朱儀玫, 方 波, 盧擁軍, 邱曉惠
(1.華東理工大學(xué)化學(xué)工程研究所,上海 200237;2.中國(guó)石油勘探開(kāi)發(fā)研究院廊坊分院,河北廊坊 065007)
環(huán)氧氯丙烷改性纖維素溶液的流變與減阻性能
朱儀玫1, 方 波*2, 盧擁軍2, 邱曉惠2
(1.華東理工大學(xué)化學(xué)工程研究所,上海 200237;2.中國(guó)石油勘探開(kāi)發(fā)研究院廊坊分院,河北廊坊 065007)
朱儀玫等.環(huán)氧氯丙烷改性纖維素溶液的流變與減阻性能[J].鉆井液與完井液,2016,33(6):95-100.
為提高羧甲基羥乙基纖維素(CMHEC)溶液的黏彈性,拓寬其應(yīng)用范圍,以環(huán)氧氯丙烷(EPIC)與CMHEC進(jìn)行反應(yīng),首次制備出水溶性改性羧甲基羥乙基纖維素EPIC-CMHEC。研究了EPIC-CMHEC和CMHEC水溶液的流變特性(流動(dòng)曲線、黏彈性、本構(gòu)方程、觸變性等)以及減阻性能。結(jié)果表明,EPIC-CMHEC溶液黏度顯著提高,其3 g/L水溶液黏度為56.6 mPa·s,比3 g/L CMHEC水溶液的黏度(18.3 mPa·s)提高了2.1倍,且彈性也優(yōu)于CMHEC溶液。在170 s-1剪切下,溫度從20 ℃升至80 ℃后,0.3% EPIC-CMHEC溶液的黏度約為19 mPa·s,仍高于25 ℃時(shí)0.3%的CMHEC溶液的黏度;EPIC-CMHEC溶液的減阻性能也明顯提高,0.10%的EPIC-CMHEC和CMHEC溶液最大減阻率分別為72.70%和68.41%。EPIC-CMHEC和CMHEC溶液的流動(dòng)曲線可用Cross本構(gòu)方程進(jìn)行表征,EPIC-CMHEC可望用于油氣田開(kāi)采和減阻領(lǐng)域。
羧甲基羥乙基纖維素;環(huán)氧氯丙烷;減阻性能;流變性能
纖維素分子含有大量羥基,分子內(nèi)和分子間作用強(qiáng),可通過(guò)改性提高其性能,目前改性纖維素基壓裂液已用于油氣田的開(kāi)發(fā)中[1-5]。羧甲基羥乙基纖維素CMHEC是纖維素分子鏈上的羥基與烷基化試劑在堿性條件下反應(yīng)生成的一種醚類衍生物[6]。CMHEC雖然在性能上優(yōu)于天然纖維素,但也存在著不足[7-8]。交聯(lián)改性是改進(jìn)纖維素及其衍生物性能的途徑之一,采用適當(dāng)?shù)母男詣?,可顯著改善纖維素的性能[9]。常用的交聯(lián)劑分為有機(jī)交聯(lián)劑和無(wú)機(jī)交聯(lián)劑,無(wú)機(jī)交聯(lián)劑主要有三偏磷酸鈉等[10-13],有機(jī)交聯(lián)劑主要有戊二醛、環(huán)氧氯丙烷等[14-19]。Harding等[20]均對(duì)非離子型纖維素醚進(jìn)行改性,但對(duì)水溶性陰離子型纖維素醚如CMHEC的改性研究尚未進(jìn)行。筆者以羧甲基羥乙基纖維素CMHEC和環(huán)氧氯丙烷EPIC主要原料,將CMHEC用環(huán)氧氯丙烷進(jìn)行改性,得到水溶性EPIC-CMHEC,并考察其改性前后流變性及減阻性能,可望為其用于油氣開(kāi)采壓裂液稠化劑和減阻劑提供指導(dǎo)[21]。
將2 g羧甲基羥乙基纖維素CMHEC分散于一定量的85%乙醇水溶液中,在25 ℃水浴下攪拌3~5 min,加入約0.3 g的20% NaOH 溶液,堿化30 min,升溫至30 ℃,滴加10%環(huán)氧氯丙烷/乙醇溶液0.306 g,反應(yīng)2 h。分別用85%乙醇和無(wú)水乙醇洗滌,抽濾,50 ℃烘干,得到粉末狀產(chǎn)物。采用KBr壓片,通過(guò)傅里葉紅外光譜對(duì)產(chǎn)品進(jìn)行表征,結(jié)果見(jiàn)圖1。
圖1 EPIC-CMHEC和CMHEC的紅外譜圖
