• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Advances in the Research of Transcription Factors Involved in Plant Salt Stress Regulation

    2016-12-13 08:15:48CHENNaCHENGGuoWANGMianYANGZhenWANGTongCHENMingnaPANLijuanCHIXiaoyuanYUShanlin
    花生學(xué)報 2016年3期
    關(guān)鍵詞:基金項目青島市花生

    CHEN Na, CHENG Guo, WANG Mian, YANG Zhen, WANG Tong,CHEN Ming-na, PAN Li-juan, CHI Xiao-yuan, YU Shan-lin*

    (1. Shandong Peanut Research Institute, Qingdao 266100, China;2. Qingdao Entry-Exit Inspection and Quarantine Bureau, Qingdao 266001, China)

    ?

    Advances in the Research of Transcription Factors Involved in Plant Salt Stress Regulation

    CHEN Na1, CHENG Guo2, WANG Mian1, YANG Zhen1, WANG Tong1,CHEN Ming-na1, PAN Li-juan1, CHI Xiao-yuan1, YU Shan-lin1*

    (1. Shandong Peanut Research Institute, Qingdao 266100, China;2.QingdaoEntry-ExitInspectionandQuarantineBureau,Qingdao266001,China)

    Salt stress is a major environmental factor that adversely affects plant growth, development and crop yields. During the process of response and adaptation to salt stress, there are many changes in biochemical and physiological reaction, and many genes are activated, leading to accumulation of numerous proteins involved in resistance to salt stress. The expression of stress-induced genes is mainly regulated by specific transcription factors (TFs). Typically, the TFs are capable of activating or repressing the transcription of multiple target genes. So far, various TFs and cis-acting elements contained in stress-responsive promoters have been described. These TFs and cis-motifs function not only as molecular switches for gene expression, but also as terminal points of signal transduction in the signaling processes. In this article, we summarize the research progress of several TFs families, including transcription factors of NAC, bZIP and bHLH, which involved in plant salt stress regulation.

    transcription factors; salt stress; regulation mechanism; research advances

    Salt stress afflicts plant culture in many parts of the world, particularly on irrigated land[1]. Crop growth and productivity are often accompanied by salt stress, which results in a range of morphological, physiological, biochemical and molecular changes in the plant[2-3].

    The perception of salt stress operates through various sensors, which initiate a cascade of transcription, and consequently leading to the production of protective proteins and metabolites[4]. Transcription factors (TFs) are important components for regulating salt-responsive genes[5]. Large numbers of transcription factors that include activators, co-activators and suppressor have already been identified. Among them, transcription factors play critical roles in plant responses to salt stress via transcriptional regulation of the downstream genes responsible for plant tolerance to salt challenges. They constitute a redundant family of transcriptional regulators in plants with 134 members in theArabidopsisgenome, 94 for indica rice genome and 113 injaponica[6]. Many transcription factors are related proteins that share the homologous DNA binding domain and are classified in families based on their DNA-binding domains, such as the MYB-like proteins (containing helix-turn-helix motifs), the MADS domain proteins, the homeobox proteins, the bZIP (basic region leucine zipper) proteins or the zinc finger proteins (ZFPs)[7].

    Previous studies have revealed some key components that control and modulate salt stress adaptive pathways include transcription factors ranging from AP2/ERF, WRKY, and MYB proteins to general TFs[8-10]. In this review, we focus on recent advances in salt stress related NAC, bZIP and bHLH transcription factors and transcription factor -based engineering of increased salt adaptation. We hope to indicate the study direction of transcription factors involved in peanut salt stress regulation.

    1 NAC TAF1, UC2) transcription factors and plant salt stress

    The major NAC pathway is active in response to abiotic stress which has been identified and well elucidated inArabidopsisand rice[5, 11-12]. The NAC TF family is widely distributed in plants, but so far has not been found in other eukaryotes[13].

    Large-scale abiotic stress responsive expression analysis indicated that NAC family proteins may have important functions in plant salt stress acclimation. For example, out of 88 NAC transcription members in genome ofMedicagotruncatula, 36 members were up-regulated in roots during salt stress treatment[14]. A microarray analysis of the root transcriptome following NaCl exposure detected that 23 ANAC genes was induced and 7 genes was reduced, respectively, by a two-fold threshold[15]. In crops, such as rice, Fang et al. systematically analyzed the NAC family and identified 140 putative ONAC or ONAC-like TFs, among which 19 genes were up-regulated by salt stress[16]. Computational prediction assumed that there are at least 205 NAC or NAC-like TFs members in soybean, among which 8 genes were characterized to be induced by high salinity[17-19].

    Functional analysis revealed potentials of NAC in improvement of plant salt stress tolerance. NAC TFs enhance stress tolerance in the model plantArabidopsis. The expression ofArabidopsisAtNAC2 was induced by salt stress and this induction required ethylene and auxin signaling pathway. Overexpression ofAtNAC2 could maintain the number of lateral roots in transgenic lines during salt stress, which indicate that AtNAC2/ANAC092 may be a transcription factor incorporating the environmental and endogenous stimuli into the process of plant lateral root development[20]. Recently, ANAC092 gene also demonstrated an intricate overlap of ANAC092- mediated gene regulatory networks during salt-promoted senescence and seed maturation[21]. TransgenicArabidopsisoverexpressing a salt inducible rice NAC gene, theONAC063, showed enhanced tolerance to high salinity and osmotic pressure by similar mechanisms because ONAC063-upregulated genes were almost similar to those up-regulated by ANAC019, ANAC055 or ANAC072[22]. Overexpression ofTaNAC2 andTaNAC67 resulted in pronounced enhanced tolerances to salt stress inArabidopsisthrough enhancing expression of multiple abiotic stress responsive genes and improving physiological traits, including strengthened cell membrane stability, retention of higher chlorophyll contents, and so on[23-24]. In addition, many NAC transcription factors isolated from other plants were also involved in salt resistance regulation in transgenic lines. These members includedEcNAC1 of finger millet,GmNAC11 andGmNAC20 of soybean,DgNAC1 of chrysanthemum[25-27].

    Following the discovery of potential use of NAC TFs to improve stress tolerance inArabidopsis, a number of important successes were reported on the application of NAC TFs in genetic engineering of important crops, such as cultivated rice for enhanced tolerance against various environmental stresses. Transgenic rice overexpressing the stress inducibleSNAC1 orSNAC2/OsNAC6 gene both displayed salt tolerance[28-30]. TheSNAC1 transgenic rice was more sensitive to abscisic acid[28]. More recently, Liu et al. proved that overexpression ofSNAC1 improves salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[31]. Overexpression ofSNAC2/OsNAC6 could enhance expression of a large number of genes encoding proteins with predicted stress tolerance functions such as detoxification, redox homeostasis and proteolytic degradation as well[29-30]. Overexpression of another rice NAC gene, theONAC045 gene, whose expression is induced by high salinity and ABA treatment, showed significantly enhanced tolerance to salt at the seedling stage. At least, expression levels of two stress-responsive genes,OsLEA3-1 andOsPM1, were up-regulated inONAC045 transgenic lines[32]. However, expressions ofOsLEA3-1 andOsPM1 were not affected in eitherSNAC1 orSNAC2 transgenic rice, suggesting that ONAC045 TF improves stress tolerance of transgenic plants in different pathway than SNAC1 and SNAC2/OsNAC6[32]. Moreover, the potential transcriptional target genes of SNAC1 and SNAC2 are also different. There is no overlapping between the two sets of genes up or down-regulated in the two overexpression plants, respectively[29]. The core DNA binding sites for the putative SNAC1 and SNAC2 target genes are the same, but comparison of the flanking sequences of the core DNA binding sites in the putative SNAC1 and SNAC2 target genes revealed different conserved flanking sequences of the core binding sites of genes targeted by SNAC1 and SNAC2. Together, these results may suggest that different stress-responsive NAC TFs may activate the transcription of a different set of target genes, thus conferring diverse functions that jointly lead to stress tolerance.

