李 詠,趙 云,張 輝,馮 寬,李召鋒,李衛(wèi)華
(石河子大學(xué)農(nóng)學(xué)院/新疆兵團(tuán)綠洲生態(tài)農(nóng)業(yè)重點實驗室,新疆石河子 832003)
花后高溫對小麥農(nóng)藝性狀及面粉品質(zhì)的影響
李 詠,趙 云,張 輝,馮 寬,李召鋒,李衛(wèi)華
(石河子大學(xué)農(nóng)學(xué)院/新疆兵團(tuán)綠洲生態(tài)農(nóng)業(yè)重點實驗室,新疆石河子 832003)
為研究花后不同時期高溫對小麥農(nóng)藝性狀和面粉品質(zhì)的影響,對2個不同基因型的小麥品種于花后不同時期進(jìn)行高溫處理,分析了其主要農(nóng)藝性狀及面粉品質(zhì)對高溫脅迫的響應(yīng)。結(jié)果表明,花后高溫可顯著降低2個小麥品種的千粒重,花后中期高溫對千粒重的影響更大;容重、穗長、主穗粒數(shù)和小穗數(shù)在各處理間的差異均不顯著。新春11號的膨脹勢在花后中期高溫處理后顯著提高;新春39號的膨脹勢在花后早期和中期高溫處理后均顯著降低,且花后早期高溫對膨脹勢的影響更大。2個品種的降落數(shù)值經(jīng)花后高溫處理后均表現(xiàn)出降低的趨勢,新春39號降低更顯著。新春11號在早期高溫處理下,籽粒的干、濕面筋含量、沉降值和蛋白質(zhì)含量均顯著高于對照,中期高溫處理下,干、濕面筋含量顯著高于對照,總體表現(xiàn)為高溫脅迫后各被測指標(biāo)值均升高。新春39號經(jīng)花后早期高溫處理,籽粒的干、濕面筋含量、蛋白質(zhì)含量均顯著低于對照;中期高溫處理后各被測指標(biāo)值均高于對照,但差異不顯著。新春11號在花后早期高溫處理下,面粉的峰值黏度、最終黏度和低谷黏度顯著低于中期高溫處理,其他指標(biāo)在各處理間差異不顯著;新春39號在花后早期高溫處理下最終黏度顯著高于中期高溫處理,而糊化溫度在中期高溫處理后顯著低于對照,其他指標(biāo)在各處理間差異不顯著。
小麥;花后高溫;農(nóng)藝性狀;面粉品質(zhì)
小麥?zhǔn)侨祟惖闹饕澄飦碓?。隨著生活水平的提高,人們對面制品的種類、品質(zhì)的要求越來越高,專用粉的需求量也越來越大[1]。我國北方地區(qū)小麥灌漿期間常出現(xiàn)短暫高溫天氣(日均氣溫超過 30 ℃),導(dǎo)致小麥高溫逼熟,使產(chǎn)量減少,籽粒蛋白質(zhì)含量雖然升高,但綜合品質(zhì)下降[2-3],對小麥生產(chǎn)造成極大影響。
高溫是影響小麥生長發(fā)育的非生物脅迫之一,在作物生長的任何階段都有可能發(fā)生,對小麥產(chǎn)量和品質(zhì)均有不利影響,其中花后高溫的影響尤為顯著[4-6]。在西北地區(qū)主要為干熱風(fēng)危害,嚴(yán)重影響小麥?zhǔn)诜?、結(jié)實,導(dǎo)致青枯逼熟,粒重降低[7]。Stone等[8]研究表明,小麥開花后短時間的高溫脅迫(日最高40 ℃,3 d)使小麥品質(zhì)變劣;隨著灌漿期溫度升高,籽粒蛋白質(zhì)含量顯著升高,且不同小麥品種對高溫脅迫的敏感性存在顯著差異;40 ℃高溫脅迫每增加1 d,熱敏感性品種Oxley蛋白質(zhì)含量增加0.22%,而抗熱性品種Egret增加0.13%。董洪平等[9]認(rèn)為涼爽氣候有利于北方冬麥的蛋白質(zhì)積累。前人對花后高溫與小麥籽粒生長發(fā)育的關(guān)系研究多集中于高溫對籽粒產(chǎn)量、蛋白質(zhì)含量、氮代謝關(guān)鍵酶以及葉片光合性能的影響[10-12],而對花后不同時期高溫對小麥品質(zhì)的影響研究較少。本研究選用熟期和品質(zhì)類型不同的2個新疆主栽春小麥品種,分別對其在花后不同時期進(jìn)行高溫處理,分析高溫脅迫對小麥農(nóng)藝性狀和面粉品質(zhì)的影響,以期為實現(xiàn)小麥高產(chǎn)、優(yōu)質(zhì)栽培及選育耐熱性品種提供參考依據(jù)。
1.1 試驗材料與設(shè)計
