沈 亞,胡桃紅
(火箭軍總醫(yī)院心內(nèi)科,北京 100088)
人體內(nèi)的維生素D來(lái)源于皮膚合成和攝入的食物,皮膚合成的維生素D約占體內(nèi)總量的80%[1]。由腸道吸收及皮膚合成的維生素D3進(jìn)入肝臟后被肝細(xì)胞內(nèi)質(zhì)網(wǎng)和線粒體上的25-羥基酶代謝轉(zhuǎn)化為25-羥基維生素D3,然后與維生素D結(jié)合蛋白(vitamin D binding protein,DBP)結(jié)合后運(yùn)輸?shù)侥I臟,通過(guò)腎臟近曲小管上皮細(xì)胞線粒體中的1α-羥基酶轉(zhuǎn)化為維生素D的活性代謝物1α,25-二羥基維生素D3[2],在肝臟和腎臟經(jīng)歷的兩次羥基化被證實(shí)均依賴(lài)于細(xì)胞色素P450(cytochrome P-450,CYP450)酶[3]。1α,25-二羥基維生素D3同時(shí)也是一種自分泌激素,25-羥基維生素D3可通過(guò)非腎臟細(xì)胞(單核細(xì)胞、巨噬細(xì)胞等)內(nèi)的1α-羥基酶直接代謝為具有活性的1α,25-二羥基維生素D3[4]。相對(duì)于具有活性但不穩(wěn)定的1α,25-二羥基維生素D3,25-羥基維生素D3更能反映機(jī)體內(nèi)某一時(shí)間段的維生素D水平,因此國(guó)際上用其作為參考指標(biāo)。
國(guó)際骨質(zhì)疏松基金會(huì)標(biāo)準(zhǔn):人體血清25-羥基維生素D3的正常值為75~125 nmol/L(30~50 ng/ml)[5]。維生素D缺乏依據(jù)測(cè)量的25-羥基維生素D3水平劃分為3個(gè)層次:不足:50~75 nmol/L(20~29 ng/ml);缺乏:<50 nmol/L(<20 ng/ml);嚴(yán)重缺乏:<25 nmol/L(<10 ng/ml)。其在老年人、嬰幼兒和兒童中水平較低,與他們戶(hù)外活動(dòng)較少或穿長(zhǎng)袖衣服較多等有關(guān)。老年階段(>60歲)維生素D水平的研究相對(duì)較多,但大樣本流行病學(xué)調(diào)查仍缺乏,維生素D水平的常規(guī)檢測(cè)工作未在我國(guó)人群中開(kāi)展,缺乏比較系統(tǒng)的認(rèn)識(shí)。
近年維生素D受體(vitamin D receptor,VDR)被發(fā)現(xiàn)在多種細(xì)胞中表達(dá),如內(nèi)皮細(xì)胞、血管平滑肌細(xì)胞、心肌細(xì)胞[6]、胰島細(xì)胞[7]、神經(jīng)細(xì)胞[8]、免疫細(xì)胞和成骨細(xì)胞[9,10]。血液中有活性的1α,25-二羥基維生素D3可通過(guò)內(nèi)吞方式進(jìn)入細(xì)胞,然后進(jìn)入細(xì)胞核,同VDR結(jié)合成復(fù)合物,進(jìn)一步作用于目標(biāo)基因的維生素D反應(yīng)原件,繼而調(diào)節(jié)目的基因的轉(zhuǎn)錄和翻譯,形成具有不同功能的蛋白質(zhì)。VDR及其mRNA表達(dá)量在轉(zhuǎn)錄時(shí)會(huì)受鈣離子[11]、1α,25-二羥基維生素D3[12]、甲狀旁腺素[13]和腎上腺皮質(zhì)激素[14]濃度的影響和調(diào)節(jié)。
維生素D不僅調(diào)節(jié)人體鈣磷平衡,而且具有廣泛的重要生理功能,稱(chēng)為維生素D內(nèi)分泌系統(tǒng)。其除了調(diào)節(jié)腎素-血緊張素-醛固酮系統(tǒng)(renin-angiotensin-aldosterone system,RAAS)、抑制心肌肥厚和心肌細(xì)胞增殖外,還可抑制心血管損傷中炎癥反應(yīng)的多個(gè)環(huán)節(jié),從而發(fā)揮對(duì)心血管結(jié)構(gòu)及功能的保護(hù)作用。相關(guān)研究已證實(shí)VDR活化對(duì)心血管系統(tǒng)有各種有益作用,這種結(jié)果與大型流行病學(xué)研究相一致,突出了維生素D缺乏與心血管疾病以及心血管危險(xiǎn)因素之間存在顯著相關(guān)性。此外,關(guān)于維生素D的前瞻性研究的薈萃分析提示,低水平25-羥基維生素D3是未來(lái)心血管事件和死亡率的獨(dú)立預(yù)測(cè)因素。