    As we know, most transcription factors are localized in cell nucleus to exercise their transcription regulation functions. However, some membrane-bound transcription factors (MTTFs) were identified in recent years[33]. Six of the NAC factors - NTM1, NTL8, NTL6, NTL9, ANAC013 and ANAC017 -had been demonstrated to be membrane-bounded[33-40]. NAC-MTTFs appear to be localized to different membranes, including the nuclear/endoplasmic reticulum or the plasma membrane[34-35,37,39-40]. Among these MTTFs, NTL6 and NTL8 had been found to regulate salt-stress signaling impinging on flowering or seed germination pathways[35-36]. Under salt stress, the repression of FT (Flowering locus T) was attenuated, albeit mildly, in anntl8 mutant[35]. In addition, the germination rate under salt stress in seeds overexpressing the truncated form of NTL8 was decreased and that of anntl8 mutant was increased, suggesting that NTL8 regulates salt responses in seed germination[36]. Similarly to NTL8, transformants constitutively expressing an active form of NTL6 exhibited a hypersensitive response to ABA and high salinity in seed germination[38].

    As a whole, strong evidence indicated that transgenic rice plants harboring NAC genes have enhanced stress tolerance even in field trials, suggesting that NAC TFs are promising candidate genes for genetic engineering of different crops aimed at improving their productivity under adverse conditions.

    2 bZIP TFs and their role in conferring salt stress tolerance to plants

    bZIPs organize a large family which have been described inArabidopsis(75), rice (89), sorghum (92), soybean (131), and recently in maize (125)[41]. All the members of this family contain a basic region/leucine zipper (bZIP) domain. The bZIP family was subdivided into 10 groups named A to I, plus S inArabidopsisaccording to their sequence similarities and functional features[41-43]. While many bZIPs can form homodimers, bZIP members classified in different groups can be combined through heterodimerization to form specific bZIP pairs with distinct functionalities.

    Previous studies have indicated that bZIP proteins are key regulators involved in salt stress adaption. A lot of bZIP proteins isolated from diverse species includingArabidopsis, rice, tomato, soybean, maize and wheat, etc., enhanced the salt tolerance of the transgenic plants[44-56].

    The function mechanisms of bZIPs have been studied thoroughly. Some members of the basic region/leucine zipper (bZIP)-type protein family are ABA-responsive element binding protein (AREB) and ABA-responsive element binding factor (ABF), which act as major transcription factors in ABA-responsive gene expression under salt stress conditions inArabidopsis. For example, bZIP factors SlAREB1, ScAREB1, SpAREB1, AtABI5, OsABI5, and ABF2-4 inArabidopsisall have a key regulatory role in ABA signaling under salt stress[50,54, 57-58]. A key regulator of salt stress adaptation, the group F bZIP TF bZIP24, was identified by differential screening of salt-inducible transcripts inA.thalianaand a halophyticArabidopsis-relative model species[59]. In addition, AtbZIP24 shows salt inducible subcellular re-targeting to the nucleus and formation of homodimers, suggesting that molecular dynamics of bZIP factors could mediate new signaling connections within the complex cellular signaling network[59]. RNAi-mediated repression of the factor conferred increased salt tolerance toArabidopsis. The improved tolerance was mediated by stimulated transcription of a wide range of stress-inducible genes involved in cytoplasmic ion homeostasis, osmotic adjustment, as well as in plant growth and development, which demonstrated a pivotal function of bZIP24 in salt tolerance by regulating multiple mechanisms that are essential for stress adaptation[59].

    In addition, numerous bZIPs were proved to control signal transduction pathways by molecular re-organization and by posttranslational mechanisms[60-61]. Specific homodimerizations and heterodimerizations within the class of bZIP TFs as well as modular flexibility of the interacting proteins and posttranslational modifications might determine the functional specificity of bZIP factors in cellular transcription networks[44, 51-52,62]. The phosphorylation of bZIP proteins seems also important for their function. For example, potato StABF1 is phosphorylated in response to ABA and salt stress in a calcium-dependent manner, and a potato CDPK isoform (StCDPK2) had been identified to phosphorylate StABF1 in vitro[63]. The three factors AREB1, AREB2, and ABF3 can form homodimers and heterodimers as well as interact with a SnRK2 protein kinase suggesting ABA-dependent phosphorylation of the proteins[64].

    Similar to NAC transcription factors, one bZIP transcription factors involved in salt stress were also demonstrated to be membrane-bounded. Most bZIP MTTFs are anchored in the membrane of endoplasmic reticulum. In response to stress, cytosolic components of the transcription factors are released by proteolysis and move to the nucleus where they promote the up-regulation of stress response genes[65-66]. One such stress sensor/transducer isArabidopsisAtbZIP17, which is activated in response to salt stress. Under salt stress conditions, the stress-inducible expression of the activated AtbZIP17 enhanced salt tolerance as demonstrated by chlorophyll bleaching and seedling survival assays[65].

    3 bHLH TFs and their role in conferring salt stress tolerance to plants

    The bHLH family transcription factors have been intensively studied in plants and animals[66-67]. With the genome-wide analysis of the bHLH transcription factor family in plants, 162 bHLH genes inArabidopsisand 167 in rice were identified[68]. This family is defined by the bHLH signature domain, which is evolutionarily conserved[69-70]. Plant bHLH proteins bind to the E-box (CANNTG) motif in gene promoters; a consensus core element called G-box (CACGTG) is the most common form[68].

    Although numerous bHLH members were identified inArabidopsisand rice, only a few of them had been revealed to be involved in plant salt stress regulation.ChrysanthemumdichrumCdICE1 and tomatoSlICE1aboth contain conserved bHLH domain and overexpression of these two genes could both improve the tolerance of transgenic plants to salinity[71-72]. Jiang et al. identified three salt-inducible bHLH proteins: bHLH41, bHLH42/TT8 and bHLH92. Among which,bHLH92 was highly induced at the transcript level by a wide range of abiotic stresses and the response to NaCl was quantitatively the highest[73]. Overexpression ofbHLH92 moderately increased the tolerance to NaCl and osmotic stresses. However, knock-out mutants of this gene failed to show significant differences from WT plants in the root elongation assay under NaCl stress, suggesting that bHLH92 function is not required for full tolerance to NaCl, and may therefore be redundant with other bHLH proteins.OrbHLH001 andOrbHLH2 were cloned from Dongxiang wild rice[74-75]. Overexpression ofOrbHLH001 andOrbHLH2 enhances tolerance to salt stress inArabidopsis[74-75]. Examination of the expression of cold-responsive genes in transgenicArabidopsisshowed that the function of OrbHLH001 differs from that of ICE1 and is independent of a CBF/DREB1 cold-response pathway[75]. However, overexpression ofOrbHLH2 inArabidopsisimproved salt tolerance by enhancing the expression level of DREB1A/CBF3 and its down stream target genes, but the ABA signal pathway was not affected in transgenicArabidopsis, which suggest that OrbHLH2 probably function in salt response through an ABA-independent pathway[74]. These results suggest that different homologs of ICE1 may mediate the regulation of salt tolerance in a different signal response process. And what's more, Chen et al. indicated that overexpression ofOrbHLH001 could also confer salt tolerance in transgenic rice plants[76]. OrbHLH001 protein exercise its function by inducing the expression ofOsAKT1, another quantitative trait loci (QTLs) controlling K+uptake into the root and the Na+/K+ratio in salt-stress, to regulate the Na+/K+ratio inOrbHLH001-overexpressed plants[76].