選用新春11號(中筋、中熟春小麥品種)和新春39號(強(qiáng)筋、早熟春小麥品種)為試驗材料。2015年4月于石河子大學(xué)農(nóng)學(xué)院試驗站進(jìn)行大田小區(qū)試驗,小區(qū)面積為3 m2,2次重復(fù),行長為1.5 m,行距0.2 m,稀條播,滴灌。在花后5~8 d(T1)和15~18 d(T2)田間搭建PVC塑料棚(2 m×1.5 m)進(jìn)行增溫處理,時間12:00-17:00,該時段平均溫度作為處理溫度。自然生長為對照(CK)。同年7月收獲。
1.2 測定項目與方法
1.2.1 主要農(nóng)藝性狀的測定
按照國家小麥良種區(qū)域試驗記載標(biāo)準(zhǔn),于成熟期分別選擇10株不同處理的材料,測定其主莖的穗長、小穗數(shù)、主穗粒數(shù)。
1.2.2 容重和千粒重的測定
采用高精度谷物水分容重測定儀(GAC-2100AGRI)進(jìn)行容重測定;隨機(jī)取500粒種子測千粒重。重復(fù)3次。
1.2.3 主要品質(zhì)指標(biāo)的測定
按照Quadrumat Junior試驗?zāi)ゲ僮饕?guī)程,進(jìn)行磨粉。
面粉蛋白質(zhì)的測定:采用FOOS公司1241型近紅外谷物成分快速分析儀測定。
濕面筋含量的測定:參考GB/T 14608-93標(biāo)準(zhǔn),使用Perten 公司2200 型面筋儀測定。
Zeleny 沉淀值的測定:采用AACC 56-61A方法,使用BAU-A型沉淀值測定儀測定。
降落數(shù)值的測定:采用AACC 56-8方法,使用Perten公司1500型降落數(shù)值儀測定。
糊化特性的測定:根據(jù)GB/T 14490-2008 方法,使用Perten公司RVA 黏度儀測定小麥面粉的峰值黏度、低谷黏度、最終黏度、稀懈值、回升值和峰值時間。
1.2.4 膨脹勢的測定
膨脹勢測定參考McCormick等[13]的方法。
1.3 數(shù)據(jù)分析
數(shù)據(jù)采用Excel 2016和SPSS Statistics 19 軟件進(jìn)行統(tǒng)計分析。
2.1 不同處理麥區(qū)溫度的變化
從表1可以看出,新疆石河子地區(qū)在小麥生長發(fā)育過程中溫度較高。2個小麥品種高溫處理的溫度均顯著高于對照(表1),平均增溫2.88~7.00 ℃,可以進(jìn)行花后高溫對小麥農(nóng)藝和品質(zhì)性狀影響的研究。
2.2 花后高溫對小麥農(nóng)藝性狀的影響
從表2可以看出,花后高溫處理下,2個小麥品種的千粒重均顯著低于對照,T1和T2處理間差異不顯著;容重、穗長、主穗粒數(shù)和小穗數(shù)在兩個品種的各處理間差異均不顯著,說明花后高溫對小麥容重、穗長、主穗粒數(shù)和小穗數(shù)的影響不大。
2.3 花后高溫對面粉膨脹勢和降落數(shù)值的影響
從圖1可以看出,T1處理下2個品種的膨脹勢均顯著低于T2處理;新春11號T1處理下的膨脹勢與CK差異不顯著;新春39號T1處理下的膨脹勢顯著低于CK。對降落數(shù)值,新春11號各處理間差異不顯著;新春39號花后高溫處理的降落數(shù)值顯著低于對照,但不同時期高溫處理間差異不顯著。
表1 不同處理的田間溫度
Table 1 Mean field temperature under different treatments
℃
T1:花后早期高溫;T2:花后中期高溫。數(shù)字后的不同字母表示0.05水平差異顯著。下同。
T1:High temperature at early stage after anthesis;T2:High temperature at middle stage after anthesis.Different letters following values indicate significant difference at 0.05 level.The same below.