國(guó)內(nèi)研究表明,成年人維生素D低水平與冠狀動(dòng)脈疾病和慢性心力衰竭(chronic heart disease,CHF)相關(guān),絕大部分CHF患者25-羥基維生素D3的水平較低。Schroten等[15]的研究表明,相比一般人群,CHF患者25-羥基維生素D3水平更低,腎素活性更高,25-羥基維生素D3水平減低及VDR活性下降可導(dǎo)致血管功能異常和心肌肥厚,且該現(xiàn)象與不良預(yù)后密切相關(guān)。越來(lái)越多的實(shí)驗(yàn)證實(shí),活性1α,25-二羥基維生素D3在心力衰竭進(jìn)展過(guò)程中的多個(gè)環(huán)節(jié)起作用,其中被廣泛研究的包括心肌細(xì)胞肥大、心肌纖維化、RAAS和炎癥等。
Bae等[16]通過(guò)建立小鼠心臟左冠狀動(dòng)脈前降支(left anterior descending artery,LAD)結(jié)扎模型,提示維生素D可抑制心力衰竭的發(fā)展,對(duì)結(jié)扎LAD后心肌梗死的面積以及炎癥標(biāo)記物、纖維化、細(xì)胞凋亡和RASS系統(tǒng)激活均起抑制作用。維生素D對(duì)心肌細(xì)胞間質(zhì)的調(diào)節(jié)作用也不容忽視,研究表明其作用主要是通過(guò)對(duì)基質(zhì)金屬蛋白酶(maxtrix metalloproteinases,MMPs)和基質(zhì)金屬蛋白酶組織抑制劑(tissue inhibor of matrix metalloproteinases,TIMPs)的調(diào)節(jié)實(shí)現(xiàn)的[17-19],DVR基因敲除小鼠上述兩種蛋白表達(dá)失衡,MMPs表達(dá)量增加,TIMPs表達(dá)量減少,導(dǎo)致心肌細(xì)胞間質(zhì)的蛋白水解酶激活,而這種激活可能會(huì)繼續(xù)破壞組織結(jié)構(gòu)的完整性,致左心室擴(kuò)張和心功能受損,已證實(shí)此機(jī)制也存在于心力衰竭患者中[20-23]。
Oh等[24]認(rèn)為維生素D可抑制巨噬細(xì)胞吞噬膽固醇和泡沫細(xì)胞的形成。此外,VDR激活可通過(guò)體內(nèi)炎癥細(xì)胞因子而調(diào)節(jié)動(dòng)脈硬化進(jìn)程。目前,研究人員公認(rèn),輔助性T淋巴細(xì)胞1(T-helper lymphocyte,Th1)分泌的白介素-1β(interleukin-1β,IL-1β)、白介素-6(interleukin-6,IL-6)和腫瘤壞死因子-α(tumor necrosis factor-alpha,TNF-α)可促進(jìn)動(dòng)脈粥樣硬化,輔助性T淋巴細(xì)胞2(T-helper lymphocyte,Th2)分泌的IL-4和IL-10可抑制這一進(jìn)程[25]。Schleithoff等[26]對(duì)心力衰竭患者補(bǔ)充活性維生素D,發(fā)現(xiàn)體內(nèi)TNF-α水平降低,而IL-10因子水平升高。內(nèi)膜血管鈣化發(fā)生于冠狀動(dòng)脈粥樣硬化基礎(chǔ)上,Th1細(xì)胞聚集于受損的內(nèi)膜處,引起血管平滑肌細(xì)胞(vascular smooth muscle cells,VSMCs)在此處聚集,激活巨噬細(xì)胞,從而導(dǎo)致上述三種促炎癥細(xì)胞因子釋放,產(chǎn)生MMPs,參與血管壁的重塑[27,28]。也有研究人員通過(guò)小鼠實(shí)驗(yàn)證明抑制MMPs能減少血管壁鈣化[29]。
