王海燕, 許靜雅, 李 睿, 熊定奎, 曾 秀, 谷山林, 王介平, 周 嬋, 王小燕, 姚 洪
(重慶市畜牧科學(xué)院,重慶 402460)
研究與技術(shù)
響應(yīng)面優(yōu)化桑葉槲皮素提取物脫色工藝
王海燕, 許靜雅, 李 睿, 熊定奎, 曾 秀, 谷山林, 王介平, 周 嬋, 王小燕, 姚 洪
(重慶市畜牧科學(xué)院,重慶 402460)
為了減少色素等雜質(zhì)對(duì)桑葉槲皮素提取物分離純化的干擾,采用活性炭對(duì)其進(jìn)行脫色處理,并對(duì)工藝進(jìn)行優(yōu)化。以桑葉槲皮素提取物脫色率為評(píng)價(jià)指標(biāo),通過響應(yīng)面法對(duì)影響活性炭脫色效果的3個(gè)因素進(jìn)行優(yōu)化,分別為活性炭質(zhì)量濃度、脫色時(shí)間和脫色溫度。結(jié)果表明,桑葉槲皮素提取物活性炭最佳脫色工藝為:活性炭質(zhì)量濃度5 g/L、脫色時(shí)間9 min、脫色溫度79.04 ℃,桑葉槲皮素提取物的脫色率達(dá)94.65%±1.65%,與模型預(yù)測(cè)值94.30%基本相符。結(jié)果顯示,試驗(yàn)所得脫色工藝簡單易操作且脫色效果較好,對(duì)桑葉槲皮素提取物后續(xù)純化具有一定意義。
桑葉;槲皮素;醇提物;響應(yīng)面;活性炭;脫色
桑葉是藥食兩用植物[1],自古以來都有將桑葉作為中藥或食物進(jìn)行使用。研究表明,桑葉所具有的抗氧化、抗菌、降血糖、防治動(dòng)脈硬化等生理作用,與其含有的黃酮、多糖、生物堿等物質(zhì)息息相關(guān)[2-7]。為了提高桑葉經(jīng)濟(jì)價(jià)值,多元化開發(fā)利用是重要的途徑。目前,桑葉作為藥物提取原料的研究主要集中在桑葉粗提物及功能作用方面,對(duì)桑葉中單體的分析純化研究報(bào)道較少。槲皮素是桑葉黃酮中一種重要的苷元物質(zhì),活性作用強(qiáng),具有極大開發(fā)潛力[8-11]。根據(jù)文獻(xiàn)報(bào)道,桑葉中槲皮素的提取法主要為乙醇提取,多采用超聲波輔、微波、加熱回流等進(jìn)行輔助提取[12-20]。然而乙醇提取桑葉槲皮素的同時(shí),大量色素等雜質(zhì)也一并被提取,色素對(duì)桑葉槲皮素進(jìn)一步分離純化造成嚴(yán)重干擾。為了減少色素對(duì)桑葉槲皮素分離純化的干擾,本試驗(yàn)擬采取較廣泛應(yīng)用的活性碳脫色方法進(jìn)行處理,同時(shí)根據(jù)響應(yīng)曲面法對(duì)活性炭脫色工藝進(jìn)行優(yōu)化,以期為桑葉槲皮素分離純化提供技術(shù)參考。
1.1 材料與試劑
桑葉(重慶市畜牧科學(xué)院蠶業(yè)研究所);無水乙醇、活性炭(粉狀),以及其他化學(xué)試劑均為國產(chǎn)分析純(成都市科龍化工試劑廠)。
1.2 儀器與設(shè)備
FA2004 B電子天平(上海越平科學(xué)儀器有限公司);XMTD-4000電熱數(shù)顯恒溫水槽(上海比朗儀器有限公司);THC-10B數(shù)控超聲波提取機(jī)(濟(jì)寧天華超聲電子儀器有限公司);SHZ-D Ⅲ循環(huán)水式真空泵,旋轉(zhuǎn)蒸發(fā)器RE-2000B(鞏義市予華儀器有限責(zé)任公司);TU-1901雙光束紫外可見分光光度計(jì)(普析通用儀器有限責(zé)任公司)。
1.3 方 法
1.3.1 桑葉槲皮素提取方法
稱取干桑葉粉38 g,按照乙醇質(zhì)量分?jǐn)?shù)50%、料液比1︰26、溫度70 ℃提取30 min,提取2次,3 000 r/min離心10 min,過濾,合并濾液,真空減壓濃縮,回收乙醇,去離子水定容至100 mL,獲得桑葉槲皮素提液原液備用[21]。吸取桑葉槲皮素提取物原液10 mL,去離子水定容至1 000 mL,作為桑葉醇槲皮素提取稀釋液用于脫色處理。
1.3.2 脫色處理及計(jì)算方法
取250 mL燒杯,分別加入50 mL桑葉槲皮素提取稀釋液及適量的活性炭,在設(shè)定的溫度下攪拌脫色至相應(yīng)的時(shí)間。用TU-1901雙光束紫外可見分光光度計(jì)通過全波長掃描,確定最佳吸收波長,在該波長下測(cè)定吸光度,去離子水作空白試樣。再按下式計(jì)算脫色率:
其中主要使用的定理為,已知集合U={u1,u2,…,un},V={u1,u2,…,um},能夠發(fā)現(xiàn)其中對(duì)于確定的模糊影射f:U→F(V),u1→f(u1)=r=(ri1,ri2…rin)其中r∈F(V),m=1,2,···,n,能夠發(fā)現(xiàn),其中惟一確定模糊關(guān)系矩陣為
(1)
式中:Y為脫色率,A0為脫色前吸光度值,A1為脫色后吸光度值。
1.3.3 單因素試驗(yàn)
1)活性炭質(zhì)量濃度對(duì)桑葉槲皮素提取液脫色效果的影響
在7個(gè)250 mL錐形瓶中分別量取桑葉槲皮素稀釋液50 mL,再分別加入質(zhì)量濃度為2、4、6、8、10、12、14 g/L的活性炭,在70 ℃溫度下脫色10 min,脫色處理后過濾,在最佳吸收波長下測(cè)定吸光度。
2)脫色時(shí)間對(duì)桑葉槲皮素提取液脫色效果的影響
在7個(gè)250 mL錐形瓶中分別量取桑葉槲皮素稀釋液50 mL,加入12 g/L活性炭,在70 ℃條件下分別脫色處理4、5、6、7、8、9、10 min,脫色處理后過濾,在最佳吸收波長下測(cè)定吸光度。
在7個(gè)250 mL錐形瓶中分別量取桑葉槲皮素稀釋液50 mL,加入12 g/L活性炭,分別在55、60、65、70、75 ℃條件下脫色處理10 min,脫色處理后過濾,在最佳吸收波長下測(cè)定吸光度。
1.3.4 Box-Behnken試驗(yàn)設(shè)計(jì)
在單因素試驗(yàn)的基礎(chǔ)上,選取活性炭質(zhì)量濃度、脫色時(shí)間和脫色溫度自變量,脫色率(Y)為響應(yīng)值,根據(jù)Box-Behnken design(BBD)試驗(yàn)設(shè)計(jì)原理,進(jìn)行3因素3水平的響應(yīng)面分析試驗(yàn),如表1所示。通過Design-Expert 7.1.6軟件(STAT-EASE Inc., Minneapolis, USA)對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行回歸分析,試驗(yàn)結(jié)果通過多元回歸分析方法來擬合多元二次方程。
表2 試驗(yàn)因素與水平
Tab.2 Experimental factors and levels
水平編碼活性炭質(zhì)量濃度/(g·L-1)脫色時(shí)間/min脫色溫度/℃-1 10.05.060012.57.570115.010.0 80
1.4 數(shù)據(jù)統(tǒng)計(jì)分析
采用SPSS 15數(shù)據(jù)處理軟件,各組數(shù)據(jù)結(jié)果均以平均值±SD(n=3)表示,并進(jìn)行方差分析,LSD法多重比較,p<0.05為差異具有顯著性。
2.1 桑葉槲皮素提取物澄清度與色度測(cè)定波長的確定
圖1為桑葉槲皮素提取物的波長與吸光度的關(guān)系曲線。
圖1 桑葉槲皮素提取物的波長與吸光度的關(guān)系Fig.1 Relation curve between the wavelength and absorbance of quercetin extracted from mulberry leaves
由圖1可知,在190~400 nm的波長范圍內(nèi)桑葉槲皮素提取物有兩個(gè)明顯的吸收峰330 nm和210 nm。脫色率是根據(jù)比色法評(píng)價(jià),透光率越大,顯示澄清效果越好。提取液在330 nm處測(cè)的透光率最小,背景吸收較小,相對(duì)誤差小。為了更科學(xué)地反映桑葉槲皮素提取物在脫色前后在紫外區(qū)域的顏色變化,本試驗(yàn)選擇330 nm波長處作為測(cè)定波長[22-24]。
2.2 單因素試驗(yàn)分析
圖2為活性炭質(zhì)量濃度、脫色時(shí)間和脫色溫度對(duì)桑葉槲皮素提取物脫色率的影響。
圖2 活性炭質(zhì)量濃度、脫色時(shí)間和脫色溫度對(duì)桑葉槲皮素提取物脫色率的影響Fig.2 Effects of mass concentration of activated carbon, decolorization time and decolorization temperature on decolorization rates of quercetin extracted from mulberry leaves
