夏鴻寶,周國永,左登朝,吳上游,舒 汀
(1. 南京科瑞達(dá)電子裝備有限責(zé)任公司, 南京 211100) (2. 上海交通大學(xué) 上海市智能探測與識別重點(diǎn)實(shí)驗(yàn)室, 上海 200240)
·DBF在現(xiàn)代雷達(dá)中的應(yīng)用·
線陣干涉儀與均勻線陣DBF測向性能對比
夏鴻寶1,周國永1,左登朝1,吳上游1,舒 汀2
(1. 南京科瑞達(dá)電子裝備有限責(zé)任公司, 南京 211100) (2. 上海交通大學(xué) 上海市智能探測與識別重點(diǎn)實(shí)驗(yàn)室, 上海 200240)
從干涉儀線陣測向系統(tǒng)和均勻線陣DBF測向系統(tǒng)的組成和工作原理入手,介紹了兩種測向系統(tǒng)的處理流程,推導(dǎo)了方位估計(jì)的C-R下界,通過對C-R下界的分析,對比了兩種測向系統(tǒng)的性能,并根據(jù)兩系統(tǒng)的工作特點(diǎn),分析其應(yīng)用場景。所得結(jié)論對工程人員具有重要的參考價(jià)值。
數(shù)字干涉儀測向; DBF測向; C-R下界
在雷達(dá)和電子對抗領(lǐng)域,目標(biāo)的方位可以表征目標(biāo)的空間信息,是一項(xiàng)基本測量參數(shù)[1]。方位測量結(jié)果可用于目標(biāo)的無源定位、多感器信息融合、干擾機(jī)角度引導(dǎo)、反輻射攻擊引導(dǎo)等。方位測量精度是電子偵察接收機(jī)性能的重要表征參數(shù),通常作為系統(tǒng)的核心指標(biāo)之一。
常用的測向方法有時(shí)差法、波束搜索法、多波束測向、數(shù)字波束形成(DBF)測向、干涉儀測向和空間譜估計(jì)算法等[2]。相位干涉儀具有設(shè)備量小、處理時(shí)間短和測向精度高的優(yōu)點(diǎn),尤其適用于機(jī)載平臺,得到廣泛使用。DBF由于具備靈敏度高、處理靈活以及寬角度覆蓋的特點(diǎn),一直廣受關(guān)注,然而,受制于體積、重量和功耗以及有限的瞬時(shí)帶寬,在機(jī)載平臺難以推廣。隨著電子技術(shù)的快速發(fā)展,微波電路和數(shù)字電路小型化程度普遍提升,DBF技術(shù)的體積重量和功耗大幅下降,瞬時(shí)帶寬大幅提升,初步滿足在機(jī)載平臺應(yīng)用需求,目前正逐步走向?qū)嵱谩?/p>
本文從理論角度分析兩種測向體制的方位測量誤差,分析二者之間的性能特點(diǎn),為后續(xù)電子對抗裝備的技術(shù)體制選擇提供依據(jù)。
設(shè)M元天線組成的直線干涉儀陣列,如圖 1所示,該陣列可以選擇M條基線,基線長度分別為d1,,d2,…,dM。干涉儀測向精度僅與最長基線長度相關(guān),假設(shè)一個(gè)中心頻率為f的窄帶信號入射,則第一個(gè)陣元和最后一個(gè)陣元的接收信號分別為
s1(t)=Acos(2πft+φ0)+n1(t)
(1)
(2)
式中:n1(t)和nM(t)分別為觀測噪聲,通常滿足高斯白噪聲假設(shè);φ0為信號初始相位,相位未知,通常滿足[0,2π)均勻分布。
圖1 M陣元干涉儀布陣示意
數(shù)字式干涉儀測向設(shè)備處理流程如圖 2所示,將天線接收的射頻信號放大變頻至中頻頻率,數(shù)字接收機(jī)采集各路天線的中頻信號并進(jìn)行信道化處理,對其中一路天線的信道化輸出進(jìn)行檢測,測量該路的脈沖參數(shù)如頻率、脈寬以及幅度等信息,根據(jù)檢測的結(jié)果提取各個(gè)天線通道的相位信息,利用相位信息解算方位模糊并計(jì)算最終的信號方位角,解模糊的方法可以有很多種,與布陣的形式有關(guān),具體可參見文獻(xiàn)[3-5],這里就不再詳細(xì)描述。
圖2 干涉儀處理流程示意
干涉儀的最終測向精度取決于最長基線的長度,經(jīng)過解模糊后,可以得到方位的估計(jì)值為
(3)
式中:ΔφM=φM-φ1為測量的模糊相位;k為模糊倍數(shù)需要通過相位解模糊得到。
