吉煒寰,黃 磊,鄒玉煒
(1.河南職業(yè)技術(shù)學(xué)院電氣工程系,鄭州450046;2.東南大學(xué)電氣工程學(xué)院,南京210096;3.安陽師范學(xué)院物理與電氣工程學(xué)院,河南安陽455000)
具有自校準(zhǔn)功能的多通道數(shù)字下變頻器設(shè)計(jì)*
吉煒寰1*,黃 磊2,鄒玉煒3
(1.河南職業(yè)技術(shù)學(xué)院電氣工程系,鄭州450046;2.東南大學(xué)電氣工程學(xué)院,南京210096;3.安陽師范學(xué)院物理與電氣工程學(xué)院,河南安陽455000)
針對(duì)多通道通信雷達(dá)系統(tǒng)中下變頻器件功能單一及幅相校準(zhǔn)電路實(shí)現(xiàn)復(fù)雜的問題,采用多模式全流水線坐標(biāo)旋轉(zhuǎn)數(shù)字計(jì)算機(jī)設(shè)計(jì)了一種改進(jìn)的全數(shù)字下變頻電路。改進(jìn)的設(shè)計(jì)在輸入端利用其旋轉(zhuǎn)模式實(shí)現(xiàn)數(shù)字下變頻功能,在基帶端利用其向量模式計(jì)算通道幅相誤差并形成反饋補(bǔ)償,具有精簡(jiǎn)的硬件系統(tǒng)結(jié)構(gòu)。閉環(huán)實(shí)驗(yàn)結(jié)果表面,系統(tǒng)自校準(zhǔn)后的基帶幅度誤差控制在0.08 dB內(nèi),相位誤差控制在0.15°內(nèi),進(jìn)一步驗(yàn)證了提出方法的可行性和正確性。
電路設(shè)計(jì);數(shù)字下變頻;坐標(biāo)旋轉(zhuǎn)數(shù)字計(jì)算機(jī);通道自校準(zhǔn);幅相誤差;現(xiàn)場(chǎng)可編程門陣列
數(shù)字下變頻器件DDC(Digital Downconverter)廣泛應(yīng)用于現(xiàn)代無線電設(shè)備中,尤其是通信與雷達(dá)系統(tǒng)[1-2]。它將數(shù)字化的射頻/中頻信號(hào)通過混頻、抽取和濾波等處理變換為低速率基帶信號(hào)供設(shè)備后續(xù)處理。為了消除多通道陣列系統(tǒng)間的幅相誤差,提高通信質(zhì)量,非常有必要對(duì)基帶信號(hào)進(jìn)行通道校準(zhǔn)[3-4]。由于大多數(shù)DDC器件并不含有通道校準(zhǔn)功能,硬件工程師往往需要設(shè)計(jì)額外的校準(zhǔn)電路。Kyeong[5]提出了一個(gè)簡(jiǎn)化的CDMA上行鏈路原理圖,該方案為了同時(shí)實(shí)現(xiàn)下變頻和校準(zhǔn)功能,需要設(shè)計(jì)多個(gè)硬件處理模塊,不僅響應(yīng)速度較慢,也增加了調(diào)試難度,且硬件成本隨著通道數(shù)的增加而線性增長。趙良羽[6]和陳錚等[7]均提出了數(shù)字中頻信號(hào)處理方法。但依然存在集成度不高、處理通道間幅度誤差和相位誤差都比較大的問題。隨著集成電路技術(shù)和片上系統(tǒng)的發(fā)展,將多個(gè)硬件模塊的功能集成在單個(gè)芯片上成為了可能[8]。本文基于現(xiàn)場(chǎng)可編程門陣列技術(shù),設(shè)計(jì)了一種數(shù)字下變頻IP核,利用流水線坐標(biāo)旋轉(zhuǎn)數(shù)字計(jì)算機(jī)CORDIC(Coordi?nate Rotation Digital Computer),實(shí)現(xiàn)了下變頻和通道幅相誤差校準(zhǔn)功能,簡(jiǎn)化了硬件系統(tǒng)的復(fù)雜度,提高了系統(tǒng)的處理效率。