從圖2(a)可以看出,活性炭質(zhì)量濃度在2.00~14.00 g/L時(shí),脫色率先隨活性炭質(zhì)量濃度增加而增加,在2.00 g/L時(shí),脫色率最低,為4.69%。活性炭質(zhì)量濃度在12.00 g/L之后,脫色率增加趨勢(shì)變緩,穩(wěn)定在98.69%~98.70%。結(jié)果表明,活性炭質(zhì)量濃度的較佳水平為12.00 g/L。
從圖2(b)可以看出,脫色時(shí)間在4.00~10.00 min,脫色率隨著時(shí)間的增加而小幅增加,脫色率達(dá)到97.86%。當(dāng)脫色時(shí)間為4.00 min時(shí),脫色率為95.13%,之后逐漸趨于平緩并維持在98.50%左右。綜合考慮為節(jié)約能耗,脫色時(shí)間為8.00 min時(shí)已能達(dá)到較好脫色效果。
從圖2(c)可以看出,脫色溫度在55.00~75.00 ℃時(shí),脫色率隨溫度緩慢上升,溫度在55.00 ℃時(shí),脫色率為最低值77.45%。溫度在70.00 ℃,脫色率為94.65%,75.00 ℃脫色率在96.80%。考慮節(jié)約能耗的問題,選擇脫色溫度為70.00 ℃。
2.3 響應(yīng)面優(yōu)化桑葉槲皮素提取物脫色率工藝參數(shù)
2.3.1 數(shù)學(xué)模型的建立與檢驗(yàn)
本試驗(yàn)利用Design-Expert 7.1.6軟件中的Box-Benhnken中心組合試驗(yàn)設(shè)計(jì),可獲得桑葉槲皮素提取物脫色率(Y)的三因素三水平試驗(yàn)設(shè)計(jì)及結(jié)果(表2),并獲得二次回歸方程:
表2 響應(yīng)面分析方案及試驗(yàn)結(jié)果
Tab.2 Experimental designs and results of response surface analysis
試驗(yàn)序號(hào)A活性炭質(zhì)量濃度/(g·L-1)B脫色時(shí)間/minC脫色溫度/℃脫色率/%110.07.58092.68215.05.07093.15312.57.57093.56412.55.06092.01510.07.56092.05612.57.57093.57710.010.0 7092.98812.55.08092.49915.010.0 7094.061012.57.57093.571112.510.0 6092.971215.07.58094.061312.510.0 8093.961412.57.57093.541512.57.57093.491610.05.07091.211715.07.56093.32
Y/%=(93.93+3.32A+0.83B-0.076C-2.04AB+0.68AC+0.38BC-1.80A2-0.53B2+0.44C2)×100
(2)
試驗(yàn)結(jié)果方差分析見表3。由表3可知,影響提取物脫色率的因素A,B,AB和A2均表現(xiàn)出了顯著水平,二次回歸方程整體模型極顯著,該回歸模型與實(shí)測(cè)值能較好地?cái)M合。進(jìn)一步對(duì)該回歸模型進(jìn)行顯著性檢驗(yàn)發(fā)現(xiàn),提取物脫色率二次回歸模的決定系數(shù)R2為96.78%,提取物脫色率二次回歸模的校正決定系數(shù)RAdj2為92.65%,均≥90%,說明模型相關(guān)度很好,p<0.0001,回歸模型極顯著。
表3 桑葉槲皮素提取物脫色率回歸方程的方差分析
Tab.3 Variance analysis of decolorization rate regression equation of quercetin extracted from mulberry leaves