設(shè)N元天線組成的均勻直線陣列,陣元間距為d,如圖3所示,對于假設(shè)一個(gè)中心頻率為f的窄帶信號入射,則第i個(gè)陣元接收信號為
(4)
式中:ni(t)為觀測噪聲,通常假設(shè)為高斯白噪聲;φ0為信號初始相位,相位未知,服從[0,2π]均勻分布。
圖3 N陣元均勻線陣布陣示意
數(shù)字波束形成DBF接收機(jī)的處理流程如圖4所示,與數(shù)字干涉儀一樣,將接收的射頻信號轉(zhuǎn)換到中頻,對中頻信號進(jìn)行模數(shù)變換采集,對采集到的信號進(jìn)行DBF處理,輸出信號再進(jìn)行信道化處理,檢測并測量脈沖參數(shù)。DBF測向具體方法可以參見文獻(xiàn)[6-8],這里為了后續(xù)便于推導(dǎo)準(zhǔn)確的誤差分布,不直接采用比幅直接測向方法,而使用間接測量的方法,估計(jì)估計(jì)得到的信號空間頻率為F,根據(jù)空間頻率估計(jì)信號的方位。
(5)
式中:λ為信號波長;d為陣元間距;F為空間頻率。
圖4 DBF處理流程示意
干涉儀測向的首先要估計(jì)通道之間的相位差,而相位估計(jì)通常都是非線性的,信號的相位估計(jì)值為
(6)
式中:SI,SQ分別為信號解調(diào)后的同相和正交分量。
(7)
圖5 相位測量的均方誤差統(tǒng)計(jì)
圖6 相位測量的誤差概率分布統(tǒng)計(jì)
圖7 相位測量均方根誤差統(tǒng)計(jì)
觀察可以發(fā)現(xiàn),在輸入信噪比小于15 dB條件下,相位檢測均方誤差大于信噪比倒數(shù)。這是由于當(dāng)信噪比較低時(shí),在估計(jì)信號相位時(shí)容易受到噪聲尖峰的影響,導(dǎo)致相位估計(jì)出現(xiàn)大的誤差,這些誤差稱為野值。由于野值的存在,導(dǎo)致了相位估計(jì)的均方誤差變大。
考慮相位差為兩個(gè)獨(dú)立同分布的信號φ1,φM的差值,則相位差ΔφM估計(jì)的C-R下界為
(8)
由于方位估計(jì)θ為ΔφM和頻率f的函數(shù),對ΔφM求導(dǎo)后可得
(9)
頻率f的估計(jì)均方誤差為
(10)
式中:η為信道化處理后的信噪比;ΔT為積累時(shí)間。
θ對f求導(dǎo)得到
(11)
這樣,可以得到干涉儀測向的方位θ估計(jì)值的C-R下界為
(12)
對于ΔT≥0.1 μs情況,此時(shí),系統(tǒng)的測頻分辨率在10 MHz左右,考慮最大陣間距在1 m量級,可以得到
(13)
即,由測頻引起的方位估計(jì)誤差可以忽略,這樣可以得到方位θ估計(jì)值的近似C-R下界為
(14)
干涉儀測向誤差與輸入信噪比,信號波長,最長基線長度,入射角等參數(shù)均相關(guān)。
由于相位估計(jì)的非線性,導(dǎo)致干涉儀測向誤差的概率分布僅是近似符合高斯分布,當(dāng)信噪比較低的情況下,估計(jì)的方差將會大于C-R下界,產(chǎn)生野值。由于通常相位干涉儀系統(tǒng)需要通過多基線解相位模糊,單個(gè)天線信號相位的測量出現(xiàn)野值不但會影響最終的方位測量精度,還會影響解模糊的過程。為此,相位干涉儀的工作需要設(shè)置一定的信噪比門限(通常12 dB以上),僅對達(dá)到信噪比門限的信號進(jìn)行相位測量,同時(shí)也需要設(shè)置一些準(zhǔn)則剔除解模糊失敗后產(chǎn)生的方位野值,減少非線性引起的系統(tǒng)工作不穩(wěn)定。
(15)
式中:N為參與譜估計(jì)的樣點(diǎn)數(shù),對于空間譜估計(jì),N就是陣元數(shù);η為單個(gè)天線的輸入信噪比。
方位估計(jì)θ為空間頻率F的函數(shù),對F求導(dǎo)后可得
(16)
利用DBF可以提升接收信號信噪比N倍,則此時(shí)的頻率測量的方差為
(17)
方位估計(jì)θ對f求導(dǎo)后可得
(18)
這樣,可以得到均勻線陣測向的方位θ估計(jì)值的C-R下界為
(19)
對于單元間距較小,陣元數(shù)有限的雷達(dá)偵察應(yīng)用場景,陣孔徑通常在1 m以下,測頻分辨率小于10 MHz,則有