CHF導(dǎo)致的心室重塑是一個(gè)復(fù)雜過(guò)程,早期RASS和交感神經(jīng)系統(tǒng)(sympathetic nerves system,SNS)激活可起代償作用,即增快心率,增加心排血量和增強(qiáng)心肌收縮力等。隨著CHF的進(jìn)展,在神經(jīng)內(nèi)分泌細(xì)胞因子持續(xù)作用下,心功能持續(xù)下降,心肌細(xì)胞肥大,細(xì)胞凋亡,間質(zhì)纖維化,血管和心室重塑。目前普遍認(rèn)為神經(jīng)內(nèi)分泌細(xì)胞因子過(guò)度激活導(dǎo)致的心室重塑是CHF發(fā)生發(fā)展的病理生理學(xué)基礎(chǔ),也是當(dāng)前臨床相關(guān)藥物治療的著力點(diǎn)。動(dòng)物研究提示維生素D可抑制RAAS,流行病學(xué)資料表明,維生素D水平與體內(nèi)腎素水平呈負(fù)相關(guān)。維生素D與VDR的結(jié)合會(huì)抑制腎素轉(zhuǎn)錄[30]。已經(jīng)有動(dòng)物實(shí)驗(yàn)證實(shí)VDR敲除小鼠的心臟/體質(zhì)量比值遠(yuǎn)高于普通小鼠,且腎素水平更高[31]。
劉冰[32]的研究表明,不同美國(guó)紐約心臟病協(xié)會(huì)(New York Heart Association,NYHA)心功能分級(jí)的CHF患者血清25-羥基維生素D3水平隨疾病程度加重而降低,且25-羥基維生素D3水平與血漿氨基N末端B型利鈉肽前體(N-terminal pro-B-type natriuretic peptide,NT-proBNP)濃度呈負(fù)相關(guān),與左室射血分?jǐn)?shù)(left ventricular ejection fraction,LVEF)呈正相關(guān)。體內(nèi)25-羥基維生素D3水平與氨基N末端A型利鈉肽前體(N-terminal pro-A-type natriuretic peptide,NT-proANP)呈負(fù)相關(guān)[33]。Witte等[34]的VINDICATE研究也證實(shí)給患者補(bǔ)充維生素D后上述四種指標(biāo)均呈現(xiàn)好轉(zhuǎn)趨勢(shì)。
到目前為止,尚沒(méi)有主流心血管協(xié)會(huì)發(fā)表補(bǔ)充維生素D治療心血管疾病的相關(guān)建議。鑒于維生素D對(duì)肌肉和骨骼系統(tǒng)的積極影響,美國(guó)醫(yī)學(xué)研究所推薦人體25-羥基維生素D3血清水平應(yīng)≥50 nmol/L(≥20 ng/ml)[35],他們建議成年普通人的維生素D攝入量是600 IU/d,>70歲老年人的攝入量是800 IU/d。雖然有大量臨床觀察性研究表明服用≤4000 IU的維生素D是絕對(duì)安全的,但是人體皮膚每天通過(guò)紫外線照射合成的維生素D含量相當(dāng)于口服10 000 IU/d,卻從未有過(guò)因紫外線照射引起維生素D中毒的報(bào)道。Dalbeni等[36]通過(guò)對(duì)64例CHF患者小樣本、隨機(jī)、雙盲安慰劑的對(duì)照試驗(yàn),發(fā)現(xiàn)補(bǔ)充維生素D半年后CHF患者的LVEF較觀察組明顯改善,再入院率及死亡率均顯著下降。VINDICATE 試驗(yàn)通過(guò)把223例嚴(yán)格篩選的CHF患者隨機(jī)分配到治療組(常規(guī)CHF治療基礎(chǔ)上每天補(bǔ)充維生素D3滴劑4000 IU,即100 mg)和安慰劑組,經(jīng)過(guò)長(zhǎng)達(dá)1年的研究后發(fā)現(xiàn),治療組的心功能改善明顯(LVEF較安慰劑組提高6.07%;95%CI: 3.20~8.95;P<0.0001),補(bǔ)充維生素D能更好地逆轉(zhuǎn)左心室重塑(95%CI:3.20~8.95;P<0.0001)[34]。Jiang等[37]的臨床薈萃分析結(jié)果也證實(shí)補(bǔ)充維生素D能改善CHF患者的心功能和運(yùn)動(dòng)耐量,提高生活質(zhì)量及減少再入院率。盡管補(bǔ)充維生素D可改善CHF患者的一些指標(biāo),但限于觀察性研究本身的局限性(如眾多混雜因素、反向因果關(guān)系等),所以目前尚不能說(shuō)維生素D缺乏是CHF的病因。假若已經(jīng)證實(shí)維生素D是CHF的一個(gè)確切危險(xiǎn)因素,而不是附帶結(jié)果,那維生素D的補(bǔ)充治療對(duì)CHF患者可能有益,而補(bǔ)充維生素D的最佳治療時(shí)間窗和確切補(bǔ)充劑量等問(wèn)題仍需要臨床相關(guān)試驗(yàn)進(jìn)一步證實(shí)。