2.4 花后高溫對小麥面粉糊化特性的影響
從表3可以看出,新春11號在T1處理下,除糊化溫度外,各項被測指標(biāo)均低于T2處理和CK,其中,峰值黏度、最終黏度和低谷黏度顯著低于T2處理;T2處理下,除糊化溫度和峰值時間外,其余各項被測指標(biāo)均大于CK,但與CK間差異不顯著。整體而言,對新春11號,T1處理對面粉糊化特性有負(fù)面影響,T2處理提高了面粉糊化特性各指標(biāo)值。在T2處理下,新春39號最終黏度顯著低于T1處理,與CK差異不顯著;而新春11號的糊化溫度顯著低于對照,與T1處理差異不顯著。其他各項指標(biāo)在三個處理間差異均不顯著,表現(xiàn)出T2處理對面粉糊化特性等各指標(biāo)有負(fù)面作用。
表2 花后高溫對小麥農(nóng)藝性狀的影響
Table 2 Effect of high temperature after anthesis on the agronomic traits in wheat
品種Variety處理Treatment性狀Trait千粒重Thousandkernelweight/g容重Volumeweight/(g·L-1)穗長Earlength/cm小穗數(shù)Spikeletsperspike穗粒數(shù)Grainsperear新春11號 Xinchun11T142.33b829.25a9.06a17.10a46.75aT241.92b835.50a9.06a16.40a49.15aCK43.43a842.50a9.72a16.70a50.70a新春39號 Xinchun39T142.54b827.75a8.28a14.05a35.55aT242.27b826.25a8.33a14.05a36.70aCK44.71a829.50a8.84a14.80a37.50a
圖柱上不同字母表示處理間差異顯著(P<0.05)。
Different letters above column mean significant difference among treatments(P<0.05).
圖1 花后高溫處理面粉的膨脹勢和降落數(shù)值
Fig.1 Swelling power and falling number of flour with different high temperature treatments after anthesis
2.5 花后高溫對面筋含量及蛋白質(zhì)性狀的影響
由表4可知,新春11號的干面筋含量、濕面筋含量、沉降值、蛋白質(zhì)含量均表現(xiàn)為T1處理>T2處理>CK,且各指標(biāo)在T1處理下均顯著高于CK;干面筋含量和濕面筋含量在T2 處理下也顯著高于CK,而沉降值和蛋白質(zhì)含量在T2處理和CK間差異不顯著。新春39號不同于新春11號,各被測指標(biāo)總體變化趨勢表現(xiàn)為T2處理>CK值>T1處理,其中,T2處理的干、濕面筋含量顯著高于T1處理;T1處理的籽粒蛋白質(zhì)含量顯著低于CK,沉降值在各處理間差異不顯著。從上述結(jié)果可以看出,花后早期和中期高溫處理對蛋白質(zhì)和面筋含量較低的中筋品種新春11號的各項指標(biāo)均有提高作用,以花后早期高溫處理效果明顯;而對蛋白質(zhì)和面筋含量較高的新春39號,花后中期高溫處理更有利于各項被測指標(biāo)的提高。
表3 花后高溫處理對淀粉糊化特性的影響
Table 3 Effect of high temperature after anthesis on starch pasting properties