CORDIC算法最早由Voldaer J[9]提出,用于正余弦函數(shù)的計(jì)算,基本原理是通過一系列固定且有限的坐標(biāo)角度旋轉(zhuǎn),逐步逼近目標(biāo)向量,角度旋轉(zhuǎn)采用移位和加法運(yùn)算實(shí)現(xiàn)。為了增加CORDIC的適用范圍,Walther J S[10]設(shè)計(jì)了CORDIC算法的統(tǒng)一方程式,在該方程下,CORDIC算法適用于圓周系統(tǒng)、雙曲系統(tǒng)和直線系統(tǒng)。以圓周系統(tǒng)為例,假設(shè)一個(gè)二維坐標(biāo)向量p=RP中,經(jīng)過逆時(shí)針旋轉(zhuǎn)θ角度后,新的向量表示為:
式中,R被稱為迭代旋轉(zhuǎn)矩陣,通過提取矩陣中的幅度因子cosθ,R矩陣可被重寫為:
式中,tanθ可以用某個(gè)固定的常系數(shù)2-i替換,這樣,在硬件系統(tǒng)中式(2)可通過簡(jiǎn)單的移位和加法運(yùn)算實(shí)現(xiàn),在每一級(jí)迭代矩陣中,旋轉(zhuǎn)角度θ均為一定值,旋轉(zhuǎn)方向的判斷,則依據(jù)向量工作在哪種模式。單級(jí)迭代方程表示為:
式中,δi代表向量旋轉(zhuǎn)方向,正值代表順時(shí)針旋轉(zhuǎn)。在旋轉(zhuǎn)模式下,δi的判斷依據(jù)為δi+1=sign(αi),通過在迭代中不斷減少向量角度,直至αi+1→0,最終CORDIC計(jì)算機(jī)將無限逼近目標(biāo)向量,結(jié)果表示為:
式中,K0為常系數(shù)縮放因子,αd為輸入的初始旋轉(zhuǎn)角度。在向量模式下,δi的判斷依據(jù)為δi+1=sign(bi),初始旋轉(zhuǎn)角αd設(shè)為0,通過在迭代中不斷減少縱坐標(biāo)的幅值,直至bi→0,最終CORDIC計(jì)算機(jī)將使向量旋轉(zhuǎn)至橫坐標(biāo),橫坐標(biāo)的幅值即為原始向量的模,總的旋轉(zhuǎn)角度即為原始向量的相角,結(jié)果表示為:
采用FPGA設(shè)計(jì)了16級(jí)流水線CORDIC電路,同單級(jí)狀態(tài)機(jī)迭代的方式相比,處理速度更高,系統(tǒng)由四個(gè)模塊組成:象限折疊預(yù)處理模塊、16級(jí)CORDIC旋轉(zhuǎn)模塊、幅值變換處理模塊、模式選擇模塊,設(shè)計(jì)原理如圖1所示。
圖1 流水線CORDIC電路原理圖
由于CORDIC向量旋轉(zhuǎn)最大可調(diào)節(jié)范圍為-99.88~99.88°,為了實(shí)現(xiàn)圓周范圍內(nèi)旋轉(zhuǎn),利用三角函數(shù)的對(duì)稱性對(duì)輸入的旋轉(zhuǎn)角度進(jìn)行預(yù)處理,同時(shí)對(duì)輸出向量坐標(biāo)進(jìn)行幅值變換,具體方法是:
當(dāng)αd∈[0,π/2]時(shí),a=a16,b=b16;
當(dāng)αd∈(π/2,π]時(shí),a=-b16,b=a16;
當(dāng)αd∈(π,3π/2]時(shí),a=-a16,b=-b16;
當(dāng)αd∈(3π/2,2π]時(shí),a=b16,b=-a16。
模式選擇寄存器用于設(shè)定CORDIC電路工作于向量模式還是旋轉(zhuǎn)模式,對(duì)于單級(jí)旋轉(zhuǎn)單元來說,不同的工作模式影響內(nèi)部加減法器的符號(hào)位。當(dāng)Smod=1時(shí),旋轉(zhuǎn)單元工作在旋轉(zhuǎn)模式,當(dāng)Smod=0時(shí),旋轉(zhuǎn)單元工作在向量模式。針對(duì)16級(jí)迭代CORDIC電路,總的幅度縮放因子:
由于所有通道均進(jìn)行了同比例放大,因此無需對(duì)該值進(jìn)行校正[11-12]。
2.1 旋轉(zhuǎn)模式下的改進(jìn)數(shù)字變頻
單個(gè)上行鏈路通道的傳統(tǒng)結(jié)構(gòu)如圖2所示。
圖2 傳統(tǒng)單通道簡(jiǎn)化原理圖
假定來自A/D器件的中頻(IF)信號(hào)表示為Asin(ωt+φ),來自數(shù)控振蕩器(NCO)的正交信號(hào)表示為ejω0t=sin(ω0t)+jcos(ω0t),幅相校準(zhǔn)因子表示為,其中Am代表幅度誤差,Pm代表相位誤差。圖2的整個(gè)處理流程用數(shù)學(xué)表達(dá)式表示為:
式中,LPF{·}表示低通濾波,用于濾除混頻后產(chǎn)生的高頻分量,由于低通濾波器為線性系統(tǒng),補(bǔ)償向量作為常系數(shù)可以代入括號(hào)中,得到:
在CORDIC旋轉(zhuǎn)模式下,如果將初始迭代向量p=(a0,b0)T中的坐標(biāo)設(shè)為:
設(shè)令初始旋轉(zhuǎn)角度為αd=ω0t+Pm,則代入式(4)后可得到:
該結(jié)果和式(6)有完全一致的形式,同時(shí)實(shí)現(xiàn)了混頻和通道校準(zhǔn)的功能,對(duì)應(yīng)的硬件原理圖如圖3所示。
圖3 CORDIC混頻電路實(shí)現(xiàn)
方案中初始旋轉(zhuǎn)角ad通過一個(gè)循環(huán)累加器實(shí)現(xiàn)線性相位的累加,F(xiàn)TW代表頻率調(diào)諧字:
式中,fclk代表系統(tǒng)時(shí)鐘,N代表循環(huán)累加器的位數(shù)[13-14],相位校準(zhǔn)因子Pm通過一個(gè)偏置累加器補(bǔ)償入混頻電路中,實(shí)數(shù)乘法器通過幅度校準(zhǔn)因子Am實(shí)時(shí)補(bǔ)償通道幅度誤差。該方法省去了專門的NCO混頻模塊,同時(shí)減少了乘法器的消耗。
2.2 向量模式下的幅相自校準(zhǔn)
為了實(shí)時(shí)獲取各個(gè)通道與參考通道的幅相誤差系數(shù)Am和Pm,需要從低速基帶信號(hào)中提取其幅值和相角,此時(shí)CORDIC將工作在向量模式中,如圖4所示。
圖4 CORDIC校準(zhǔn)電路實(shí)現(xiàn)。
圖4中,P′為基帶IQ信號(hào)的相角,-Pref為參考相角信號(hào),通過加法器實(shí)現(xiàn)相位偏差Pm的計(jì)算,A′為基帶IQ信號(hào)的幅值,Aref為參考幅值信號(hào),通過一個(gè)實(shí)數(shù)除法器實(shí)現(xiàn)幅值比例誤差A(yù)m的計(jì)算,Am和Pm將反饋進(jìn)入混頻模塊實(shí)現(xiàn)通道校正,由于采用實(shí)時(shí)校準(zhǔn)方式,整個(gè)過程無需任何快拍矩陣的存儲(chǔ)和運(yùn)算,簡(jiǎn)化了電路設(shè)計(jì)。
設(shè)計(jì)綜合了三通道數(shù)字下變頻器,系統(tǒng)工作在80 MHz,CIC濾波器采用400倍速率抽取,HB半帶濾波采用16階2倍速率抽取,F(xiàn)IR設(shè)計(jì)階數(shù)32階,因此最終基帶信號(hào)的數(shù)據(jù)率保持在100 kHz,時(shí)鐘管理電路用于分頻產(chǎn)生各個(gè)模塊需要的時(shí)鐘頻率,模式選擇與參數(shù)配置模塊可以實(shí)時(shí)更新濾波器和混頻電路的參數(shù),該模塊還能存儲(chǔ)各個(gè)通道的校準(zhǔn)因子用于外部主控設(shè)備的讀?。?5-16]。整個(gè)系統(tǒng)的原理框圖如圖5所示。
圖5 數(shù)字下變頻器總體系統(tǒng)框圖
整個(gè)器件通過一個(gè)低速SPI總線與外部接口通信。PLL采用FPGA自帶的IP核,將外部10 MHz晶振倍頻至80 MHz系統(tǒng)時(shí)鐘。FPGA芯片采用EP2C70F896C8,經(jīng)過綜合后共消耗15 321個(gè)邏輯單元、195個(gè)9 bit嵌入式乘法器、986 bit嵌入式存儲(chǔ)單元。
為了驗(yàn)證系統(tǒng)的功能,設(shè)計(jì)了如圖6的閉環(huán)實(shí)驗(yàn)。
圖6 閉環(huán)試驗(yàn)原理