流行病學(xué)證實(shí)80%~96%的CHF患者存在維生素D缺乏,近些年的研究也有助于我們初步了解維生素D與CHF之間的復(fù)雜關(guān)系。但維生素D和CHF之間的機(jī)制還不明確,目前可基本確定這種機(jī)制是多途徑的,包括內(nèi)分泌系統(tǒng)、神經(jīng)體液系統(tǒng)和細(xì)胞因子等,可能是維生素D缺乏會(huì)在CHF基礎(chǔ)上進(jìn)一步加劇心肌細(xì)胞肥大、心肌纖維化、過(guò)度激活RAAS系統(tǒng)和炎癥因子等,我們相信當(dāng)這種機(jī)制最后被確定的時(shí)候,維生素D將會(huì)開(kāi)辟治療CHF的一個(gè)新篇章。
【參考文獻(xiàn)】
[1] Macdonald HM, Mavroeidi A, Fraser WD,etal. Sunlight and dietary contributions to the seasonal vitamin D status of cohorts of healthy postmenopausal women living at northerly latitudes: a major cause for concern?[J]. Osteoporos Int, 2011, 22(9): 2461-2472. DOI: 10.1007/s00198-010-1467-z.
[2] Deluca HF. Vitamin D: the vitamin and the hormone[J]. Fed Proc, 1974, 33(11): 2211-2219.
[3] Jones G, Strugnell SA, Deluca HF. Current understanding of the molecular actions of vitamin D[J]. Physiol Rev, 1998, 78(4): 1193-231.
[4] Henry HL. Regulation of vitamin D metabolism[J]. Best Pract Res Clin Endocrinol Metab, 2011, 25(4): 531-541. DOI: 10.1016/j.beem.2011.05.003.
[5] Rosen CJ. Clinical practice, vitamin D insufficiency[J]. N Engl J Med, 2011, 364(3): 248-254. DOI: 10.1056/NEJMcp1009570.
[6] Wu-Wong JR, Kawai M, Chen YW,etal. VS-105: a novel vitamin D receptor modulator with cardiovascular protective effects[J]. Br J Pharmacol, 2011, 164: 551-560. DOI: 10.1111/j.1476-5381.2011.01473.x.
[7] Yu F, Cui LL, Li X,etal. The genetic polymorphisms in vitamin D receptor and the risk of type 2 diabetes mellitus: an updated meta-analysis[J]. Asia Pac J Clin Nutr, 2016, 25(3): 614-624. DOI: 10.6133/apjcn.092015.12.
[8] Smolders J, Schuurman KG, Van Strien ME,etal. Expression of vitamin D receptor and metabolizing enzymes in multiple sclerosis-affected brain tissue[J]. J Neuropathol Exp Neurol, 2013, 72(2): 91-105.DOI:10.1097/NEN.0b013e31827f4fcc.