品種Variety處理Treatment峰值黏度Peakviscosity/cp最終黏度Finalviscosity/cp低谷黏度Lowviscosity/cp糊化溫度Pastingtemperature/℃稀解值Break-down/cp回升值Setback/cp峰值時間Peaktime/min新春11號T12085.00b1887.50b980.75b66.22a1104.50a906.75a5.86aXinchun11T22753.00a2513.00a1442.25a66.04a1310.75a1070.75a6.06aCK2650.00ab2396.50ab1367.50a67.15a1282.50a1029.00a6.08a新春39號T13294.75a3383.75a2078.75a66.26ab1216.00a1305.00a6.20aXinchun39T22996.00a3142.00b1891.75a65.81b1104.25a1250.25a6.32aCK3428.50a3279.50ab1993.50a67.72a1435.00a1286.00a6.28a
表4 花后高溫處理對面粉蛋白質(zhì)性狀的影響
Table 4 Effect of high temperature after anthesis on flour protein characteristics
品種Variety處理Treatment干面筋含量Dryglutencontent/%濕面筋含量Wetglutencontent/%沉降值Settlementvalue/mL蛋白質(zhì)含量Proteincontent/%新春11號 Xinchun11T111.08a29.69a19.78a12.85aT29.87a28.06a17.25ab11.78abCK8.42b24.29b15.00b10.75b新春39號 Xinchun39T110.25b30.76b26.25a13.23bT212.70a36.26a26.63a13.50abCK11.88a34.12a26.75a14.20a
2.6 花后高溫對揉混儀參數(shù)的影響
從表5可知,新春11號在CK處理下,各被測指標(biāo)均大于T1處理,T1處理值大于T2處理值,說明花后不同時期的高溫處理對揉混儀參數(shù)有較大的負(fù)面影響。除T1處理下峰值寬度顯著小于CK外,其他各項指標(biāo)在處理間差異均不顯著。新春39號的峰值時間和8分鐘面積受到了花后高溫的抑制,但與CK差異不顯著;而峰值高度和峰值寬度較CK有所上升,峰值高度在T1處理下與CK差異顯著。
表5 花后高溫處理對揉混儀參數(shù)的影響
Table 5 Effect of high temperature after anthesis on Mixograph parameters
品種Variety處理Treatment參數(shù)Parameter峰值時間Peaktime/min峰值高度Peakheight/cm峰值寬度Peakwidth/cm8min面積8minutesarea/cm2新春11號 Xinchun11T12.87a55.06a28.28b129.94aT22.80a53.64a34.95ab119.85aCK3.39a53.08b42.53a142.62a新春39號 Xinchun39T12.66a58.06b27.01a123.01aT22.93a57.41a23.70a135.20aCK3.34a56.82a21.81a149.39a
高溫可促進(jìn)小麥生長發(fā)育的進(jìn)程,導(dǎo)致小麥生育期變短,不利于產(chǎn)量性狀的形成。拔節(jié)至開花期溫度較高則導(dǎo)致單株穗數(shù)[14-15]、每穗小穗數(shù)[15-16]和粒重[17]等指標(biāo)降低,此外高溫還使株高降低和總干物重下降[14],從而使小麥產(chǎn)量明顯下降。本試驗結(jié)果表明,2個小麥品種的千粒重經(jīng)花后高溫處理后顯著降低,以中期高溫處理影響更大?;ê蟾邷貙θ葜亍⑺腴L、主穗粒數(shù)和小穗數(shù)影響不顯著,具體原因有待進(jìn)一步研究。