    Guan et al. found a nuclear-localized calcium-binding protein, RSA1 (Short Root in Salt Medium 1), which is required for salt tolerance, and identified its interacting partner, RITF1, a bHLH transcription factor. They show that RSA1 and RITF1 regulate the transcription of several genes involved in the detoxification of reactive oxygen species generated by salt stress and that they also regulate the SOS1 gene that encodes a plasma membrane Na+/H+antiporter essential for salt tolerance[77]. This study discovered a novel nuclear calcium-sensing and -signaling pathway that is important for gene regulation and salt stress tolerance.

    As more members in the complex systems in stress response are reported, the function of bHLH transcription factors will be better understood.

    4 Other transcription factors related to salt stress in plants

    Numerous transcription factors were found to be invovled in plant salt tolerance regulation using large scale screening methods such as microarray hybridization. Besides the TFs referred above, a lot of other transcription factors may be involved in plant salt stress regulation. These transcription factors usually contain the conserved domain such as C2C2-DOF, GARP, GRAS, MADS, PHD, SBP, C3HC4-type RING finger, HSF, MYC, ZIM, LBD, and so on[15, 78-81].

    Several members of above mentioned family transcription factors were indicated to confer plant salt stress tolerance. For example, a poplar GRAS gene, PeSCL7, enhanced tolerance to salt treatments in transgenicArabidopsis[82]. Corrales et al. reported a group of five tomato DOF (DNA binding with One Finger) genes,SlCDF1-5.SlCDF1-5 genes exhibited distinct diurnal expression patterns and were differentially induced in response to osmotic, salt, heat, and low-temperature stresses[83].Arabidopsisplants overexpressingSlCDF1 orSlCDF3 showed increased salt tolerance. In addition, the expression of various stress-responsive genes, such asCOR15,RD29A, andRD10, were differentially activated in the overexpressing lines[83].

    However, most of the transcription factors were screened by microarray lack function analysis in salt stress regulation processes of plant. Therefore, more and more transcription factors will be proved to be involved in salt stress regulation in the future.

    5 Research advances of transcription factors involved in peanut salt stress regulation

    The cultivated peanut (ArachishypogaeaL.) is an important oil crop and play an important role in the economy of many countries[84]. Like many other crop species, peanut is relatively sensitive to salinity[84-85]. Some studies indicated that salinity could decrease seed germination, seedling development and dry matter accumulation[86-90]. Other proofs also indicated that salinity could induce damage to the photosynthetic apparatus or cause deficiencies of nutrient elements such as Ca, K and Mg[91-92], and lead to severe yield losses[90,93-94]. Based on gene expression response to abiotic stress, some transcription factor families, such as NAC, ERF and MYB, have been proved to be involved in peanut abiotic stress egulation[95-98]. AhNAC3 improves water stress tolerance by increasing superoxide scavenging and promoting the accumulation of various protective molecules in tobacco[96]. The overexpression ofAhERF019 enhances tolerance to drought, heat, and salt stresses inArabidopsis, but its regulation mechanism has not been studied[98].FourArabidopsistranscription factors,AtDREB1A,AtDREB2A,AtHB7 andAtABF3, enhance salt and drought tolerance by activating multiple cellular tolerance pathways in transgenic peanut[99-100]. Due to the complexity of the peanut genome and the difficulties of genetic transformation, there are limited studies on the molecular mechanisms of abiotic stress regulation in peanut. More studies are needed to clarify the signaling pathway involved in abiotic stress regulation in peanut.

    [1] Epstein E, Norlyn D, Rush, D W, et al. Saline culture of crops: a genetic approach [J]. Science, 1980, 210: 399-404.

    [2] Bhatnagar-Mathur P, Vadez V, Sharma K. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects [J]. Plant Cell Reports, 2008, 27: 411-424.

    [3] Sakamoto H, Maruyama K, Sakuma Y, et al.ArabidopsisCys2/His2-type zinc-finger proteins functions transcription repressors under drought, cold, and high-salinity stress conditions [J]. Plant Physiology, 2004, 136: 2734-2746.

    [4] Bartels D, Sunkar R. Drought and salt tolerance in plants [J]. Critical Reviews in Plant Sciences, 2005, 24: 23-58.

    [5] Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses inArabidopsisand grasses [J]. Plant Physiology, 2009, 149: 88-95.

    [6] Kielbowicz-Matuk A. Involvement of plant C2H2-type zinc finger transcription factors in stress responses [J]. Plant Science, 2012, 185-186: 78-85.

    [7] Fujimoto S Y, Ohta M, Usui A, et al.Arabidopsisethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression [J]. Plant Cell, 2000, 12: 393-404.

    [8] Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors inArabidopsis[J]. Trends in Plant Science, 2010, 15: 573-581.

    [9] Chen L, Song Y, Li S, et al. The role of WRKY transcription factors in plant abiotic stresses [J]. Biochimica et Biophysica Acta, 2012, 1819: 120-128.

    [10] Li X P, Tian A G, Luo G Z, et al. Soybean DRE-binding transcription factors that are responsive to abiotic stresses [J]. Theorrtical and Applied Genetics, 2005, 110: 1355-1362.

    [11] Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters [J]. Trends in Plant Science, 2005, 10: 88-94.

    [12] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses [J]. Annual Review of Plant Biology, 2006, 57: 781-803.

    [13] Olsen A N, Ernst H A, Leggio L L, et al. NAC transcription factors: structurally distinct, functionally diverse [J]. Trends in Plant Science, 2005, 10: 79-87.

    [14] Li D F, Su Z, Dong J L, et al. An expression database for roots of the model legumeMedicagotruncatulaunder salt stress [J]. BMC Genomics, 2009, 10: 517.

    [15] Jiang Y, Deyholos M K. Comprehensive transcriptional profiling of NaCl-stressedArabidopsisroots reveals novel classes of responsive genes [J]. BMC Plant Biology, 2006, 6: 25.

    [16] Fang Y, You J, Xie K, et al. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice [J]. Molecular Genetics and Genomics, 2008, 280: 535-546.

    [17] Tran L S, Quach T N, Guttikonda S K, et al. Molecular characterization of stress-inducible GmNAC genes in soybean [J]. Molecular Genetics and Genomics, 2009, 281: 647-664.

    [18] Mochida K, Yoshida T, Sakurai T, et al. In silico analysis of transcription factor repertoire and prediction of stress responsive transcription factors in soybean [J]. DNA Research, 2009, 16: 353-369.

    [19] Pinheiro G L, Marques C S, Costa M D, et al. Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response [J]. Gene, 2009, 444: 10-23.

    [20] He X J, Mu R L, Cao W H, et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development [J]. Plant Journal, 2005, 44: 903-916.

    [21] Balazadeh S, Wu A, Mueller-Roeber B. Salt-triggered expression of the ANAC092-dependent senescence regulon inArabidopsisthaliana[J]. Plant Signaling & Behavior, 2010, 5: 733-735.

    [22] Yokotani N, Ichikawa T, Kondou Y, et al. Tolerance to various environmental stresses conferred by the salt-responsive rice geneONAC063 in transgenicArabidopsis[J]. Planta, 2009, 229: 1065-1075.

    [23] Mao X G, Chen S S, Li A, et al. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances inArabidopsis[J]. PLoS One, 2014, 9: e84359.

    [24] Mao X G, Zhang H Y, Qian X Y, et al. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances inArabidopsis[J]. Journal of Experimental Botany, 2012, 63: 2933-2946.

    [25] Ramegowda V, Senthil-Kumar M, Nataraja K N, et al. Expression of a finger millet transcription factor, EcNAC1, in tobacco confers abiotic stress-tolerance [J]. PLoS One, 2012, 7: e40397.