變異源平方和自由度均方F值P>F顯著性模型125.24 913.92 20.270.0003??A活性炭質(zhì)量濃度/(g·L-1)80.01 180.01 116.57 <0.0001 ??B脫色時(shí)間/min3.9813.98 5.790.0470?C脫色溫度/℃0.01310.013 0.0190.8500AB16.56 116.56 24.130.0017?AC4.0014.00 5.830.0465?BC1.5911.59 2.310.1721A218.25 118.25 26.590.0013??B20.2510.25 0.360.5678C20.681.000.68 1.000.3515殘差Residual4.8070.69失擬LackofFit1.4830.4914.920.1230純誤PureError0.1440.035R2 0.9678R2adj 0.9265
注:*表示差異顯著(P<0.05);**表示差異極顯著(P<0.01)。
3.3.2 響應(yīng)面分析和優(yōu)化參數(shù)的優(yōu)化與驗(yàn)證
為了考察活性炭質(zhì)量濃度、脫色時(shí)間和脫色溫度交互項(xiàng)對(duì)桑葉槲皮素提取物脫色率的影響,在其他因素條件固定為0水平時(shí),考察交互項(xiàng)對(duì)桑葉槲皮素提取物脫色率的影響,對(duì)模型進(jìn)行降維分析。經(jīng)Design-Expert 7.1.6軟件分析,所得的響應(yīng)面圖見圖3。
由圖3可知,活性炭質(zhì)量濃度(A)與脫色時(shí)間(B)、活性炭質(zhì)量濃度(A)與脫色溫度(C)的響應(yīng)曲面圖坡度較陡,AB、AC交互較顯著。脫色時(shí)間(B)與脫色溫度(C)響應(yīng)曲面圖坡度較緩,顯示BC交互作用不顯著。響應(yīng)曲面圖與回歸模型的方差分析結(jié)果相吻合。
圖3 活性炭質(zhì)量濃度、脫色時(shí)間和脫色溫度對(duì)澄清度的影響三維響應(yīng)面Fig.3 Response surface for the effect of cross-interaction among mass concentration of activated carbon, decolorization time and decolorization temperature
2.4 桑葉醇提取脫色率工藝參數(shù)的優(yōu)化和驗(yàn)證
為了進(jìn)一步確定回歸方程式(2)模擬的最佳試驗(yàn)點(diǎn),對(duì)所得的回歸方程取一階偏導(dǎo)等于零并整理得:A=1.000,B=0.735,C=1.000。換算成實(shí)際試驗(yàn)條件:活性炭質(zhì)量濃度15.00 g/L、脫色時(shí)間9.00 min、脫色溫度79.04 ℃,桑葉醇提液脫色率為94.30%。
通過試驗(yàn)進(jìn)一步檢驗(yàn)方程的可靠性,采用上述優(yōu)化條件進(jìn)行澄清試驗(yàn),測(cè)得桑葉醇提取脫色率為94.65%±1.65%(n=3),與方程模擬值基本接近,進(jìn)一步驗(yàn)證了模型可靠性。
表4 桑葉槲皮素提取脫色率的優(yōu)化結(jié)果
Tab.4 The optimal results of decolorization rate of quercetin extracted from mulberry leaves
比較項(xiàng)目A活性炭質(zhì)量濃度/(g·L-1)B脫色時(shí)間/minC脫色溫度/℃澄清度/%理論值159.080.094.30實(shí)驗(yàn)值159.080.0(94.65±1.65)
通過桑葉乙醇提取、濃縮、單因素脫色、響應(yīng)曲面優(yōu)化、驗(yàn)證等步驟,對(duì)于由70.00%乙醇提取桑葉粉得出的桑葉槲皮素提取液的脫色工藝而言,經(jīng)過響應(yīng)曲面方法優(yōu)化后,其脫色最佳工藝條件為:活性炭質(zhì)量濃度15.00 g/L、脫色時(shí)間9.00 min、脫色溫度80.00 ℃。按照最佳脫色工藝進(jìn)行脫色的樣液,脫色率達(dá)到94.65%±1.65%。因此,本次試驗(yàn)得出的脫色工藝簡單易操作且脫色效果極好,對(duì)桑葉槲皮素后續(xù)分離純化研究具有重要意義。
[1]黃自然,李樹英.蠶業(yè)資源綜合利用[M].北京:中國農(nóng)業(yè)出版社,2013:46-47. HUANG Ziran, LI Shuying. Comprehensive Utilization of Sericulture Resources[M]. Beijing: China Agriculture Press,2013:46-47.