膨脹勢用來表示小麥面粉在達(dá)到糊化溫度后的吸水特性,膨脹勢高有利于加工優(yōu)質(zhì)的面條或水餃[18]。膨脹勢主要與直鏈淀粉含量有關(guān),與籽粒硬度、蛋白質(zhì)含量、面筋強(qiáng)度等品質(zhì)性狀關(guān)系不大,Singh等[19]研究認(rèn)為,直鏈淀粉會抑制淀粉膨脹,特別是在脂類存在時,直鏈淀粉-脂類復(fù)合物會最大程度的抑制淀粉粒膨脹。前人研究發(fā)現(xiàn)膨脹勢受環(huán)境影響變化較大,且不同品種間存在差異。敬海霞[20]研究發(fā)現(xiàn),花后5 d高溫處理后,強(qiáng)筋小麥的膨脹勢升高;花后15 d高溫處理后,弱筋小麥和中筋小麥的膨脹勢升高。本研究結(jié)果表明,在籽粒灌漿中期高溫處理,中筋小麥的膨脹勢顯著提高,而強(qiáng)筋小麥的膨脹勢有所下降;花后早期高溫脅迫對膨脹勢的影響更大。小麥降落數(shù)值可反映小麥粉中α-淀粉酶活性的高低,降落數(shù)值越高,表明α-淀粉酶活性越低;降落數(shù)值越低,表明α-淀粉酶活性越高[21]。本研究中,兩個品種經(jīng)花后不同時期的高溫處理后,降落數(shù)值均表現(xiàn)出降低趨勢,以強(qiáng)筋類型的品種降低更為顯著,說明強(qiáng)筋小麥品種在高溫處理下α-淀粉酶活性顯著升高,而中筋小麥品種的α-淀粉酶活性受高溫的影響較小。
苗健利[22]研究發(fā)現(xiàn),在高溫脅迫下,強(qiáng)筋小麥豫麥 34 的高峰黏度、最終黏度(除花后 5 d 外)、稀懈值(除花后 15 d 外)和反彈值均顯著增大,而弱筋小麥豫麥 50 高峰黏度、低谷黏度和最終黏度則顯著下降。本研究中,花后早期高溫處理下,中筋小麥各黏度指標(biāo)較對照呈顯著下降趨勢,而強(qiáng)筋小麥則呈上升趨勢;但花后中期高溫處理下兩個不同類型品種的各黏度指標(biāo)的變化與早期高溫處理的變化趨勢完全不同。中筋小麥中期高溫處理下,高峰黏度、低谷黏度、最終黏度、稀懈值和回升值均顯著增加,而強(qiáng)筋小麥則呈降低趨勢,這可能跟環(huán)境與小麥品種有關(guān)。
蛋白質(zhì)含量由蛋白質(zhì)積累的相對速率和持續(xù)時間決定,易受環(huán)境條件的影響。隨著灌漿期溫度升高籽粒蛋白質(zhì)含量提高[23]。不同品種對高溫脅迫敏感性存在顯著差異[24-26]。盧紅芳等[12]發(fā)現(xiàn),灌漿前期高溫、干旱及其復(fù)合脅迫均顯著提高了強(qiáng)筋小麥鄭麥366和中筋小麥豫農(nóng)949的籽粒蛋白質(zhì)及組分含量,但降低了谷/醇比。吳進(jìn)東等[27]研究證明了花后高溫能提高面粉的濕面筋含量。本研究中,早熟、強(qiáng)筋的小麥品種蛋白質(zhì)性狀值在早期高溫處理下表現(xiàn)出下降趨勢,與對照相比除沉降值外,干、濕面筋含量和蛋白質(zhì)含量均顯著低于對照。揉混儀參數(shù)主要反映面團(tuán)在揉混、攪拌過程中的面團(tuán)塑性、彈性和黏性特征,是面團(tuán)流變學(xué)特性的重要參數(shù)。峰值高度越高,面粉對攪拌的耐受力越強(qiáng);峰值帶寬值越大,表明面筋彈性越大;峰值時間代表了面團(tuán)形成所需要的攪拌時間,通常面團(tuán)和面時間越長,耐揉性越好;曲線下積分面積是形成面團(tuán)所需要做功的一個量度,與面包體積關(guān)系密切[28]。本研究結(jié)果表明,花后不同時期的高溫脅迫對中筋小麥的揉混儀參數(shù)均表現(xiàn)出負(fù)面影響,即劣化了面團(tuán)的流變學(xué)特性。而強(qiáng)筋新春39號在高溫脅迫下峰值高度和峰值寬度均較對照有所上升。
小麥面粉品質(zhì)性狀較多,且不同品質(zhì)指標(biāo)對環(huán)境變化的反應(yīng)亦不相同,從本研究可以看出,花后高溫脅迫時間、品種類型均會影響面粉品質(zhì),尤其以面粉糊化特性相關(guān)指標(biāo)的變化更為復(fù)雜,不能簡單的一概而論,需要具體分析變化的原因。因本研究為一年一點試驗,試驗結(jié)果也只是反映了本年度小麥各品質(zhì)指標(biāo)對高溫脅迫的響應(yīng),更明確的結(jié)論還有待更多相關(guān)試驗。
[1] 昝香存,王步軍.強(qiáng)筋小麥磨粉各出粉點的面粉品質(zhì)特性研究[J].作物學(xué)報,2007,33(12):2028.