    [26] Hao Y J, Wei W, Song Q X, et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants [J]. Plant Journal, 2011, 68: 302-313.

    [27] Liu Q L, Xu K D, Zhao L J, et al. Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco [J]. Biotechnology Letters, 2011, 33: 2073-2082.

    [28] Hu H H, Dai M Q, Yao J L, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 12987-12992.

    [29] Hu H, You J, Fang Y, et al. Characterization of transcription factor geneSNAC2 conferring cold and salt tolerance in rice [J]. Plant Molecular Biology, 2008, 67: 169-181.

    [30] Nakashima K, Tran L S, Van Nguyen D, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress- responsive gene expression in rice [J]. Plant Journal, 2007, 51: 617-630.

    [31] Liu G, Li X, Jin S, et al. Overexpression of rice NAC geneSNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton [J]. PLoS One, 2014, 9: e86895.

    [32] Zheng X N, Chen B, Lu G J, et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance [J]. Biochemical and Biophysical Research Communications, 2009, 379: 985-989.

    [33] Chen Y N, Slabaugh E, anf Brandizzi F. Membrane-tethered transcription factors inArabidopsisthaliana: novel regulators in stress response and development [J]. Current Opinion in Plant Biology, 2008, 11: 695-701.

    [34] Kim Y S, Kim S G, Park J E, et al. A membrane-bound NAC transcription factor regulates cell division inArabidopsis[J]. Plant Cell, 2006, 18: 3132-3144.

    [35] Kim S G, Kim S Y, Park C M. A membrane-associated NAC transcription factor regulates salt-responsive flowering via Flowering Locus T inArabidopsis[J]. Planta, 2007, 226: 647-654.

    [36] Kim S G, Lee A K, Yoon H K, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling inArabidopsisseed germination [J]. Plant Journal, 2008, 55: 77-88.

    [37] Yoon H K, Kim S G, Kim S Y, et al. Regulation of leaf senescence by NTL9-mediated osmotic stress signaling inArabidopsis[J]. Molecules and Cells, 2008, 25: 438-445.

    [38] Seo P J, Park C M. A membrane-bound NAC transcription factor as an integrator of biotic and abiotic stress signals [J]. Plant Signaling & Behavior, 2010, 5: 481-483.

    [39] De Clercq I, Vermeirssen V, Van Aken O, et al. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response inArabidopsis[J]. Plant Cell, 2013, 25: 3472-3490.

    [40] Ng S, Ivanova A, Duncan O, et al. Membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling inArabidopsis[J]. Plant Cell, 2013, 25: 3450-3471.

    [41] Wei K, Chen J, Wang Y, et al. Genome-wide analysis of bZIP- encoding genes in maize [J]. DNA Research, 2012, 19: 463-476.

    [42] Jakoby M, Weisshaar B, Droge-Laser W, et al. bZIP transcription factors inArabidopsis[J]. Trends in Plant Science, 2002, 7: 106-111.

    [43] Nijhawan A, Jain M, Tyagi A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice [J]. Plant Physiology, 2007, 146: 333-350.

    [44] Liu C, Mao B, Ou S, et al. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice [J]. Plant Molecular Biology, 2014, 84: 19-36.

    [45] Hsieh T H, Li C W, Su R C, et al. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response [J]. Planta, 2010, 231: 1459-1473.

    [46] Cheng L, Li S, Hussain J, et al. Isolation and functional characterization of a salt responsive transcriptional factor, LrbZIP from lotus root (NelumbonuciferaGaertn) [J]. Molecular Biology Reports, 2013, 40: 4033-4045.

    [47] Li Y, Sun Y, Yang Q, et al. Isolation and characterization of a gene fromMedicagosativaL., encoding a bZIP transcription factor [J]. Molecular Biology Reports, 2013, 40: 1227-1239.

    [48] Ying S, Zhang D F, Fu J, et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenicArabidopsis[J]. Planta, 2012, 235: 253-266.

    [49] Gao S Q, Chen M, Xu Z S, et al. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants [J]. Plant Molecular Biology, 2011, 75: 537-553.

    [50] Yanez M, Caceres S, Orellana S, et al. An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes [J]. Plant Cell Reports, 2009, 28: 1497-1507.

    [51] Liao Y, Zhang J S, Chen S Y, et al. Role of soybean GmbZIP132 under abscisic acid and salt stresses [J]. Journal of Integrative Plant Biology, 2008, 50: 221-230.

    [52] Liao Y, Zou H F, Wei W, et al. SoybeanGmbZIP44,GmbZIP62 andGmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenicArabidopsis[J]. Planta, 2008, 228: 225-240.

    [53] Kobayashi F, Maeta E, Terashima A, et al. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings [J]. Physiologia Plantarum, 2008, 134: 74-86.

    [54] Zou M, Guan Y, Ren H, et al. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance [J]. Plant Molecular Biology, 2008, 66: 675-683.

    [55] Xiang Y, Tang N, Du H, et al. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice [J]. Plant Physiology, 2008, 148: 1938-1952.

    [56] Zhang X, Wang L, Meng H, et al. Maize ABP9 enhances tolerance to multiple stresses in transgenicArabidopsisby modulating ABA signaling and cellular levels of reactive oxygen species [J]. Plant Molecular Biology, 2011, 75: 365-378.

    [57] Tezuka K, Taji T, Hayashi T, et al. A novel abi5 allele reveals the importance of the conserved Ala in the C3 domain for regulation of downstream genes and salt tolerance during germination inArabidopsis[J]. Plant Signaling & Behavior, 2013, 8: e23455.

    [58] Kim S, Kang J Y, Cho D I, et al. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance [J]. Plant Journal, 2004, 40: 75-87.

    [59] Yang O, Popova O V, Süthoff U, et al. TheArabidopsisbasic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance [J]. Gene, 2009, 436: 45-55.

    [60] Jindra M, Gaziova I, Uhlirova M, et al. Coactivator MBF1 preserves the redox-dependent AP-1 activity during oxidative stress inDrosophila[J]. EMBO Journal, 2004, 23: 3538-3547.

    [61] Schütze K, Harter K, Chaban C. Post-translational regulation of plant bZIP factors [J]. Trends in Plant Science, 2008, 13: 247-255.

    [62] Miller M. The importance of being flexible: the case of basic region leucine zipper transcriptional regulators [J]. Current Protein & Peptide Science, 2009, 10: 244-269.

    [63] Muniz Garcia M N, Giammaria V, Grandellis C, et al. Characterization of StABF1, a stress-responsive bZIP transcription factor fromSolanumtuberosumL. that is phosphorylated by StCDPK2 in vitro [J].Planta, 2012, 235: 761-778.

    [64] Yoshida T, Fujita Y, Sayama H, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation [J]. Plant Journal, 2010, 61: 672-685.

    [65] Liu J X, Srivastava R, Howell S H. Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress inArabidopsis[J]. Plant Cell Environment, 2008, 31: 1735-1743.

    [66] Srivastava R, Deng Y, Howell S H. Stress sensing in plants by an ER stress sensor/transducer, bZIP28 [J]. Frontiers in Plant Science, 2014, 5: 59.

    [66] Toledo-Ortiz G, Huq E, Quail P H. TheArabidopsisbasic/helix-loop-helix transcription factor family [J]. Plant Cell, 2003, 15: 1749-1770.

    [67] Sonnenfeld M J, Delvecchio C, Sun X. Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor [J]. Development Genes and Evolution, 2005, 215:221-229.

    [68] Li X X, Duan X P, Jiang H X, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice andArabidopsis[J]. Plant Physiology, 2006, 141: 1167-1184.

    [69] Murre C, McCaw P S, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins [J]. Cell, 1989, 56: 777-783.