[2]王芳,勵(lì)建榮.桑葉的化學(xué)成分、生理功能及應(yīng)用研究進(jìn)展[J].食品科學(xué),2005,26(1):111-117. WANG Fang, LI Jianrong. Research progress on chemical constituents, physiological function and application of mulberry leaves[J]. Food Science,2005,26(1):111-117.
[3]夏滿莉,高琴,夏強(qiáng),等.桑葉乙酸乙酯提取物的血管作用及其機(jī)制[J].浙江大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2007,36(1):50-52. XIA Manli, GAO Qin, XIA Qiang, et al. Vascular effect of extract from mulberry leaves and underlying mechanism[J]. Journal of Zhejiang University(Medical Sciences),2007,36(1):50-52.
[4]曹旭,趙明,尚磊.桑葉總生物堿中1-脫氧野尻霉素在大鼠體內(nèi)的藥物動(dòng)力學(xué)研究[J].中藥新藥與臨床藥理,2012,23(4):451-452. CAO Xu, ZHAO Ming, SHANG Lei. Pharmacokinetics studies on 1-deoxynojirimycin from total alkaloids of folium mori in rats[J]. Traditional Chinese Drug Research and Clinical Pharmacology,2012,23(4):451-452.
[5]黃筱鈞.桑葉乙醇提取物體外對(duì)呼吸道合胞病毒的抑制作用[J].中國實(shí)驗(yàn)方劑學(xué)雜志,2014,20(22):170-171. HUANG Xiaojun. Inhibiting effects of ethanol extract of mori folium on respiratory syncytial virus in vitro[J]. Chinese Journal of Experimental Traditional Medical Formulae,2014,20(22):170-171.
[6]王燦,左艇,王琳琳.桑葉黃酮抗皮膚衰老實(shí)驗(yàn)研究[J].中國醫(yī)藥導(dǎo)報(bào),2011,8(3):30-31. WANG Can, ZUO Ting, WANG Linlin. Experimental research from flavonoids of mulberry leaves on the anti-aging effect[J]. China Medical Herald,2011,8(3):30-31.
[7]王洪俠.桑葉及桑白皮的抗衰老作用研究[D].北京:中國協(xié)和醫(yī)科大學(xué),2005:20-24. WANG Hongxia. Study of Folium Mori and Cortex Mori Oil Anti-aging Effect[D]. Beijing: Chinese Academy of Medical Sciences,2005:20-24.
[8]姚芳芳,張銳,傅瑞娟.槲皮素和芹菜素對(duì)高尿酸血癥大鼠血尿酸及抗氧化能力的影響[J].食品科學(xué),2011,32(5):287-289. YAO Fangfang, ZHANG Rui, FU Ruijuan. Effects of quercetin and apigenin on serum uric acid and antioxidant capacity in hyperuricemic rats[J]. Food Science,2011,32(5):287-289.