ZAN X C,WANG B J.Flour quality characteristics of different milling streams for strong-gluten wheat cultivars [J].ActaAgronomicaSinicaSinica,2007,33(12):2028.
[2] 張建平,趙艷霞,王春乙.氣候變化對我國華北地區(qū)冬小麥發(fā)育和產(chǎn)量的影響[J].應(yīng)用生態(tài)學(xué)報,2006,17(7):1179.
ZHANG J P,ZHAO Y X,WANG C Y.Effects of climate change on winter wheat growth and yield in north China [J].ChineseJournalofAppliedEcology,2006,17(7):1179.
[3] 劉 萍,郭文善,蒲漢春,等.花后短暫高溫對小麥籽粒蛋白質(zhì)含量的影響及其生理機(jī)制[J].作物學(xué)報,2007,33(9):1516.
LIU P,GUO W S,PU H C,etal.Effects of transient high temperature after anthesis on grain protein content and physiological mechanism in wheat(TriticumaestivumL.) [J].ActaAgronomicaSinicaSinica,2007,33(9):1516.
[4]JENNER C F,SIWEK K,HAWKER J S.The synthesis of [14C]starch from [14C]sucrose in isolated wheat grains is dependent upon the activity of soluble starch synthase [J].FunctionalPlantBiology,1993,20(3):329.
[5]WRIGLEY C W,BLUMENTHAL C,GRAS P W,etal.Temperature variation during grain filling and changes in wheat-grain quality [J].FunctionalPlantBiology,1994,21(6):875.
[6]BLUMENTHAL C S,BARLOW E W R,WRIGLEY C W.Growth environment and wheat quality:the effect of heat stress on dough properties and gluten proteins [J].JournalofCerealScience,1993,18(1):3.
[7] 張平平,何中虎,張 勇,等.高溫脅迫對小麥蛋白質(zhì)和淀粉品質(zhì)影響的研究進(jìn)展[J].麥類作物學(xué)報,2005,25(5):129.
ZHANG P P,HE Z H,ZHANG Y,etal.Effect of heat stress on wheat protein and starch quality [J].JournalofTriticeaeCrops,2005,25(5):129.
[8]STONE P J,NICOLAS M E.The effect of duration of heat stress during grain filling on two wheat varieties differing in heat tolerance:grain growth and fractional protein accumulation [J ].AustralianJournalofPlantPhysiology,1998,25:13.
[9] 董洪平,王 健.小麥蛋白質(zhì)含量的遺傳型×環(huán)境互作分析[J].河北農(nóng)業(yè)大學(xué)學(xué)報,1989(3):3.
DONG H P,WANG J.Analysis of genotype×environment interactions for protein content in wheat [J].JournalofAgriculturalUniversityofHebei,1989(3):3.
