朱 春 鵬
(徐州工程學(xué)院數(shù)學(xué)與物理科學(xué)學(xué)院, 江蘇 徐州 221111)
批量到達(dá)、服務(wù)臺可修的MX/G/1重試排隊系統(tǒng)
朱 春 鵬
(徐州工程學(xué)院數(shù)學(xué)與物理科學(xué)學(xué)院, 江蘇 徐州 221111)
討論顧客批量到達(dá)且服務(wù)臺會出現(xiàn)故障的重試排隊模型。當(dāng)新顧客批量到達(dá)服務(wù)臺時,如果服務(wù)臺忙,則新到達(dá)的顧客會進(jìn)入重試組繼續(xù)尋求服務(wù)或離開系統(tǒng);當(dāng)服務(wù)臺出現(xiàn)故障時,會立刻得到修理并繼續(xù)進(jìn)行服務(wù)。利用補充變量法,結(jié)合服務(wù)時間、修理時間、重試時間研究排隊隊長。給出了系統(tǒng)穩(wěn)態(tài)時的遍歷條件,求解系統(tǒng)的穩(wěn)態(tài)方程組,分析系統(tǒng)的各項性能指標(biāo)。
批量到達(dá); 重試; 可修; 補充變量; 穩(wěn)態(tài)
當(dāng)排隊系統(tǒng)中有新顧客進(jìn)入時,如果服務(wù)臺忙,則顧客會去排隊繼續(xù)尋求服務(wù)或者離開排隊系統(tǒng)。而實際上,大部分顧客會選擇再次回到系統(tǒng)中繼續(xù)尋求服務(wù)。針對這種情況,可建立一個重試組(Orbit)作為緩沖區(qū),讓再次回到系統(tǒng)的顧客進(jìn)入重試組中繼續(xù)尋求服務(wù),這種排隊系統(tǒng)即重試排隊系統(tǒng)。重試排隊系統(tǒng)大量用于通信、電話交換系統(tǒng)[1-3]。通常在某個時刻,進(jìn)入系統(tǒng)的顧客有可能不止1個,而是批量到達(dá)。當(dāng)顧客正在接受服務(wù)時,服務(wù)臺有可能會出現(xiàn)故障無法繼續(xù)服務(wù),這時候需要立即對服務(wù)臺進(jìn)行維修。當(dāng)服務(wù)臺結(jié)束維修后,會繼續(xù)提供服務(wù)[4-7]。本次研究中,將針對上述情況建立一種批量到達(dá)服務(wù)臺且服務(wù)臺可修的MX/G/1重試排隊模型[8-10]。
系統(tǒng)在t時刻重試、服務(wù)、修理所花費的時間分別為C0(t)、S0(t)、H0(t)。設(shè)有以下狀態(tài)變量:μ(t)=0,當(dāng)服務(wù)臺空閑且系統(tǒng)中無顧客時;μ(t)=1,當(dāng)服務(wù)臺空閑且重試組中有顧客時;μ(t)=2,當(dāng)服務(wù)臺進(jìn)行服務(wù)時;μ(t)=3,當(dāng)服務(wù)臺進(jìn)行服務(wù)時發(fā)生故障。補充變量{C0(t),S0(t),H0(t)},并建立馬氏過程{N(t),Ω(t)},其中N(t)=0,1,2…。再假設(shè):Ω(t)=0,當(dāng)μ(t)=0;Ω(t)=C0(t),當(dāng)μ(t)=1;Ω(t)=S0(t),當(dāng)μ(t)=2;Ω(t)=H0(t),當(dāng)μ(t)=3。重試、服務(wù)、修理的風(fēng)險率函數(shù)算式分別為:
定義概率函數(shù):
(1)
(2)
x≤S0(t)≤x+dx},(x>0,n≥1)
(3)
y≤H0(t)≤y+dy,S0(t)=x},
(x>0,y>0,n≥1)
(4)
2.1 模型建立
令
(5)
(6)
(7)
(8)
n≥1,(x,y)>0
邊界條件:
(9)
(10)
n≥2,2≤i≤m
(11)
Hn(x,0)=pSn(x),n≥1
(12)
歸一化條件:
(13)
2.2 模型求解
根據(jù)式(6)、(8),假設(shè)[6-8]:
C(x,z)=C(0,z)[1-C(x)]× exp(-λx),x>0
(14)
H(x,y,z)=H(x,0,z)[1-H(y)]× exp(-a(z)y),(x,y)>0
(15)
由式(12)可得:
H(x,0,z)=pS(x,z)
(16)
由式(7)、(16)可以得到:
(17)
由式(12)、(15)、(16)可以得到:
H(x,y,z)=pS(0,z)[1-S(x)]× exp(-φ(z)x)[1-H(y)]× exp(-a(z)y),(x,y)>0
(18)
由式(5) — (12)可以得到:
(19)
(20)
又:
(21)
ρ=λE(X)E(S)(1+ph)
(22)
x>0,1≤i≤m
(23)
(24)
(25)
證明:顯然,{Xn,n=1,2,…}為一個不可約、非周期的馬氏鏈。根據(jù)Forster準(zhǔn)則,只有滿足條件
{Xn,n=1,2,…}才是遍歷的。證畢。
(26)
(27)
(28)
證明:由式(14) — (25)可以得到式(26) — (28)。定理證畢。
(29)
(30)
(31)
(32)
(33)
(34)
證明:由式(29)、(30)、(31),以及
Q(z)=I0+C(z)+S(z)+H(z)
可得式(32);再由式(32)及
得式(33);由式(32)及
3.1 狀態(tài)概率
服務(wù)臺空閑的概率PN:
服務(wù)臺正在服務(wù)的概率PS:
PS=λE(X)E(S)
3.2 隊長指標(biāo)
(1)重試組中的隊長LO:
(2)任意時刻的系統(tǒng)隊長LP:
(3)顧客離開后系統(tǒng)隊長LD:
3.3 非可靠指標(biāo)
系統(tǒng)穩(wěn)態(tài)利用率θ:
系統(tǒng)穩(wěn)態(tài)失效頻率f :
f=λE(X)E(S)
平均忙期E(TE):
平均空閑期E(TO):
平均循環(huán)周期E(Tc):
E(Tc)=E(T0)+E(Tb)
本次研究中,利用補充變量法,建立了MX/G/1重試排隊系統(tǒng)在批量到達(dá)、服務(wù)臺可修條件下的數(shù)學(xué)模型。通過求解該模型得到了系統(tǒng)在穩(wěn)態(tài)條件下的重試隊長和系統(tǒng)隊長,進(jìn)而求解系統(tǒng)的穩(wěn)態(tài)利用率、失效頻率、平均忙期、平均空閑期、平均循環(huán)周期等狀態(tài)指標(biāo)。