    [70] Ferre-D'Amare A R, Pognonec P, Roeder R G, et al. Structure and function of the b/HLH/Z domain of USF [J]. EMBO Journal, 1994, 13:180-189.

    [71] Chen L, Chen Y, Jiang J F, et al. The constitutive expression ofChrysanthemumdichrumICE1 inChrysanthemumgrandiflorumimproves the level of low temperature, salinity and drought tolerance [J]. Plant Cell Reports, 2012, 31: 1747-1758.

    [72] Feng H L, Ma N N, Meng X, et al. A novel tomato MYC-type ICE1-like transcription factor, SlICE1a, confers cold, osmotic and salt tolerance in transgenic tobacco [J]. Plant Physiology and Biochemistry, 2013, 73: 309-320.

    [73] Jiang Y, Yang B, Deyholos M K. Functional characterization of theArabidopsisbHLH92 transcription factor in abiotic stress [J]. Molecular Genetics and Genomics, 2009, 282: 503-516.

    [74] Zhou J, Li F, Wang J L, et al. Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress inArabidopsis[J]. Journal of Plant Physiology, 2009, 166: 1296-1306.

    [75] Li F, Guo S, Zhao Y, et al. Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang Wild Rice confers freezing and salt tolerance in transgenicArabidopsis[J]. Plant Cell Reports, 2010, 29: 977-986.

    [76] Chen Y, Li F, Ma Y, et al. Overexpression of OrbHLH001, a putative helix-loop-helix transcription factor, causes increased expression of AKT1 and maintains ionic balance under salt stress in rice [J]. Journal of Plant Physiology, 2013, 170: 93-100.

    [77] Guan Q, Wu J, Yue X, et al. A nuclear calcium-sensing pathway is critical for gene regulation and salt stress tolerance inArabidopsis[J]. PLoS Genetics, 2013, 9: e1003755.

    [78] Srivastava A K, Ramaswamy N K, Suprasanna P, et al. Genome- wide analysis of thiourea- modulated salinity stress-responsive transcripts in seeds ofBrassicajuncea: identification of signalling and effector components of stress tolerance [J]. Annals of Botany, 2010, 106: 663-674.

    [79] Gruber V, Blanchet S, Diet A, et al. Identification of transcription factors involved in root apex responses to salt stress inMedicagotruncatula[J]. Molecular Genetics and Genomics, 2009, 281: 55-66.

    [80] Wei B, Zhang R Z, Guo J J, et al. Genome-wide analysis of the MADS-box gene family inBrachypodiumdistachyon[J]. PLoS One, 2014, 9: e84781.

    [81] Ji X Y, Wang Y C, Liu G F. Expression analysis of MYC genes fromTamarixhispidain response to different abiotic stresses [J]. International Journal of Molecular Sciences, 2012, 13: 1300-1313.

    [82] Ma H S, Liang D, Shuai P, et al. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance inArabidopsisthaliana[J]. Journal of Experimental Botany, 2010, 61: 4011-4019.

    [83] Corrales A R, Nebauer S G, Carrillo L, et al. Characterization of tomato cycling Dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses [J]. Journal of Experimental Botany, 2014, 65: 995-1012.

    [84] El-Akhal M R, Rincón A, Coba de la Pena T, et al. Effects of salt stress and rhizobial inoculation on growth and nitrogen fixation of three peanut cultivars [J]. Plant Biolology, 2013, 15: 415-421.

    [85] Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes [J]. Annual Review of Plant Physiology, 1980, 31: 149-190.

    [86] Nautiyal P C, Ravindra V, Joshi Y C. Germination and early seedling growth of some groundnut cultivars under salt stress [J]. Indian Journal of Plant Physiology, 1989, 32: 251-253.

    [87] Janila P, Rao T N, Kumar A A. Germination and early seedling growth of groundnut (ArachishypogaeaL.) varieties under salt stress [J]. Annual Agriculture Research, 1999, 20: 180-182.

    [88] Mensah J K, Akomeah P A, Ikhajiagbe B, et al. Effects of salinity on germination, growth and yield of five groundnut genotypes [J]. African Journal of Biotechnology, 2006, 5: 1973-1979.

    [89] Singh A, Prasad R. Salt stress effects growth and cell wall bound enzymes inArachishypogaeaL. seedlings [J]. International Journal of Integrative Biology, 2009, 7: 118-123.

    [90] Hammad S A R, Shaban K A, Tantawy M F. Studies on salinity tolerance of two peanut cultivars in relation to growth, leaf water content some chemical aspects and yield [J]. Journal of Applied Sciences Research, 2010, 6: 1517-1526.

    [91] Taffouo V D, Meguekam T L, Ngueleumeni M L P, et al. Mineral nutrient status, some quality and morphological characteristic changes in peanut (ArachishypogaeaL.) cultivars under salt stress [J]. African Journal of Environmental Science and Technology, 2010, 4: 471-479.

    [92] Qin L Q, Li L, Bi C, et al. Damaging mechanisms of chilling and salt stress toArachishypogaeaL. leaves [J]. Photosynthetica, 2011, 49: 37-42.

    [93] Lauter D J, Meiri A. Peanut pod development in pegging and root zone salinized with sodium chloride [J]. Crop Science, 1990, 30: 660-664.

    [94] Girdhar I K, Bhalodia P K, Misra J B, et al. Performance of groundnut,ArachishypogaeaL. as influenced by soil salinity and saline water irrigation in black clay soils [J]. Journal of Oilseeds Research, 2005, 22: 183-187.

    [95] Chen N, Yang Q L, Su M W, et al. Cloning of six ERF family transcription factor genes from peanut and analysis of their expression during abiotic stress [J]. Plant Molecular Biology Reporter, 2012, 30: 1415-1425.

    [96] Liu X, Liu S, Wu J, et al. Overexpression ofArachishypogaeaNAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging [J]. Plant Physiology and Biochemistry, 2013, 70: 354-359.

    [97] Chen N, Yang Q L, Pan L J, et al. Identification of 30 MYB transcription factor genes and analysis of their expression during abiotic stress in peanut (ArachishypogaeaL.) [J]. Gene, 2014, 533: 332-345.

    [98] Wan L, Wu Y, Huang J, et al. Identification of ERF genes in peanuts and functional analysis ofAhERF008 andAhERF019 in abiotic stress response [J]. Functional and Integrative Genomics, 2014, 14: 467-477.

    [99] Pruthvi V, Narasimhan R, Nataraja K N. Simultaneous expression of abiotic stress responsive transcription factors,AtDREB2A,AtHB7 andAtABF3 improves salinity and drought tolerance in peanut [J]. PLoS One, 2014, 9: e111152.

    [100] Sarkar T, Thankappan R, Kumar A, et al. Heterologous expression of theAtDREB1Agene in transgenic peanut conferred tolerance to drought and salinity stresses [J]. PloS One, 2014, 9: e110507.