(20)
即相比測相引起的誤差,測頻引起的誤差可以忽略,得到近似的方位測量C-R下界
(21)
均勻線陣測向精度與輸入信噪比,信號波長,陣物理孔徑,入射角等參數(shù)均相關(guān)。
相比干涉儀測向,采用均勻陣列測向可以改善信噪比,在完成DBF處理后,可以得到N倍的信噪比提升,對應(yīng)系統(tǒng)靈敏度可以提升10 lgNdB,如陣列為32元,系統(tǒng)靈敏度可以提升15 dB左右。
對比干涉儀與均勻線陣天線的測向性能,為方便比較,以均勻線陣陣元間距d為基準(zhǔn),假設(shè)干涉儀最長基線長度為Kd,可以得到干涉儀的測向誤差C-R下界為
(22)
整理后N元d間距均勻陣列DBF測向誤差的C-R下界為
(23)
假設(shè)干涉儀天線與均勻陣天線采用相同的單元天線,對于同一輻射源,單元天線接收信號的性噪比η相同,對比兩種測向體制C-R下界后可以得到
(24)
有以下結(jié)論:
1)干涉儀的測向誤差C-R下界與基線長度的二次方成反比,均勻陣列DBF的測向誤差C-R下界與基線長度的三次方成反比;
2)32元d間距均勻陣DBF測向能力與最大間距72d的干涉儀陣列相當(dāng);
3)干涉儀測向需要先檢測信號有無,而后再測量信號相位差,處理過程無信噪比提升,不適用于小信噪比的情況;而均勻線陣先利用數(shù)字波束形成技術(shù)估計(jì)信號空間譜,之后進(jìn)行信號檢測與測向,測向與檢測同步,經(jīng)過波束形成后可以得到陣列增益,提高檢測信噪比,所以適合小信噪比環(huán)境測向,具有更高的系統(tǒng)靈敏度。
表1進(jìn)一步給出了干涉儀測向與DBF測向系統(tǒng)的優(yōu)劣勢對比以及適應(yīng)環(huán)境分析。該綜合分析便于工程人員對兩種測向體制有更全面的認(rèn)識。
表1 干涉儀與DBF測向系統(tǒng)對比
對系統(tǒng)靈敏度的追求始終是電子偵察接收機(jī)的發(fā)展方向,隨著微電子技術(shù)的快速發(fā)展,微波和數(shù)字電路的集成度大幅度提升,使得設(shè)備體積功耗大大降低, DBF由于其高靈敏度的特點(diǎn),已經(jīng)成為機(jī)載電子對抗系統(tǒng)設(shè)計(jì)的可選項(xiàng)。針對DBF設(shè)備量大,體積、重量、功耗以及散熱等資源消耗大的情況,為解決DBF設(shè)備機(jī)載平臺適裝性問題,系統(tǒng)設(shè)計(jì)時(shí)可以做一些平衡。比如犧牲一部分瞬時(shí)空間覆蓋能力,則可以采用子陣DBF的測向體制,設(shè)備量可以大幅降低,達(dá)到單元DBF的1/4甚至更少,此時(shí)系統(tǒng)的靈敏度和測向精度可以與單元DBF基本相當(dāng)。
本文通過對噪聲條件下測向誤差方差的推導(dǎo),獲得誤差方差C-R下界,在此基礎(chǔ)上對比干涉儀和DBF的測向性能,從而為平臺測向體制選擇提供參考依據(jù)。需要注意的是,上述誤差推導(dǎo)過程只針對由熱噪聲引起的誤差進(jìn)行分析,在工程應(yīng)用中,方位測量設(shè)備的測向誤差還與天線的相位一致性,單元方向圖,接收通道的相位一致性以及結(jié)構(gòu)安裝誤差等因素均密切相關(guān)。當(dāng)陣面孔徑達(dá)到一定規(guī)模以及信噪比滿足一定量級后,由噪聲引起的測量誤差已經(jīng)不是測向誤差的主要來源。為此,需要在方位測量設(shè)備設(shè)計(jì)的過程中充分考慮到系統(tǒng)校準(zhǔn),包括幾何結(jié)構(gòu)校準(zhǔn),天線方向圖以及相位中心校準(zhǔn),接收通道幅相一致性校準(zhǔn),以減少這類固定偏差對測量誤差的影響。
[1] 胡來招.雷達(dá)偵察接收機(jī)設(shè)計(jì)[M].北京:國防工業(yè)出版社,2000. HU Laizhao, Design for radar reconnaissance receivers[M]. Beijing: Publishing House of National Defense Industry, 2000.