[9] Kulling PM, Olson KC, Olson TL,etal. Vitamin D in hema-tological disorders and malignancies[J]. Eur J Haematol, 2017, 98(3): 187-197. DOI: 10.1111/ejh.12818.
[10] Prasad P, Kochhar A. Interplay of vitamin D and metabolic syndrome: a review[J]. Diabetes Metab Syndr, 2016, 10(2): 105-112. DOI: 10.1016/j.dsx.2015.02.014.
[11] Berridge MJ. Vitamin D, reactive oxygen species and calcium signalling in ageing and disease[J].Philos Trans R Soc Lond B Biol Sci, 2016, 371(1700), 1-8. DOI: 10.1 098/rstb. 2015.0434.
[12] Marchwicka A, Corcoran A, Berkowska K,etal. Restored expression of vitamin D receptor and sensitivity to 1,25-dihydroxy vitamin D3 in response to disrupted fusion FOP2-FGFR1 gene in acute myeloid leukemia cells[J]. Cell Biosci, 2016, 6: 7. DOI:10.1186/s13578-016-0075-9.
[13] Ritter CS, Brown AJ. Direct suppression of Pth gene expression by the vitamin D prohormones doxercalciferol and calcidiol requires the vitamin D receptor[J]. J Mol Endocrinol, 2011, 46(2): 63-66. DOI: 10.1677/JME-10-0128.
[14] Lee S, Szlachetka M, Christakos S. Effect of glucocorticoids and 1,25-dihydroxy vitamin D3 on the developmental expression of the rat intestinal vitamin D receptor gene[J]. Endocrinology, 1991, 129(1): 396-401. DOI: 10.1210/endo-129-1-396.
[15] Schroten NF, Ruifrok WP, Kleijn L,etal. Short-term vitamin D3 supplementation lowers plasma renin activity in patients with stable chronic heart failure: an open-label, blinded end point, rando-mized prospective trial (VitD-CHF trial)[J]. Am Heart J, 2013, 166(2): e357-e364. DOI: 10.1016/j.ahj.2013.05.009.
[16] Bae S, Singh SS, Yu H,etal. Vitamin D signaling pathway plays an important role in the development of heart failure after myocardial infarction[J]. J Appl Physiol, 2013, 114(8): 979-987. DOI: 10.1152/japplphysiol.01506.2012.
[17] Svystonyuk DA, Ngu JM, Mewhort HE,etal. Fibroblast growth factor-2 regulates human cardiac myofibroblast-mediated extracellular matrix remodeling[J]. J Transl Med, 2015, 13: 147. DOI: 10.1186/s12967-015-0510-4.
[18] Mittal B, Mishra A, Srivastava A,etal. Matrix metalloproteinases in coronary artery disease[J]. Adv Clin Chem, 2014, 64: 1-72.
[19] Lindsey ML, Iyer RP, Jung M,etal. Matrix metalloproteinases as input and output signals for post-myocardial infarction remodel-ing[J]. J Mol Cell Cardiol, 2016, 91: 134-140. DOI: 10.1016/j.yjmcc.2015.12.018.
[20] Rouet-Benzineb P, Buhler JM, Dreyfus P,etal. Altered balance between matrix gelatinases (MMP-2 and MMP-9) and their tissue inhibitors in human dilated cardiomyopathy: potential role of MMP-9 in myosin-heavy chain degradation[J]. Eur J Heart Fail, 1999, 1(4): 337-352.
[21] Felkin LE, Lara-Pezzi E, George R,etal. Expression of extra-cellular matrix genes during myocardial recovery from heart failure after left ventricular assist device support[J]. J Heart Lung Transplant, 2009, 28(2): 117-122. DOI:10. 1016/j. healun. 2008.11.910.
[22] Polyakova V, Loeffler I, Hein S,etal. Fibrosis in endstage human heart failure: severe changes in collagen metabolism and MMP/TIMP profiles[J]. Int J Cardiol, 2011, 151(1): 18-33. DOI: 10.1016/j.ijcard.2010.04.053.