    2016-06-13

    2014年國家“萬人計劃”青年拔尖人才;國家花生產(chǎn)業(yè)技術(shù)體系項目(CARS-14);山東省自然科學(xué)基金項目(ZR2011CQ036;ZR2012CQ031;ZR2014YL011;ZR2014YL012);國家自然科學(xué)基金項目(31000728; 31200211);青島市科技計劃應(yīng)用基礎(chǔ)研究項目(11-2-4-9-(3)-jch; 12-1-4-11-(2)-jch);青島市民生計劃項目(14-2-3-34-nsh);山東省農(nóng)業(yè)科學(xué)院青年科研基金項目(2016YQN14);山東省農(nóng)業(yè)科學(xué)院青年英才培養(yǎng)計劃

    陳娜(1979-),女,山東蓬萊人,山東省花生研究所副研究員,博士,主要從事花生遺傳育種研究。

    參與植物鹽脅迫調(diào)控的轉(zhuǎn)錄因子研究進展

    陳 娜1,程 果2,王 冕1,楊 珍1,王 通1,陳明娜1,潘麗娟1,遲曉元1,禹山林1*

    (1. 山東省花生研究所,山東 青島 266100; 2. 青島市出入境檢驗檢疫局,山東 青島 266001)

    鹽脅迫是影響植物生長、發(fā)育和作物產(chǎn)量的主要環(huán)境因子。在鹽脅迫的響應(yīng)和適應(yīng)過程中,植物會產(chǎn)生許多生理生化反應(yīng),許多基因被激活,導(dǎo)致大量參與鹽脅迫的蛋白質(zhì)的積累。脅迫響應(yīng)基因的表達主要由特定的轉(zhuǎn)錄因子(TF)調(diào)控,轉(zhuǎn)錄因子通??梢约せ罨蛞种贫鄠€靶基因的轉(zhuǎn)錄。目前已發(fā)現(xiàn)多個脅迫響應(yīng)的轉(zhuǎn)錄因子,對它們調(diào)控的基因啟動子區(qū)的順式作用元件也有很多研究。轉(zhuǎn)錄因子及其順式作用元件不僅是基因表達的分子開關(guān),而且在信號傳導(dǎo)過程中是信號轉(zhuǎn)導(dǎo)通路的終端。在這篇文章中,我們重點總結(jié)了參與植物鹽脅迫調(diào)控的幾類轉(zhuǎn)錄因子,包括NAC、bZIP和bHLH的研究進展。