[2] 唐永年. 雷達(dá)對抗工程[M]. 北京:北京航空航天大學(xué)出版社,2012. TANG Yongnian, Radar ECM[M]. Beijing: Publishing House of Beijing University of Aeronautics and Astronautics, 2012.
[3] 陽 凱, 等.寬帶干涉儀陣列布局設(shè)計(jì)[J]. 電子信息對抗技術(shù),2015,30(4): 54-57. YANG Kai, et al. A baseline dsign method of wideband interferometer[J]. Electronic information warfare technology, 2015, 30(4): 54-57.
[4] 楊 晶, 等. 相位干涉儀參差基線解模糊算法研究[J]. 航天電子對抗, 2013,28(3): 31-34. YANG Jin, et al. Research on algorithm of solving stagger-baseline interferometer phase difference ambiguity[J]. Aerospace Electronic Warfare, 2013, 28(3): 31-34.
[5] 張剛兵, 等. 基線比值法相位解模糊算法[J]. 南京航空航天大學(xué)學(xué)報(bào), 2005,40(5): 665-669. ZHANG Gangbin, et al. Unwrapping phase ambiguity algorithm based on baseline ratio[J]. Journal of University of Aeronautics and Astronautics, 2005, 40(5): 665-669.
[6] 馬銀玲, 等. 基于DBF的比幅測向方法研究[J]. 艦船電子對抗,2014,37(2) : 91-93. MA Yinling, et al. Research into amplitude comparison DF method based on DBF[J]. Shipboard Electronic Warfare, 2014, 37(2): 91-93.
[7] 李春利. DBF體制接收系統(tǒng)的設(shè)計(jì)[J]. 現(xiàn)代雷達(dá), 2015, 37(1): 63-66. LI Chunli. Design for DBF-system receiver[J]. Modern Radar, 2015, 37(1): 63-66.
[8] 李杰濤, 等. DBF同時(shí)多波束測角方法研究及工程實(shí)現(xiàn)[J]. 火控雷達(dá)技術(shù),2013,42(2): 19-22. LI Jietao, et al. Study on DBF simultaneous multibeam angle measuring method and its implementation in engineering[J]. Fire control radar technology, 2013, 42(2): 19-22.
[9] Steven M.Key. 統(tǒng)計(jì)信號處理基礎(chǔ)--估計(jì)與檢測理論[M]. 北京:電子工業(yè)出版社,2003. STEVEN M. Key. Fundamentals of statistical signal processing-stimation and detection theory[M]. Beijing: Publishing House of Electronic Industry, 2003.
夏鴻寶 男,1982年生,工程師。研究方向?yàn)槔走_(dá)對抗總體技術(shù)。
周國永 男,1982年生,工程師。研究方向?yàn)槔走_(dá)對抗總體技術(shù)。
左登朝 男,1974年生,高級工程師。研究方向?yàn)槔走_(dá)對抗總體技術(shù)。
吳上游 男,1958年生,研究員。研究方向?yàn)槔走_(dá)對抗總體技術(shù),主持多型雷達(dá)對抗設(shè)備的研制。
舒 汀 男,1981年生,博士,助理研究員。研究方向?yàn)槔走_(dá)與電子戰(zhàn)射頻仿真技術(shù),實(shí)時(shí)信號處理系統(tǒng)設(shè)計(jì)與開發(fā),相控陣?yán)走_(dá)數(shù)字波束形成技術(shù)等。
Comparison of Direction-finding Performance Between Linear Array Interferometer and Uniform Linear Array DBF
XIA Hongbao1,ZHOU Guoyong1,ZUO Dengchao1,WU Shangyou1,SHU Ting2
(1. Nanjing Corad Corporation, Nanjing 211100, China) (2. Shanghai Key Laboratory of Intelligent Sensing and Recognition,Shanghai Jiao Tong University, Shanghai 200240, China)
The system composition, operating principle and process flow of linear array interferometer and uniform linear array DBF are introduced firstly. Then, the Cramér-rao lower bounds(CRLB) for each method of direction-finding are deduced. A comparison of direction-finding performance is done through CRLB. An analysis of application scenarios is done according to their features. Some conclusions are significant and valuable to engineers in system design.
digital interferometer direction-finding; DBF direction-finding; C-R lower bound
10.16592/ j.cnki.1004-7859.2016.12.006
國家自然科學(xué)基金資助項(xiàng)目(61571294);航空科學(xué)基金資助項(xiàng)目(2015ZD07006)
夏鴻寶 Email:hongbaoxia@139.com
2016-09-15
2016-11-18
TN957
A
1004-7859(2016)12-0031-05