[23] Kwon JS, Kim YS, Cho AS,etal. Regulation of MMP/TIMP by HUVEC transplantation attenuates ventricular remodeling in response to myocardial infarction[J]. Life Sci, 2014, 101(1-2): 15-26. DOI: 10.1016/j.lfs.2014.02.009.
[24] Oh J, Weng S, Felton SK,etal. 1,25(OH)2 vitamin D inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus[J]. Circulation, 2009, 120(8): 687-698. DOI: 10.1161/CIRCULATIONAHA.109.856070.
[25] Huybers S, Bindels RJ. Vascular calcification in chronic kidney disease: new developments in drug therapy[J]. Kidney Int, 2007, 72(6): 663-665. DOI: 10.1038/sj.ki. 5002477.
[26] Schleithoff SS, Zittermann A, Tenderich G,etal. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial[J]. Am J Clin Nutr, 2006, 83(4): 754-759.
[27] Doherty TM, Fitzpatrick LA, Inoue D,etal. Molecular, endocrine, and genetic mechanisms of arterial calcification[J]. Endocr Rev, 2004, 25(4): 629-672. DOI: 10.1210/er.2003-0015.
[28] Zittermann A, Schleithoff SS, Koerfer R. Vitamin D and vascular calcification[J]. Curr Opin Lipidol, 2007, 18(1): 41-46. DOI: 10.1097/MOL.0b013e328011c6fc.
[29] Qin X, Corriere MA, Matrisian LM,etal. Matrix metalloproteinase inhibition attenuates aortic calcification[J]. Arterioscler Thromb Vasc Biol, 2006, 26(7): 1510-1516. DOI: 10.1161/01.ATV.0000225807.76419.a7.
[30] Li YC, Kong J, Wei M,etal. 1,25-dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system[J]. J Clin Invest, 2002, 110(2): 229-238. DOI: 10.1172/JCI15219.
[31] Rahman A, Hershey S, Ahmed S,etal. Heart extracellular matrix gene expression profile in the vitamin D receptor knockout mice[J]. J Steroid Biochem Mol Biol, 2007, 103(3-5): 416-419. DOI: 10.1016/j.jsbmb.2006.12.081.
[32] 劉 冰. 血清25-羥基維生素D檢測(cè)在慢性心力衰竭患者心功能分級(jí)評(píng)價(jià)中的作用[J]. 臨床和實(shí)驗(yàn)醫(yī)學(xué)雜志, 2013, 12(16): 1285-1286. DOI: 10.3969/j.issn.1671-4695.2013.16.011.
Liu B. The role of detection serum 25-hydroxy vitamin D in the cardiac function grading and evaluation of chronic heart failure patients[J]. J Clin Exp Med, 2013, 12(16): 1285-1286. DOI: 10. 3969/j.issn. 1671-4695. 2013.16.011.
[33] Zittermann A, Schleithoff SS, Tenderich G,etal. Low vitamin D status: a contributing factor in the pathogenesis of congestive heart failure[J]. J Am Coll Cardiol, 2003, 41(1): 105-112.
[34] Witte KK, Byrom R, Gierula J,etal. Effects of vitamin D on cardiac function in patients with chronic HF: the VINDICATE study[J]. J Am Coll Cardiol, 2016, 67(22): 2593-2603. DOI:10.1016/j.jacc.2016.03.508.
[35] Ross AC, Manson JE, Abrams SA,etal. The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: what clinicians need to know[J]. J Clin Endocrinol Metab, 2011, 96(1): 53-58. DOI: 10.1210/jc.2010-2704.
[36] Dalbeni A, Scaturro G, Degan M,etal. Effects of six months of vitamin D supplementation in patients with heart failure: a randomized double-blind controlled trial[J]. Nutr Metab Cardiovasc Dis, 2014, 24(8): 861-868. DOI: 10.1016/j. numecd.2014.02.015.
[37] Jiang WL, Gu HB, Zhang YF,etal. Vitamin D supplementation in the treatment of chronic heart failure: a meta-analysis of randomized controlled trials[J]. Clin Cardiol, 2016, 39(1): 56-61. DOI: 10.1002/clc.22473.