[10] 張英華,楊佑明,王志敏,等.灌漿期高溫對小麥旗葉與非葉器官光合和抗氧化酶活性的影響[J].作物學(xué)報,2015,41(1):136.
ZHANG Y H,YANG Y M,WANG Z M,etal.Effect of high temperature on photosynthetic capability and antioxidant enzyme activity of flag leaf and non-leaf organs in wheat [J].ActaAgronomicaSinicaSiniga,2015,41(1):136.
[11] 江文文,尹燕枰,李艷霞,等.花后高溫脅迫下氮肥追施后移對小麥產(chǎn)量及旗葉生理特性的影響[J].作物學(xué)報,2014,40(5):942.
JIANG W W,YIN Y P,LI Y X,etal.Effects of postponed application of nitrogen fertilizer on yield and physiological characteristics of flag leaf in wheat under post-anthesis heat stress [J].ActaAgronomicaSinicaSiniga,2014,40(5):942.
[12] 盧紅芳,王晨陽,尹云星,等.灌漿前期高溫和干旱脅迫對小麥籽粒蛋白質(zhì)含量和氮代謝關(guān)鍵酶活性的影響[J].生態(tài)學(xué)報,2014,34(13):3612.
LU H F,WANG C Y,YIN Y X.Effects of high-temperature and drought stress on protein concentration and key enzyme activities in relation to nitrogen metabolism in wheat grains during the early stage of grain filling [J].ActaEcologlcaSinica,2014,34(13):3612.
[13] MCCORMICK K M,許東河.膨脹勢測定在選擇小麥面條品質(zhì)方面的應(yīng)用[J].麥類作物學(xué)報,1992,12(6):28.
MCCORMICK K M,XU H D.Applications of determination of swelling potential in selected wheat noodle quality [J].JournalofTriticeaeCrops,1992,12(6):28.
[14]FISCHER R A,MAURER O R.Crop temperature modification and yield potential in a dwarf spring wheat [J].CropScience,1976,16:855.
[15]HE Z H,RAJARAM S.Differential responses of bread wheat characters to high temperature [J].Euphytica,1994,72:197.
[16]JOHNSON R C,KANEMASU E T.Yield and development of winter wheat at elevated temperatures [J].AgronomyJournal,1983,75:562.
[17]SMIKA D E,SHAWCROFT R W.Prehminary study using a wind tunnel to determine the effect of hot wind on a wheat crop [J].FieldCropsResearch,1980,3:129.
[18]MCCORMICK K M,PANOZZO J F.A swelling power test for selecting potential noodle quality wheat [J].AustralianJournalofAgriculturalResearch,1991,42(3):317.
[19]SINGH J,SINGH N.Studies on the morphological,thermal and rheological properties of starch separated from some Indian potato cultivars [J].FoodChemistry,2001,75(1):67.
[20] 敬海霞.不同基因型小麥對花后高溫與干旱脅迫的響應(yīng)[D].鄭州:河南農(nóng)業(yè)大學(xué),2010:24.
JING H X.Response of different wheat genotypes to post-anthesis high temperature and drought stress [D].Zhengzhou:Henan Agricultural University,2010:24.
[21] 吳 偉.降落數(shù)值與面粉加工[J].黑龍江糧油科技,1999(4):12.
WU W.Falling number and flour processing [J].HeilongjiangAgri-ScienceandTechnology,1999(4):12.
[22] 苗建利.高溫與干旱脅迫對小麥籽粒GBSS活性、淀粉品質(zhì)及產(chǎn)量的影響[D].鄭州:河南農(nóng)業(yè)大學(xué),2008:17.
MIAO J L.Studies on effects of high temperature and drought on GBSS activity and starch property in grains and yield of winter wheat [D].Zhengzhou:Henan Agricultural University,2008:17.
[23]BHULLAR S S,JENNER C F.Effects of temperature on the conversion of sucrose to starch in the developing wheat endosperm [J].AustralianJournalofPlantPhysiology,1986,13:605.