由圖1可以看出,EPIC-CMHEC和CMHEC在3 440cm-1處出現(xiàn)了強(qiáng)而寬的—OH伸縮振動(dòng)吸收峰,在2 920 cm-1處出現(xiàn)了—CH伸縮振動(dòng)峰,在1 060 cm-1處出現(xiàn)了C—O—C伸縮振動(dòng)吸收峰。而EPIC-CMHEC在658 cm-1處沒(méi)有出現(xiàn)O—H彎曲振動(dòng)吸收峰,在675 cm-1處沒(méi)有出現(xiàn)C—Cl吸收峰,在1 460 cm-1處出現(xiàn)了—CH彎曲振動(dòng)吸收峰,可見(jiàn)Cl基團(tuán)接上CMHEC,且CMHEC與環(huán)氧氯丙烷成功反應(yīng)。
2.1 改性前后穩(wěn)態(tài)剪切黏度
如圖2所示,在25 ℃、170 s-1下,EPICCMHEC和CMHEC溶液的黏度均隨濃度增加而升高,且EPIC-CMHEC溶液的黏度明顯比交聯(lián)前高。質(zhì)量分?jǐn)?shù)為0.3%時(shí),CMHEC溶液黏度為18.3 mPa·s,而EPIC-CMHEC溶液黏度為56.6 mPa·s,黏度提高了2.1倍;質(zhì)量分?jǐn)?shù)為0.4%和0.5%時(shí),EPIC-CMHEC溶液黏度比CMHEC溶液黏度分別提高了1.9倍和2.5倍。這是因?yàn)榄h(huán)氧氯丙烷反應(yīng)時(shí)易開(kāi)環(huán),與CMHEC分子鏈上的羥基發(fā)生反應(yīng),且環(huán)氧氯丙烷分子上的Cl基團(tuán)也可以接到纖維素分子上,這樣環(huán)氧氯丙烷即把CMHEC交聯(lián)起來(lái),形成網(wǎng)狀結(jié)構(gòu),因此強(qiáng)度增加,黏度增大。實(shí)驗(yàn)觀察到,EPIC的用量對(duì)改性產(chǎn)物溶液的黏度影響很大,當(dāng)EPIC用量低于上述實(shí)驗(yàn)用量時(shí),EPIC-CMHEC溶液黏度較低;當(dāng)EPIC用量過(guò)大時(shí),產(chǎn)物即過(guò)度交聯(lián)而不溶于水。
圖2 CMHEC和EPIC-CMHEC溶液黏度隨EPIC濃度的變化(25 ℃、170 s-1)
2.2 流動(dòng)性
考察了不同質(zhì)量分?jǐn)?shù)的CMHEC和EPICCMHEC溶液黏度隨剪切速率的變化,結(jié)果見(jiàn)圖3。用Cross模型能夠很好地描述CMHEC和EPICCMHEC溶液黏度隨剪切速率的變化曲線,模型參數(shù)如表1所示。使用廣義牛頓流體Cross模型[22]模擬剪切變稀流動(dòng)曲線,見(jiàn)公式(1)。
式中,η0為零剪切黏度,mPa·s;η∞是剪切速率趨于非常大時(shí)剪切變稀達(dá)到的另一個(gè)平衡黏度,mPa·s;m為特征時(shí)間,s;λ與材料的特性直接相關(guān);γ為剪切速率,s-1。
由圖3和表1可知,不同質(zhì)量分?jǐn)?shù)的EPICCMHEC和CMHEC溶液均表現(xiàn)出剪切變稀的性質(zhì),可見(jiàn)2種溶液都是典型的假塑性流體。
圖3 Cross模型描述EPIC-CMHEC和CMHEC溶液的黏度
表1 Cross模型描述EPIC-CMHEC和CMHEC溶液黏度變化曲線模型參數(shù)
擬合相關(guān)系數(shù)R較高,說(shuō)明Cross模型能較好地?cái)M合不同濃度EPIC-CMHEC和CMHEC溶液的流動(dòng)曲線,η0和η∞均隨溶液濃度的增加而增加,且同樣濃度下,EPIC-CMHEC溶液的η0和η∞均大于CMHEC溶液,可見(jiàn)EPIC-CMHEC溶液黏性更大。特征時(shí)間λ反映了內(nèi)部結(jié)構(gòu)強(qiáng)度,λ越大,結(jié)構(gòu)強(qiáng)度也越大。同一濃度下EPIC-CMHEC溶液的特征時(shí)間大于CMHEC溶液,即其內(nèi)部結(jié)構(gòu)更強(qiáng)。這是因?yàn)榄h(huán)氧氯丙烷把CMHEC交聯(lián)起來(lái),形成網(wǎng)狀結(jié)構(gòu),內(nèi)部結(jié)構(gòu)強(qiáng)度增加,黏度提高。
2.3 黏彈性