將射頻信號(hào)源產(chǎn)生的10.8 MHz中頻信號(hào)經(jīng)過功分器一分為二,以通道1作為參考,利用衰減器實(shí)現(xiàn)通道2信號(hào)-5 dB的幅度衰減,利用不等長電纜實(shí)現(xiàn)通道的相位偏移,實(shí)驗(yàn)時(shí)先將DDC的校準(zhǔn)模塊關(guān)閉,將CORDIC混頻模塊的頻率字設(shè)為:FTW=#2290FF97(頻率10.802 MHz),用以產(chǎn)生2 kHz的基帶頻偏,采集兩通道各512個(gè)快拍的IQ數(shù)據(jù),將未校準(zhǔn)的原始數(shù)據(jù)通過串口傳給PC分析,得到校準(zhǔn)前兩通道的基帶時(shí)域如圖7所示。
圖7 校準(zhǔn)前兩通道時(shí)域圖
從圖7可看出,經(jīng)過多批量采樣數(shù)據(jù)計(jì)算,校準(zhǔn)前通道2與通道1有-5.8 dB的幅度衰減和-33.92°的相位偏差,過大的誤差會(huì)影響后續(xù)信號(hào)處理,比如波束形成和到達(dá)角估計(jì)。
然后使能DDC器件的校準(zhǔn)功能,采集經(jīng)過校準(zhǔn)后的基帶數(shù)據(jù),校準(zhǔn)后采集到的基帶信號(hào)時(shí)域如圖8所示。
從圖8中可看出,校準(zhǔn)后通道一致性較高,通道1和通道2兩者呈現(xiàn)重合效果。經(jīng)過計(jì)算,校準(zhǔn)后最大幅度誤差小于0.08 dB,相位誤差小于0.15度。為了進(jìn)一步證明器件的校準(zhǔn)效果,通道2經(jīng)校準(zhǔn)后512個(gè)快拍數(shù)據(jù)的幅度和相位誤差變化曲線如圖9所示。
圖8 校準(zhǔn)后兩通道時(shí)域圖
圖9 校準(zhǔn)后通道2幅相誤差曲線圖
從校準(zhǔn)后的幅相誤差曲線可以看出,信號(hào)呈現(xiàn)隨機(jī)抖動(dòng)的狀態(tài),這跟射頻信號(hào)源及系統(tǒng)采樣時(shí)鐘的穩(wěn)定度有關(guān),總的偏差沒有超過實(shí)驗(yàn)中計(jì)算的最大量值0.08 dB最大幅度誤差和0.15°最大相位誤差。實(shí)驗(yàn)結(jié)果表明:提出的設(shè)計(jì)方案不僅實(shí)現(xiàn)了信號(hào)的下變頻處理,而且能夠完成通道幅相誤差的實(shí)時(shí)校準(zhǔn),最終效果達(dá)到了實(shí)際工程指標(biāo)的要求。
CORDIC計(jì)算機(jī)具有消耗硬件資源少、迭代響應(yīng)速度高和高精度的優(yōu)勢(shì),改進(jìn)設(shè)計(jì)既利用了其旋轉(zhuǎn)模式實(shí)現(xiàn)下變頻功能,又利用其向量模式計(jì)算基帶通道誤差并形成反饋補(bǔ)償,同傳統(tǒng)數(shù)字下變頻電路相比,省去了NCO模塊電路和需要大量復(fù)乘運(yùn)算的校準(zhǔn)網(wǎng)絡(luò),其簡(jiǎn)單和易擴(kuò)展的特性在多通道雷達(dá)通信系統(tǒng)中,具有明顯的優(yōu)勢(shì)。通過閉環(huán)模擬實(shí)驗(yàn),結(jié)果表明改進(jìn)后的設(shè)計(jì)能夠?qū)⒉灰恢碌南伦冾l信號(hào)自動(dòng)補(bǔ)償為一致,最終通道間幅度誤差能夠小于0.08 dB,相位誤差小于0.15°,滿足了實(shí)際工程的需要。
[1]焦義文,王元?dú)J,姜坤,等.基于相位校正信號(hào)的變頻系統(tǒng)時(shí)延測(cè)量方法[J].系統(tǒng)工程與電子技術(shù),2015,37(5):1015-1022.
[2]Zhang Huajun,Gao Huotao,Zhou Lin,et al.A Novel Digital Beamformer Applied in Vehichle Mounted HF Receiving Device[J].IEICE Electronics Express,2014,11(2):1-8.
[3]黃戰(zhàn)華,王吉虎.基于TOF的海潮高度在線測(cè)量系統(tǒng)設(shè)計(jì)[J].傳感技術(shù)學(xué)報(bào),2015,28(9):1328-1334.