[9]FUKUDA I, ASHIDA H. Suppressive effects of flavonoids on activation of the arylhydrocarbon receptor induced by dioxins[C]// SHIBAMOTO T, SHAHIDI F, KANAZAWA K. Functional Foods and Health, ACS Symposium Series. Washington DC: American Chemical Society,2008:368-374.
[10]PSAHOULIA F H, DROSOPOULOS K G, DOUBRAVSKA L, et al. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts[J]. Molecular Cancer Therapeutics,2007,6(9):2591-2599.
[11]CHEN Chen, ZHOU Jane, JI Chunyan. Quercetin: a potential drug to reverse multidrug resistance[J]. Life Sciences,2010,87(11-12):333-338.
[12]廖玉婷.桑葉的抑菌作用及其活性物質(zhì)的提取分離研究[D].無錫:江南大學(xué),2007:9-14. LIAO Yuting. The Antimicrobial Effect of Antibacterial Activity of Mulberry Leaves and Extract and Isolate for Its Antimicrobial Activies[D]. Wuxi: Jiangnan University,2007:9-14.
[13]梁薇,梁瑩,應(yīng)慧芳.桑葉水提物及醇提物抗菌作用的研究[J].時(shí)珍國醫(yī)國藥,2005,16(8):753. LIANG Wei, LIANG Ying, YING Huifang. Antibacteria effect of aqueous extract and ethanol extract of mulberry leaves[J]. Li Shizhen Medicine and Materia Medica Research,2005,16(8):753.
[14]王芳,勵(lì)建榮,蔣躍明.桑葉黃酮的提取純化及對(duì)油脂抗氧化活性的研究[J].中國糧油學(xué)報(bào),2006,21(4):108-110. WANG Fang, LI Jianrong, JIANG Yueming. Extraction, purification and anti-oxidation evaluation of flavonoids from morus alba L. leaves[J]. Journal of the Chinese Cereals and Oils Association,2006,21(4):108-110.
[15]劉凡,黃勇,廖森泰.應(yīng)用響應(yīng)面法優(yōu)化桑葉多糖、黃酮和生物堿聯(lián)合提取工藝條件[J].蠶業(yè)科學(xué),2013,39(3):568-575. LIU Fan, HUANG Yong, LIAO Sentai. Process optimization for combined extraction of polysaccharide, flavones and alkaloid from mulberry leaves by response surface methodology[J]. Science of Sericulture,2013,39(3):568-575.
[16]俞堅(jiān).桑葉黃酮類化合物提取、分離鑒定及其抗氧化活性的研究[D].杭州:浙江工商大學(xué),2007:20-27. YU Jian. Studies on Extraction, Separation, Identification and Antioxidant Ablity of Mulberry (Morus Alba L.) Leaf Flavonoids[D]. Hangzhou: Zhejiang Gongshang University,2007:20-27.
[17]章華偉,陳星宇,凌春英.響應(yīng)面優(yōu)化醇法提取桑葉黃酮工藝研究[J].氨基酸和生物資源,2010,34(3):76-79. ZHANG Huawei, CHEN Xingyu, LING Chunying. Optimization of alcoholic extraction of flavonoids from mulberry leaves using response surface methodology[J]. Amino Acids & Biotic Resources,2010,34(3):76-79.
[18]王芳,喬璐,淡小艷,等.桑葉黃酮的提取及抗氧化研究[J].廣東農(nóng)業(yè)科學(xué),2011(15):76-79. WANG Fang, QIAO Lu, DAN Xiaoyan, et al. Study on extraction and anti-oxidation of flavonoids from morus aLba L. leaves[J]. Guangdong Agricultural Sciences,2011(15):76-79.
[19]李飛鳴,張國平,鄒湘月.桑葉黃酮類化合物研究進(jìn)展[J].中國蠶業(yè),2015,36(2):1-4. LI Feiming, ZHANG Guoping, ZHOU Xiangyue. The progress of mulberry flavonoids research[J]. China Sericulture,2015,36(2):1-4.