    轉(zhuǎn)錄因子;鹽脅迫;調(diào)控機理;研究進展

    S332.6;Q789

    A

    10.14001/j.issn.1002-4093.2016.03.008

    *通訊作者:禹山林(1956-),男,研究員,主要從事花生遺傳育種研究。E-mail: yshanlin1956@163.com

    猜你喜歡
    基金項目青島市花生
    掏花生
    常見基金項目的英文名稱(二)
    常見基金項目的英文名稱(一)
    2019青島市科創(chuàng)板發(fā)展現(xiàn)狀
    商周刊(2019年18期)2019-10-12 08:51:10
    關(guān)于青島市地下城市空間開發(fā)的思考
    江西建材(2018年2期)2018-04-14 08:00:20
    青島市市立醫(yī)院(集團)
    到底埋在哪棵樹下
    花生去哪兒了
    雨后的露營
    青島市關(guān)工委采取多種形式學(xué)習(xí)黨的十八屆三中全會精神
    中國火炬(2014年2期)2014-07-24 14:17:02
    欧美精品一区二区免费开放| 国产aⅴ精品一区二区三区波| 欧美在线一区亚洲| 在线观看一区二区三区激情| 亚洲精品在线观看二区| 亚洲专区字幕在线| svipshipincom国产片| 真人一进一出gif抽搐免费| 欧美黑人欧美精品刺激| 天天影视国产精品| 久久国产乱子伦精品免费另类| 少妇粗大呻吟视频| 激情在线观看视频在线高清| av天堂久久9| 高清在线国产一区| 欧美日韩亚洲国产一区二区在线观看| 男人操女人黄网站| 国产精品久久久久久人妻精品电影| 亚洲精品国产精品久久久不卡| 精品国产美女av久久久久小说| 波多野结衣av一区二区av| ponron亚洲| 成人av一区二区三区在线看| 午夜两性在线视频| 侵犯人妻中文字幕一二三四区| 手机成人av网站| 女人爽到高潮嗷嗷叫在线视频| 色综合婷婷激情| 99国产精品99久久久久| 高潮久久久久久久久久久不卡| 日本三级黄在线观看| 国产单亲对白刺激| 精品日产1卡2卡| 午夜精品久久久久久毛片777| 叶爱在线成人免费视频播放| 亚洲,欧美精品.| 亚洲激情在线av| 搡老熟女国产l中国老女人| 国产av在哪里看| 黑人巨大精品欧美一区二区蜜桃| 一区二区三区精品91| 18禁黄网站禁片午夜丰满| 亚洲精品一卡2卡三卡4卡5卡| 嫩草影院精品99| 一进一出抽搐gif免费好疼 | 成人特级黄色片久久久久久久| 视频区图区小说| 亚洲第一青青草原| 777久久人妻少妇嫩草av网站| 亚洲免费av在线视频| 在线观看免费视频网站a站| 欧美日韩av久久| 亚洲精品国产一区二区精华液| 日韩欧美一区二区三区在线观看| 精品久久久久久电影网| 最近最新中文字幕大全免费视频| 婷婷精品国产亚洲av在线| 成人永久免费在线观看视频| 制服人妻中文乱码| 搡老乐熟女国产| 亚洲avbb在线观看| 免费在线观看亚洲国产| 久9热在线精品视频| 又大又爽又粗| 亚洲av熟女| 黑丝袜美女国产一区| 成人亚洲精品一区在线观看| 国产三级黄色录像| 五月开心婷婷网| 99精品欧美一区二区三区四区| 久久精品国产亚洲av香蕉五月| 无遮挡黄片免费观看| 无遮挡黄片免费观看| 精品一品国产午夜福利视频| 丰满的人妻完整版| 中文字幕最新亚洲高清| 一级作爱视频免费观看| 91国产中文字幕| 欧美色视频一区免费| 黄片大片在线免费观看| 久久久久国内视频| 91国产中文字幕| 真人一进一出gif抽搐免费| 欧美乱妇无乱码| 精品熟女少妇八av免费久了| bbb黄色大片| 精品久久久久久电影网| 国产麻豆69| 人人妻人人澡人人看| 亚洲人成电影观看| 久久午夜亚洲精品久久| 午夜精品久久久久久毛片777| 在线观看日韩欧美| 中文字幕人妻熟女乱码| 精品熟女少妇八av免费久了| 操出白浆在线播放| 国产av又大| 国产精品美女特级片免费视频播放器 | 日韩三级视频一区二区三区| www.999成人在线观看| 一区福利在线观看| 日本 av在线| 另类亚洲欧美激情| 一区福利在线观看| 人人妻人人爽人人添夜夜欢视频| 日韩三级视频一区二区三区| 一夜夜www| 国产黄色免费在线视频| 久久天躁狠狠躁夜夜2o2o| 精品福利永久在线观看| 欧美成人性av电影在线观看| 人成视频在线观看免费观看| 久久久久久久久久久久大奶| 日韩高清综合在线| 制服诱惑二区| 成人黄色视频免费在线看| 免费搜索国产男女视频| 大型av网站在线播放| 俄罗斯特黄特色一大片| 人成视频在线观看免费观看| 母亲3免费完整高清在线观看| 久久性视频一级片| 欧美乱妇无乱码| 老司机午夜十八禁免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久电影中文字幕| 国产精品亚洲av一区麻豆| 亚洲一区高清亚洲精品| 免费久久久久久久精品成人欧美视频| 国产成人啪精品午夜网站| 男女高潮啪啪啪动态图| 亚洲欧洲精品一区二区精品久久久| 最近最新中文字幕大全电影3 | 老司机靠b影院| 18禁观看日本| 午夜影院日韩av| 久久狼人影院| 国产高清激情床上av| 免费av毛片视频| 国产欧美日韩一区二区三| 欧美老熟妇乱子伦牲交| 99精品欧美一区二区三区四区| 成年人免费黄色播放视频| 国产一区二区激情短视频| 亚洲中文av在线| 久久久国产精品麻豆| 黑丝袜美女国产一区| 久久精品国产亚洲av高清一级| 51午夜福利影视在线观看| 男女之事视频高清在线观看| 一个人观看的视频www高清免费观看 | 国产91精品成人一区二区三区| 国产av一区二区精品久久| 国产主播在线观看一区二区| 国产精品免费一区二区三区在线| 久久精品影院6| 国产三级黄色录像| 天天添夜夜摸| 最近最新免费中文字幕在线| 在线观看免费午夜福利视频| 少妇的丰满在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久人人爽av亚洲精品天堂| 一本综合久久免费| 老司机深夜福利视频在线观看| 色综合婷婷激情| 国产免费男女视频| 韩国av一区二区三区四区| 精品福利永久在线观看| cao死你这个sao货| 夜夜爽天天搞| 中文欧美无线码| 99香蕉大伊视频| 欧美丝袜亚洲另类 | 老司机午夜十八禁免费视频| 日本撒尿小便嘘嘘汇集6| 老司机福利观看| 黄片播放在线免费| 91在线观看av| 又黄又爽又免费观看的视频| 午夜激情av网站| 丰满饥渴人妻一区二区三| 欧美+亚洲+日韩+国产| 国产成人系列免费观看| 久久精品国产亚洲av香蕉五月| 亚洲精品美女久久av网站| 久久中文字幕一级| 久久人妻熟女aⅴ| 最近最新免费中文字幕在线| 91国产中文字幕| 久久人妻福利社区极品人妻图片| 国产亚洲精品久久久久5区| 午夜免费激情av| 国产精品美女特级片免费视频播放器 | 黄色 视频免费看| 国产野战对白在线观看| 黑丝袜美女国产一区| 香蕉国产在线看| 国产亚洲欧美精品永久| 亚洲一区二区三区不卡视频| 黄网站色视频无遮挡免费观看| 日本欧美视频一区| 国产成人精品在线电影| 黄片大片在线免费观看| 国产区一区二久久| 99久久99久久久精品蜜桃| 精品少妇一区二区三区视频日本电影| av欧美777| 欧美激情高清一区二区三区| 一进一出抽搐动态| 久久国产精品人妻蜜桃| 国产精品国产高清国产av| 韩国精品一区二区三区| 亚洲激情在线av| 大型av网站在线播放| www国产在线视频色| 国产精品电影一区二区三区| 国产精品一区二区精品视频观看| 最好的美女福利视频网| 岛国视频午夜一区免费看| 免费人成视频x8x8入口观看| 中文字幕色久视频| 久久精品国产综合久久久| 18禁观看日本| 亚洲av美国av| 51午夜福利影视在线观看| 人人妻人人澡人人看| xxx96com| 一本大道久久a久久精品| 神马国产精品三级电影在线观看 | 日本精品一区二区三区蜜桃| 亚洲精品中文字幕一二三四区| 别揉我奶头~嗯~啊~动态视频| 成人18禁高潮啪啪吃奶动态图| 女同久久另类99精品国产91| 亚洲片人在线观看| 丝袜美腿诱惑在线| 无人区码免费观看不卡| 黄色毛片三级朝国网站| 少妇 在线观看| 波多野结衣av一区二区av| 国产亚洲欧美在线一区二区| 亚洲一区二区三区欧美精品| 亚洲人成伊人成综合网2020| 国产aⅴ精品一区二区三区波| 国产精品乱码一区二三区的特点 | 91字幕亚洲| 亚洲成人国产一区在线观看| 人人妻,人人澡人人爽秒播| 长腿黑丝高跟| 国产精品成人在线| 色婷婷av一区二区三区视频| 人妻久久中文字幕网| 不卡av一区二区三区| 曰老女人黄片| 无遮挡黄片免费观看| 亚洲熟妇熟女久久| tocl精华| 亚洲欧洲精品一区二区精品久久久| 亚洲午夜精品一区,二区,三区| 嫩草影视91久久| 久久久水蜜桃国产精品网| 在线观看午夜福利视频| 色尼玛亚洲综合影院| 久久精品91蜜桃| 岛国视频午夜一区免费看| 99riav亚洲国产免费| 亚洲第一欧美日韩一区二区三区| 无限看片的www在线观看| av天堂在线播放| 亚洲av电影在线进入| 人人妻人人澡人人看| 91在线观看av| 亚洲伊人色综图| 俄罗斯特黄特色一大片| 级片在线观看| 又黄又爽又免费观看的视频| 亚洲第一av免费看| 嫩草影院精品99| 操美女的视频在线观看| 咕卡用的链子| 悠悠久久av| 国产一区二区三区综合在线观看| 男人操女人黄网站| 50天的宝宝边吃奶边哭怎么回事| 动漫黄色视频在线观看| 亚洲精品美女久久久久99蜜臀| 欧美日韩视频精品一区| 亚洲情色 制服丝袜| 亚洲熟女毛片儿| 