[1] ARTALEJO J R.A Classified Bibliography of Research on Retrial Queue:Prograss in 1990-1999[J].TOP,1999,7 (2) :187-211.
[2] ARTALEJO J R.Accessible Bibliography on Retrial Queue[J].Mathematical an Computer Modelling ,1999 (30) :1-6.
[3] KRISHNA B,MADHESWARI S D.The M/G/1 Retrial Queue with Bernoulli Vacation General Retrial Times[J].Computers and Mathematics[J].2002,4(3):15-30.
[4] SINGH C J, JAIN M, KUMAR B.Analysis of Queue with Two Phases of Service and m Phases of Repair for Server Breakdown Under Npolicy[J].Int J Ser Oper Manage.2013,16(3):373-406.
[5] ZHANG Z, WANG J, ZHANG F.Equilibrium Customer Strategies in the Single Server Constant Retrial Queue With Breakdowns and Repairs[J].Math Prob Eng,2014(14):1-14.
[6] 朱春鵬.帶有兩類顧客、服務(wù)臺可修的M/G/1重試排隊系統(tǒng)研究[J].廊坊師范學(xué)院學(xué)報(自然科學(xué)版),2009,9(6):45-49.
[7] CHOUDHURY G, KE J C.A Batch Arrival Retrial Queue With Generalretrial Times Under Bernoulli Vacation Schedule for Unreliable Server and Delaying Repair [J].Appl Math Model,2012,36:255-269.
[8] SINGH C J, JAIN M, KUMAR B.Analysis of MX/G/1 Queueing Model With Balking and Vacation[J].Int J Oper Res,2014,19(2):154-173.
[9] CHARAN J S , MADHU J , BINAY K.MX/G/1 Unreliable Retrial Queue With Option of Additional Service and Bernoulli Vacation[J].Ain Shams Engineering Journal,2016 (7) :415-429.
[10] BHAGAT A, JAIN M.Unreliable MX/G/1 Retrial Queue With Multioptional Services and Impatient Customers[J].Int J Oper Res, 2013,17(2):248-273.
Repairable Retrial Queuing System With Batch Arrival
ZHUChunpeng
(School of Mathematical Physics, Xuzhou Institute of Technology, Xuzhou Jiangsu 221111, China)
This paper relates to a retrial queuing model with unreliable server and batch arrivals. When customers arrive at the server which is busy, the new arrivals will enter the retry group to continue to search for a service or leave the system. We assumed that the server may fail while providing service and must be repaired immediately. We research the queue size by using supplementary variables methods corresponding to service time, repair time and retrial time. We also present the ergodic condition for the system to be stable and derive analytical results for the stationary distribution as well as some performance measures of the system.
batch arrival; retrial; repairable; supplementary variables; steady-state
2016-09-20
國家自然科學(xué)基金數(shù)學(xué)天元基金項目“KAM理論中光滑性問題的研究”(11526177);2014年江蘇省高校自然科學(xué)基金項目“樹指標(biāo)隨機過程的極限理論及其應(yīng)用”(14KJB110025));徐州工程學(xué)院青年教師科研項目“基于排隊論方法優(yōu)化物流運輸?shù)难芯俊?XKY2012302)
朱春鵬(1982 — ),男,講師,研究方向為排隊論。
O226
A
1673-1980(2016)06-0104-04