[24]STONE P J,NICOLAS M E.Effect of timing of heat stress during grain filling on two wheat varieties differing in heat tolerance.II.Fractional protein accumulation [J].FunctionalPlantBiology,1996,23:739.
[25]STONE P J,NICOLAS M E.Comparison of sudden heat stress with gradual exposure to high temperature during grain filling in two varieties of wheat differing in heat tolerance.Ⅱ.Fraction protein accumulation [J].AustralianJournalofPlantPhysiology,1998,25:1.
[26]BLUMENTHAL C S,BEKES F,GRAS P W,etal.Identification of wheat genotypes tolerant to the effects of heat stress on grain quality [J].CerealChemistry,1995,72:539.
[27] 吳進(jìn)東,李金才,陳云波,等.花后短暫高溫漬水逆境對冬小麥籽粒品質(zhì)的影響[J].核農(nóng)學(xué)報,2015,29(10):2006.
WU J D,LI J C,CHEN Y B,etal.Effects of transient high temperature and waterlogging after anthesis on grain quality of winter wheat [J].JournalofNuclearAgriculturalSciences,2015,29(10):2006.
[28]DOBRASZCZYK B J,SCHOFIELD J D.Rapid assessment and prediction of wheat and gluten baking quality with 2-g direct drive mixograph using multivariate statistical analysis [J].JournalofCerealChemistry,2002,79:607.
Effect of High Temperature after Anthesis on Agronomic Characteristics and Flour Quality of Wheat
LI Yong,ZHAO Yun,ZHANG Hui,FENG Kuan,LI Zhaofeng,LI Weihua
(College of Agriculture,Shihezi University/Key Laboratory of Oasis Eco-agriculture of Xinjiang Bingtuan,Shihezi,Xinjiang 832003,China)
In order to study the effects of different periods of high temperature after flowering on the agronomic traits and flour quality of wheat varieties,in this study,two different gene types of wheat varieties were selected and treated with high temperature at different time after flowering. Main agronomic traits and flour quality changes were analyzed deeply in response to heat stress,respectively. The results showed that high temperature treatments after flowering significantly reduced thousand kernel weight,which was affected more under high temperature treatment at middle stage after anthesis. There were no significant difference for test weight,spike length,grains per spike and spikelets of the two varieties under different treatments.The swelling power was significantly improved in Xinchun 11 under the high temperature treatment at middle stage after anthesis. However,the swelling power of Xinchun 39 was dramatically reduced under the high temperature treatments at both early and middle stages after anthesis. Falling number of two varieties showed decreasing trend under high temperature treatment after flowering,and Xinchun 39 decreased significantly. Under the high temperature treatment at early stage after anthesis,dry and wet gluten content,sedimentation value and protein content of Xinchun 11 were significantly higher than CK,while under the treatment at middle stage after anthesis,dry and wet gluten content were significantly higher than CK,and the indices(except sedimentation value and protein content) were higher after the high temperature stress. Under the high temperature treatment at early stage after anthesis,dry and wet gluten content and protein content of Xinchun 39 were significantly lower than CK.Under the treatment at middle stage after anthesis,each value(except settlement value) was higher than CK without significant difference. Compared with those under the treatment at middle stage after anthesis,peak viscosity,final viscosity and low viscosity of Xinchun 11 at early stage after anthesis were significantly lower,but other indicators were not significant among treatments. Final viscosity of Xinchun 39 under the treatment at early stage after anthesis was significantly higher than that under treatment at middle stage,and pasting temperature under treatment at middle stage was significantly lower than CK,and other indicators were not significantly different among treatments.
Wheat; High temperature after anthesis; Agronomic traits; Flour quality
時間:2016-11-04
2016-03-28
2016-05-13
新疆兵團(tuán)科技局重點科技項目(2011BA002)
E-mail:1298528319@qq.com
李衛(wèi)華(E-mail:lwh_agr@shzu.edu.cn)
S512.1;S311
A
1009-1041(2016)11-1482-07
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20161104.0924.018.html