escherichia coli [J]. Journal of Bacteriology, 2000, 182(8): 2134-2141

      [20] Bengtsson G, T?rneman N, De Lipthay J R, et al. Microbial diversity and PAH catabolic genes tracking spatial heterogeneity of PAH concentrations [J]. Microbial Ecology, 2013, 65(1): 91-100

      [21] 劉增俊, 滕應(yīng), 黃標(biāo), 等. 長江三角洲典型地區(qū)農(nóng)田土壤多環(huán)芳烴分布特征與源解析[J]. 土壤學(xué)報(bào), 2010, 47(6): 1110-1117

      Liu Z J, Teng Y, Huang B, et al. Distribution and sources analysis of PAHs in farmland soils in areas typical of the Yangtze River Delta, China [J]. Acta Pedologica Sinica, 2010, 47(6): 1110-1117 (in Chinese)

      [22] Ping L F, Luo Y M, Zhang H B, et al. Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta Region, East China [J]. Environmental Pollution, 2007, 147(2): 358-365

      [23] Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants [J]. Environmental Science & Technology, 2000, 34(20): 4259-4265

      [24] Chen S C, Peng J J, Duan G L. Enrichment of functional microbes and genes during pyrene degradation in two different soils [J]. Journal of Soils and Sediments, 2015, 16(2): 417-426

      [25] Kweon O, Kim S J, Baek S, et al. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases [J]. BMC Biochemistry, 2008, 9(1): 11

      [26] Li X, Hou L, Liu M, et al. Abundance and diversity of polycyclic aromatic hydrocarbon degradation bacteria in urban roadside soils in Shanghai [J]. Applied Microbiology and Biotechnology, 2015, 99(8): 3639-3649

      [27] Leys N M, Ryngaert A, Bastiaens L, et al. Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons [J]. FEMS Microbiology Ecology, 2005, 51(3): 375-388

      [28] Bogan B W, Sullivan W R. Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil [J]. Chemosphere, 2003, 52(10): 1717-1726

      Polycyclic Aromatic Hydrocarbons (PAHs) Pollution and Their Effects on Bacterial Community in Agricultural Soils Near a Smelting Plant

      Wu Yucheng1,2, Lin Xiangui1,2,*, Zhu Qinghe1,2, Zeng Jun1,2, Ding Qingmin1,2

      1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China 2. Joint Open Laboratory of Soil and the Environment, Institute of Soil Science, Chinese Academy of Sciences and Hong Kong Baptist University, Nanjing 210008, China

      Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants that may pose significant risks on soil biota. In this study, 17 soil samples were collected from agricultural sites potentially polluted by a smelting plant in the outskirt of Nanjing, Jiangsu Province. The distances of the sampling sites to the potential PAHs source ranged from 500 m to 5 km. The total amounts of 15 PAHs (Σ15PAHs) in these samples ranged from 0.25~31.08 mg·kg-1, with most contaminated samples (> 1 mg·kg-1) found in closely adjacent sites to the plant. High molecular weight PAHs (≥ 4 rings) were dominant in most samples. PAH diagnostic ratios suggested these PAHs were largely related to coal and fossil fuel combustion. To reveal the bacterial community composition, 16S rRNA gene was amplified and analyzed using next generation sequencing. The Illumina’s MiSeq sequencing produced more than 225 000 reads, with averagely 13 257 reads obtained for each sample. The most abundant phyla across all samples were Proteobacteria, Bacteroidetes, Actinobacteria and Acidobacteria. Bacterial alpha diversity, as measured by observed species, Chao1, Phylogenetic Diversity (PD), Shannon and Simpson indices, were directly correlated to pH rather than PAHs. An ordination analysis indicated that the bacterial community composition was significantly influenced by pH and total phosphorus, while the contribution of PAHs was minimal. However, the PAHs levels were positively correlated to the relative abundance of a few potential PAHs degraders such as Mycobacterium, Rhodococcus, Actinomadura and Nocardioides. This trend was further confirmed by the quantitative PCR (qPCR) quantification of bacterial PAH ring-hydroxylating dioxygenase genes (PAH-RHDα). Although the gram negative (GN) bacterial PAH-RHDα gene abundance was below the detectable level, gram positive (GP) PAH-RHDα was recovered from all samples and its abundance was positively correlated with the PAHs pollution. The GP PAH-RHDα gene in three selected samples affiliated to the nidA3/fadA1 group, and their closest matches in Genbank were largely derived from Mycobacterium. Overall, these findings indicate the influence of industrial PAHs emission on the adjacent agricultural soils. The PAHs pollution may cause the enrichment of specific PAHs degraders such as Mycobacterium, although soil pH could be more significant in shaping total community of soil bacteria.

      polycyclic aromatic hydrocarbons; soil bacteria; PAH-ring hydroxylating dioxygenase; Mycobacterium; community effect

      10.7524/AJE.1673-5897.20151026001

      國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)(2014CB441106);國家自然科學(xué)基金(41371310,41201301);江蘇省自然科學(xué)基金(BK20131462);土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點(diǎn)實(shí)驗(yàn)室優(yōu)秀青年人才項(xiàng)目(Y212000014)

      吳宇澄(1977-),男,副研究員,研究方向?yàn)槲廴就寥郎镄迯?fù)及污染生態(tài)學(xué),E-mail: ycwu@issas.ac.cn

      *通訊作者(Corresponding author), E-mail: xglin@issas.ac.cn

      2015-10-26 錄用日期:2015-11-16

      1673-5897(2016)2-484-08

      Q142;X53

      A

      簡介:林先貴(1955-),男,研究員,博士生導(dǎo)師。主要研究方向土壤微生物多樣性及其生態(tài)功能、環(huán)境微生物及其應(yīng)用,發(fā)表學(xué)術(shù)論文300余篇。

      吳宇澄, 林先貴, 朱清禾, 等. 冶煉企業(yè)周邊農(nóng)田土壤的多環(huán)芳烴污染及其細(xì)菌群落效應(yīng)[J]. 生態(tài)毒理學(xué)報(bào),2016, 11(2): 484-491

      Wu Y C, Lin X G, Zhu Q H, et al. Polycyclic aromatic hydrocarbons (PAHs) pollution and their effects on bacterial community in agricultural soils near a smelting plant [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 484-491 (in Chinese)

      猜你喜歡
      芳烴農(nóng)田群落
      大學(xué)生牙齦炎齦上菌斑的微生物群落
      達(dá)爾頓老伯的農(nóng)田
      合成微生物群落在發(fā)酵食品中的應(yīng)用研究
      關(guān)于重芳烴輕質(zhì)化與分離的若干思考
      農(nóng)田創(chuàng)意秀
      農(nóng)田搞養(yǎng)殖需辦哪些證
      農(nóng)田制作所
      輪胎填充油中8種多環(huán)芳烴的檢測(cè)
      高芳烴環(huán)保橡膠填充油量產(chǎn)
      環(huán)保型橡膠填充油中芳烴及多環(huán)芳烴組成研究
      昭平县| 商洛市| 乌兰察布市| 徐闻县| 雷波县| 新河县| 滁州市| 白城市| 德安县| 蕲春县| 化隆| 衡阳市| 黑水县| 井研县| 宜州市| 潍坊市| 青田县| 漠河县| 扬州市| 泉州市| 奉新县| 浪卡子县| 五指山市| 辉县市| 苏尼特右旗| 晋宁县| 定陶县| 珲春市| 凤冈县| 托里县| 宣汉县| 郑州市| 雅安市| 遵化市| 麻栗坡县| 安丘市| 葵青区| 宿州市| 定州市| 廊坊市| 从化市|