[20]楊青珍,王鋒,王帥.龍桑葉黃酮類物質(zhì)的提取工藝及抗氧化性研究[J].江蘇農(nóng)業(yè)科學(xué),2010(2):305-307. YANG Qinzhen, WANG Feng, WANG Shuai. The research of extraction process and antioxidant activities of long mulberry flavonoids[J]. Jiangsu Agricultural Sciences,2010(2):305-307.
[21]王海燕,李睿,曾秀,等.響應(yīng)面優(yōu)化超聲波提取桑葉槲皮素工藝[J].食品科學(xué),2014,35(22):56-62. WANG Haiyan, LI Rui, ZENG Xiu, et al.. Optimization of ultrasound-assisted extraction of quercetin from mulberry leaves by response surface methodology[J]. Food Science,2014,35(22):56-62.
[22]吳紅梅.多酚氧化酶酶源篩選及酶法制取茶色素研究[D].合肥:安徽農(nóng)業(yè)大學(xué),2004:6-10. WU Hongmei. Studies on Selection of Ppo Enzyme Source and Preparation of Tea Pigments by Enzymatic Method[D]. Hefei: Anhui Agricultural University,2004:6-10.
[23]王洪新,孫軍濤,呂文平,等.茶黃素的制備、分析、分離功能活性研究進(jìn)展[J].食品與生物技術(shù)學(xué)報(bào),2011,30(1):12-18. WANG Hongxin, SUN Juntao, Lü Wenping, et al. Research progress on preparation, analysis, separation and function of theaflavins[J]. Journal of Food Science and Biotechnology,2011,30(1):12-18.
[24]楊妍,彭春秀,盛軍,等.普洱茶中茶褐素含量的紫外光譜法測(cè)定[J].光譜學(xué)與光譜分析,2013,33(7):1850-1856. YANG Yan, PENG Chunxiu, SHENG Jun, et al. Study on the UV-quantitative analysis of the abrownins in Pu-Erh tea[J]. Spectroscopy and Spectral Analysis,2013,33(7):1850-1856.
Optimization of decolorization process of quercetin extracted from mulberry leaves by response surface methodology
WANG Haiyan, XU Jingya, LI Rui, XIONG Dingkui, ZENG Xiu, GU Shanlin, WANG Jieping,ZHOU Chan, WANG Xiaoyan, YAO Hong
(Chongqing Academy of Animal Sciences, Chongqing 402460, China)
In order to reduce the effects of pigments on isolating and purifying of quercetin extracted mulberry leaves, activated carbon was used to decolor it and the process was optimized. By taking the decolorization rate as a comprehensive evaluation index, the 3 process parameters (mass concentration of activated carbon, decolorization time and decolorization temperature) were optimized by response surface methodology. The results show that the best decolorization process (of activated carbon of quercetin extracted from mulberry leaves) is as follows: mass concentration of activated carbon 5 g/L, decolorization time 9 min and decolorization temperature 79.04 ℃. The decolourization ratio of the extract was 94.65%±1.65%, which was basically consistent with the predicted value (94.30%). The results show that the obtained decolorization process was easy to operate and its effect was better. The results have certain significance for subsequent purification of the extract.
mulberry leaves; quercetin; ethanol extract; response surface methodology; activated carbon; decolorization process
10.3969/j.issn.1001-7003.2016.12.003
2016-05-31;
2016-11-04 基金項(xiàng)目: 重慶市科委應(yīng)用開發(fā)計(jì)劃項(xiàng)目(cstc2014 yykfA80014);重慶市2015年農(nóng)發(fā)資金項(xiàng)目(15403) 作者簡介: 王海燕(1986_),女,助理研究員,主要從事天然活性成分、蠶桑資源綜合利用及食品安全與質(zhì)量控制的研究。通信作者:曾秀,研究員,whydetian@163.com。
TS190.924
A
1001-7003(2016)12-0012-06 引用頁碼: 121102