趙仕海,索洪敏,雷春雨,張鵬
(1.貴州民族大學(xué)理學(xué)院,貴州貴陽550025;2.遵義師范學(xué)院,數(shù)學(xué)與計(jì)算科學(xué)學(xué)院貴州遵義563002)
一類Neumann邊界的Kirchhoff型方程無窮多解的存在性
趙仕海1,索洪敏1,雷春雨1,張鵬2
(1.貴州民族大學(xué)理學(xué)院,貴州貴陽550025;2.遵義師范學(xué)院,數(shù)學(xué)與計(jì)算科學(xué)學(xué)院貴州遵義563002)
利用臨界點(diǎn)理論中的定理,研究一類Neumann邊界的Kirchhoff型方程無窮多解的存在性,并獲得了一些新的可解性條件。
Kirchhoff型方程;臨界點(diǎn);Neumann邊界;無窮多解;存在性
本文考慮如下的Kirchhoff方程:
由(?1)知I(u)是偶泛函,再由引理1和引理2,得到方程(1)存在無窮多解.定理1證畢.
[1]D D Qin.Multiplicity solutions for semilinear elliptic equations with sign-changing potential and nonlinearity[J].Electronic Journal of Differential Equations,2013,(207):1-9.
[2]Z Y Yao.Multiple solutions for a class of semilinear elliptic equations with nonlinear boundary conditions[J].Applied Mathematics,2014,(5):90-95.
[3]A Mao,Z Zhang.Sign-changing and multiple solutions of Kirchhoff type problems without the P.S.Condition[J].Nonlinear Anal,2009,(70):1275-1287.
[4]B T Cheng.Multiplicity of Nontrivial solutions for Kirchhoff Type problems[J].Boundary Value Problems,2010,(268): 268-946.
[5]C V Pao.Nonlinear parabolic and elliptic equations[M].New York:Plenum Press,1992.
[6]Y CAn,H M Suo.Multiplicity of solutions for Neumann problems for semilinear elliptic equations[J].Abstract and Applied Analysis,2014,(360):1-13.
[7]A Ambrosetti,P H Rabinowitz.Dual variational methods in critical point theory and applications[J].J Functional Analysis,1973,(14),349-381.
[8]S J Chen,L Li.Multiple solutions for the nonhomogeneous Kirchhoff equation on RN[J].Nonli near Anal,2013,(14): 1477-1486.
(責(zé)任編輯:朱 彬)
The Existence of Infinitely Many Solutions for a Class of Kirchhoff Equation with Neumann Boundary
ZHAO Shi-hai1,SUO Hong-min1,LEI Chun-yu1,ZHANG Peng2
(1.School of Science,Guizhou Minzu University,Guiyang 550025,China;2.Zunyi Normal College,Zunyi 563002,China)
By using the theorem in critical point theory,the existence of infinitely many solutions for a class of Kirchhoff equation involving Neumann boundary is studied.Besides,some new solvability conditions are obtained.
Kirchhoff equation;the critical point;Neumann boundary;infinitely many solutions;existence
O175.25
A
1009-3583(2016)-0111-03
2016-01-12
貴州省科學(xué)技術(shù)基金資助項(xiàng)目(黔科合J字[2013]2141號(hào),黔教科研發(fā)[2013]405號(hào))
趙仕海,男(仡佬族),貴州石阡縣人,在讀碩士,主要從事非線性泛函分析研究。