在线天堂中文资源库| 午夜精品在线福利| 日日夜夜操网爽| 嫩草影视91久久| 香蕉丝袜av| 夫妻午夜视频| 亚洲熟女毛片儿| 日本黄色日本黄色录像| 18禁黄网站禁片午夜丰满| 99久久99久久久精品蜜桃| 无遮挡黄片免费观看| 亚洲精品中文字幕一二三四区| 国产成人啪精品午夜网站| 欧美成人午夜精品| 欧美日本中文国产一区发布| 热99re8久久精品国产| 亚洲午夜理论影院| 日本五十路高清| 亚洲狠狠婷婷综合久久图片| 如日韩欧美国产精品一区二区三区| 黄色a级毛片大全视频| 欧美一区二区精品小视频在线| 中文字幕人妻丝袜一区二区| 99久久国产精品久久久| 欧美日韩国产mv在线观看视频| 久久人人精品亚洲av| 欧美日韩亚洲综合一区二区三区_| 大码成人一级视频| 又黄又爽又免费观看的视频| 在线观看免费视频网站a站| 久久久久九九精品影院| 黄色毛片三级朝国网站| 久久人人精品亚洲av| 满18在线观看网站| 国产精品永久免费网站| 亚洲人成网站在线播放欧美日韩| 欧美日本中文国产一区发布| x7x7x7水蜜桃| 女性被躁到高潮视频| 国产不卡一卡二| 亚洲人成电影观看| 看片在线看免费视频| 日韩成人在线观看一区二区三区| 国产成人精品久久二区二区91| 伦理电影免费视频| 日本免费一区二区三区高清不卡 | 久久中文字幕一级| 免费av中文字幕在线| 亚洲精品中文字幕在线视频| 午夜福利在线免费观看网站| 精品午夜福利视频在线观看一区| 麻豆成人av在线观看| 国产精品二区激情视频| 美女 人体艺术 gogo| 在线十欧美十亚洲十日本专区| 国产精品久久久人人做人人爽| 欧美日韩视频精品一区| 国产熟女xx| 日韩欧美一区视频在线观看| 真人一进一出gif抽搐免费| 真人做人爱边吃奶动态| 午夜福利欧美成人| 最近最新免费中文字幕在线| 一级毛片高清免费大全| 午夜影院日韩av| 在线观看午夜福利视频| 91精品国产国语对白视频| 村上凉子中文字幕在线| 日日干狠狠操夜夜爽| 国内久久婷婷六月综合欲色啪| 丝袜在线中文字幕| 宅男免费午夜| 男人的好看免费观看在线视频 | 99久久久亚洲精品蜜臀av| 女性生殖器流出的白浆| 午夜成年电影在线免费观看| 超碰97精品在线观看| 日韩三级视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲人成网站在线播放欧美日韩| 国产成人精品在线电影| 高清av免费在线| 99久久久亚洲精品蜜臀av| 男女之事视频高清在线观看| 最近最新中文字幕大全电影3 | cao死你这个sao货| 免费观看精品视频网站| 涩涩av久久男人的天堂| 十八禁人妻一区二区| 精品国产国语对白av| 精品国产美女av久久久久小说| x7x7x7水蜜桃| 亚洲熟女毛片儿| 俄罗斯特黄特色一大片| 国产aⅴ精品一区二区三区波| 三上悠亚av全集在线观看| 亚洲aⅴ乱码一区二区在线播放 | 日韩国内少妇激情av| 99久久人妻综合| 在线观看午夜福利视频| 亚洲国产欧美网| 国产精品香港三级国产av潘金莲| 一进一出抽搐动态| 亚洲午夜精品一区,二区,三区| 天堂√8在线中文| 女人精品久久久久毛片| 超碰97精品在线观看| 满18在线观看网站| 国产精品电影一区二区三区| 丁香欧美五月| 国产色视频综合| 又黄又粗又硬又大视频| 国产精品二区激情视频| www国产在线视频色| 麻豆久久精品国产亚洲av | 亚洲av成人一区二区三| 午夜福利一区二区在线看| 十分钟在线观看高清视频www| 日韩中文字幕欧美一区二区| 国内毛片毛片毛片毛片毛片| xxx96com| 欧美日韩一级在线毛片| 国产成人av激情在线播放| 免费看a级黄色片| 如日韩欧美国产精品一区二区三区| 欧美人与性动交α欧美软件| www.999成人在线观看| 91麻豆av在线| 妹子高潮喷水视频| 亚洲av第一区精品v没综合| 一级毛片精品| 1024香蕉在线观看| 少妇的丰满在线观看| 欧美日韩亚洲高清精品| 亚洲人成电影观看| 两性午夜刺激爽爽歪歪视频在线观看 | 乱人伦中国视频| 国产精华一区二区三区| 日韩免费高清中文字幕av| 免费在线观看完整版高清| 美女 人体艺术 gogo| 日韩中文字幕欧美一区二区| 亚洲欧美一区二区三区黑人| 精品国产乱子伦一区二区三区| 日韩 欧美 亚洲 中文字幕| 欧美日韩一级在线毛片| 一边摸一边抽搐一进一出视频| 色综合站精品国产| 国产人伦9x9x在线观看| 国产男靠女视频免费网站| 久9热在线精品视频| 水蜜桃什么品种好| 国产成人精品在线电影| 久久热在线av| 精品久久久久久,| 波多野结衣一区麻豆| 女性被躁到高潮视频| 成人免费观看视频高清| 黄片播放在线免费| 欧美在线黄色| av福利片在线| 亚洲av五月六月丁香网| 久久久久久大精品| 久久国产精品人妻蜜桃| 男女下面进入的视频免费午夜 | av电影中文网址| 国产高清激情床上av| 免费不卡黄色视频| 久久久久久免费高清国产稀缺| 亚洲国产精品一区二区三区在线| 一级毛片女人18水好多| 亚洲av片天天在线观看| 人人妻,人人澡人人爽秒播| tocl精华| 黄色成人免费大全| 一夜夜www| 丝袜美足系列| 男女床上黄色一级片免费看| 黄色丝袜av网址大全| 亚洲国产精品sss在线观看 | 亚洲av成人一区二区三| 日韩三级视频一区二区三区| 久久午夜综合久久蜜桃| 国产主播在线观看一区二区| 在线av久久热| 色在线成人网| 日韩一卡2卡3卡4卡2021年| 亚洲中文字幕日韩| cao死你这个sao货| 亚洲一区二区三区不卡视频| 亚洲av成人av| 国产高清videossex| 欧美在线黄色| 成人国语在线视频| 久久久久亚洲av毛片大全| 久久久国产成人免费| 精品少妇一区二区三区视频日本电影| 男女之事视频高清在线观看| 美女福利国产在线| 国产精品一区二区三区四区久久 | 超碰成人久久| 婷婷六月久久综合丁香| 日韩大码丰满熟妇| 欧美大码av| 夜夜看夜夜爽夜夜摸 | 18禁国产床啪视频网站| 亚洲av日韩精品久久久久久密| 久久九九热精品免费| 夜夜躁狠狠躁天天躁| 男人舔女人下体高潮全视频| 欧美黄色淫秽网站| 韩国精品一区二区三区| 精品熟女少妇八av免费久了| 超碰97精品在线观看| 成人手机av| 中文亚洲av片在线观看爽| 这个男人来自地球电影免费观看| 欧美日韩精品网址| 亚洲精品美女久久av网站| 国产高清videossex| 美女大奶头视频| 欧美黄色淫秽网站| av天堂在线播放| aaaaa片日本免费| 丝袜在线中文字幕| 久久九九热精品免费| 日韩中文字幕欧美一区二区| 99国产精品一区二区蜜桃av| 咕卡用的链子| 天天添夜夜摸| 色综合婷婷激情| videosex国产| 色综合婷婷激情| 久久久久久大精品| 丝袜美足系列| 成人亚洲精品一区在线观看| 一区二区三区国产精品乱码| 国产一区二区在线av高清观看| 国产激情欧美一区二区| 在线免费观看的www视频| 成人18禁在线播放| 国产精品久久久人人做人人爽| 日本三级黄在线观看| 久久精品国产亚洲av香蕉五月| 欧美成人免费av一区二区三区| 99re在线观看精品视频| 免费久久久久久久精品成人欧美视频| av在线播放免费不卡| 精品午夜福利视频在线观看一区| 欧美av亚洲av综合av国产av| 亚洲人成伊人成综合网2020| 女人被躁到高潮嗷嗷叫费观| 亚洲人成电影免费在线| 国产精品综合久久久久久久免费 | 在线免费观看的www视频| 国产片内射在线| 国产欧美日韩一区二区三| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久人人做人人爽| 多毛熟女@视频| 免费av毛片视频| xxx96com| 亚洲av美国av| 啦啦啦在线免费观看视频4| 久久久国产精品麻豆| 99国产精品99久久久久| 国产成人精品在线电影| 性色av乱码一区二区三区2| 欧美乱色亚洲激情| 欧美日韩亚洲综合一区二区三区_| 在线观看舔阴道视频| 亚洲七黄色美女视频| 高清欧美精品videossex| 中文字幕另类日韩欧美亚洲嫩草| 丝袜美足系列| 日韩欧美免费精品| 久久久久国产精品人妻aⅴ院| 亚洲黑人精品在线| 侵犯人妻中文字幕一二三四区| 18禁裸乳无遮挡免费网站照片 | 黄色视频不卡| 中文字幕高清在线视频| 叶爱在线成人免费视频播放| 欧美性长视频在线观看| 久久久久久久精品吃奶| av免费在线观看网站| 高清毛片免费观看视频网站 | 国产三级黄色录像| 91九色精品人成在线观看| 一夜夜www| 变态另类成人亚洲欧美熟女 | 中文字幕人妻熟女乱码| 97碰自拍视频| 国产单亲对白刺激| 国产xxxxx性猛交| 搡老乐熟女国产| 十八禁网站免费在线| 久久国产亚洲av麻豆专区| 极品教师在线免费播放| 精品卡一卡二卡四卡免费| 黄频高清免费视频| 久热爱精品视频在线9| 国产色视频综合| 18禁观看日本| 女人精品久久久久毛片| 巨乳人妻的诱惑在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品国产美女av久久久久小说| 50天的宝宝边吃奶边哭怎么回事| 女生性感内裤真人,穿戴方法视频| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久人妻精品电影| 变态另类成人亚洲欧美熟女 | 欧美人与性动交α欧美精品济南到| 精品电影一区二区在线| 国产精品秋霞免费鲁丝片| 亚洲国产精品999在线| 国产精品永久免费网站| 亚洲精品美女久久久久99蜜臀| 精品高清国产在线一区| 满18在线观看网站| 久久国产精品影院| 69精品国产乱码久久久| 午夜影院日韩av| 久久伊人香网站|