[4]安衛(wèi)國,達(dá)新宇,劉煒,等.基于Ka頻段的寬帶信號(hào)數(shù)字下變頻技術(shù)研究[J].現(xiàn)代防御技術(shù),2014,42(1):56-59.
[5]Mun G K,Hyung G P,Oh HG,et al.Array Calibration for CDMA Smart Antenna Systems[J].ETRI J,2004,26(6):605-614.
[6]趙良羽.可變帶寬的多級(jí)濾波器數(shù)字下變頻設(shè)計(jì)[J].電子技術(shù)應(yīng)用,2014,40(3):32-34.
[7]陳錚,曲秀杰,李炳沂,等.一種雷達(dá)數(shù)字中頻接收機(jī)處理方法與實(shí)現(xiàn)[J].電波科學(xué)學(xué)報(bào),2014,29(6):1212-1218.
[8]王倩,董曉龍,朱迪.基于流水線技術(shù)的數(shù)字下變頻器設(shè)計(jì)優(yōu)化[J].遙感技術(shù)與應(yīng)用,2014,29(1):151-154.
[9]Jack E V.The CORDIC Trigonometric ComputingTechnique[J]. IRE Trans.on Electron Comput,1959,8(3):330-334.
[10]Walther J S.A Unified Algorithm for Elementary Functions[C]//Proc 38th Spring Joint Computer Conf Atlantic City,NJ,1971,38:379-385.
[11]徐成,秦云川,李肯立,等.免縮放因子雙步旋轉(zhuǎn)CORDIC算法[J].電子學(xué)報(bào),2014,42(7):1441-1445.
[12]任小西,沈建龍.低時(shí)延一消耗的CORDIC算法及結(jié)構(gòu)的研究[J].計(jì)算機(jī)科學(xué),2014,41(8):25-29.
[13]劉馬良,朱樟明,郭旭龍,等.一種4路內(nèi)插CORDIC的14位吉赫茲DDS IP核[J].西安電子科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,40(6):62-66.
[14]劉文彬,朱名日,鄭丹平,等.FPGA的延時(shí)精確校準(zhǔn)在等效采樣中的應(yīng)用[J].電子器件,2015,38(3):706-710.
[15]張庭偉,袁正午,周牧,等.一種改進(jìn)的多模數(shù)字下變頻結(jié)構(gòu)及其FPGA實(shí)現(xiàn)[J].電訊技術(shù),2013,53(12):1592-1597.
[16]敬祥,夏威,李朝.變帶寬寬帶數(shù)字下變頻器的設(shè)計(jì)及其FPGA實(shí)現(xiàn)[J].微電子學(xué),2014(3):368-371.
吉煒寰(1974-),男,河南鄭州人,講師,碩士,主要研究方向?yàn)樽詣?dòng)控制與電子技術(shù),weih74@126.com;
黃 磊(1980-),男,河南商丘人,講師,博士,主要研究方向?yàn)殡姍C(jī)設(shè)計(jì)優(yōu)化及控制系統(tǒng);
鄒玉煒(1974-),男,河南安陽人,講師,博士,主要研究方向?yàn)樾履茉窗l(fā)電與無線電能傳輸。
Design of Multi-Channel Digital Downconverter with Self-Calibration Function*
JI Weihuan1*,HUANG Lei2,ZOU Yuwei3
(1.Department of Electrical Engineering,Henan Polytechnic,Zhengzhou 450046,China;2.College of Electrical Engineering,Southeast University,Nanjing 210096,China;3.College of Physics and Electrical Engineering,Anyang Normal University,Anyang He’nan 455000,China)
Conventional digital downconverters have limited function,and therefore additional channel calibration circuit is needed in multi-channel communication and radar systems.An improved design based on pipelined coor?dinate rotation digital computer is proposed.By applying orthogonal rotation mode in input,signal can be easily downconverted.By applying vector mode to calculate and compensate amplitude and phase errors of orthogonal sig?nals in baseband,channel inconsistency can be corrected.The design has reduced system architecture.Experimen?tal results show that,the improved design can greatly reduce amplitude and phase inconsistency to 0.08 dB and 0.15°,which verifies its effectiveness and feasibility.
circuit design;digital downconverter;coordinate rotation digital computer;channel self-calibration;channel calibration;amplitude and phase error;FPGA
TN45
A
1005-9490(2016)06-1386-05
1250
10.3969/j.issn.1005-9490.2016.06.021
項(xiàng)目來源:國家青年基金項(xiàng)目(51407027);河南省科技廳科技計(jì)劃項(xiàng)目(142102210517)
2015-12-10 修改日期:2016-01-07