CMHEC和EPIC-CMHEC溶液的應(yīng)變掃描結(jié)果如圖4所示。由圖4可知,不同濃度的EPICCMHEC和CMHEC溶液的彈性模量G′和黏性模量G″隨著應(yīng)變的增加,最初變化較?。划?dāng)應(yīng)變?cè)黾右欢ǔ潭群笥兄饾u下降的趨勢(shì)。這是因?yàn)楦邞?yīng)變振蕩流場(chǎng)會(huì)導(dǎo)致溶液結(jié)構(gòu)破壞,黏彈性也會(huì)降低。2種溶液的G″都大于G′,可見(jiàn)EPIC-CMHEC和CMHEC溶液都表現(xiàn)出黏性流體的性質(zhì)。同一濃度下,EPIC-CMHEC溶液的G′和G″均大于CMHEC溶液。因?yàn)楦男院驟PIC-CMHEC分子在溶液中形成網(wǎng)狀結(jié)構(gòu),強(qiáng)度增加,黏彈性增大。
圖4 EPIC-CMHEC和CMHEC溶液的黏彈性對(duì)比
2.4 觸變性
如圖5所示,EPIC-CMHEC和CMHEC溶液觸變環(huán)上行線和下行線幾乎重合,無(wú)明顯的滯后環(huán),EPIC-CMHEC溶液在濃度為0.3%時(shí)也無(wú)滯后環(huán),濃度為0.5%時(shí),上行線和下行線略有不重合,表現(xiàn)出一定的觸變性;同一濃度下,EPIC-CMHEC溶液的觸變性明顯高于CMHEC溶液。當(dāng)溶液受到剪切后,其內(nèi)部結(jié)構(gòu)逐漸被破壞,剪切除去后,結(jié)構(gòu)不斷恢復(fù)。EPIC-CMHEC溶液的非牛頓流體性質(zhì)比較強(qiáng),結(jié)構(gòu)強(qiáng)度大于CMHEC溶液,同一剪切速率下其應(yīng)力也更大,因而觸變性也更強(qiáng)。
圖5 EPIC-CMHEC和CMHEC溶液的觸變性比較
2.5 耐溫性
CMHEC和EPIC-CMHEC溶液黏度隨溫度變化見(jiàn)圖6。
圖6 EPIC-CMHEC和CMHEC溶液黏度隨溫度的變化
由圖6可知,隨著溫度升高,EPIC-CMHEC和CMHEC溶液的黏度均有所降低,但是即使在80 ℃下,EPIC-CMHEC溶液的保留黏度依然是同濃度下CMHEC溶液黏度的2倍多;0.3% EPIC-CMHEC溶液在80 ℃時(shí)黏度約為19 mPa·s,仍高于25 ℃時(shí)0.3%的CMHEC溶液黏度。因?yàn)镋PIC-CMHEC分子在溶液中呈網(wǎng)狀結(jié)構(gòu),結(jié)構(gòu)強(qiáng)度增加,因此對(duì)高溫的耐受能力也增強(qiáng)。
2.6 減阻性
在25 ℃剪切模式下測(cè)定溶液黏度隨剪切速率變化曲線,用冪律模型進(jìn)行擬合,得到參數(shù)K和n。結(jié)果如圖7和表2所示。
圖7 EPIC-CMHEC和CMHEC溶液流動(dòng)曲線
表2 EPIC-CMHEC和CMHEC溶液冪律模型參數(shù)
由圖7和表2中相關(guān)系數(shù)R可以看出,擬合效果較好,溶液剪切變稀效果較好;隨著EPICCMHEC溶液濃度增加,稠度系數(shù)K增加,表明增黏能力增加,流性指數(shù)n總體上降低,表明剪切變稀性增強(qiáng);0.15%CMHEC溶液增黏能力最低,剪切變稀性最強(qiáng)。
不同濃度EPIC-CMHEC溶液和0.15% CMHEC溶液摩擦系數(shù)及減阻率隨廣義雷諾數(shù)變化見(jiàn)圖8。由圖8可知,當(dāng)CMHEC溶液濃度為0.15%時(shí)其減阻效果最好;EPIC-CMHEC溶液和CMHEC溶液摩擦系數(shù)均隨雷諾數(shù)增加而降低,同一雷諾數(shù)下,0.15%EPIC-CMHEC溶液摩擦系數(shù)最小,0.15%CMHEC溶液摩擦系數(shù)相對(duì)較高;在低雷諾區(qū)溶液減阻率隨雷諾數(shù)增加而增加,高雷諾區(qū)減阻率基本不變;對(duì)于0.15%、0.12%、0.10%、0.08%濃度的EPIC-CMHEC溶液,最大減阻率分別達(dá)到了74.65%、73.65%、72.70%和70.40%,CMHEC溶液在濃度為0.15%、0.12%、0.10%、0.08%時(shí),最大減阻率為72.77%、70.29%、68.41%、65.49%,減阻效果略差于EPIC-CMHEC溶液。EPICCMHEC大分子在溶液中呈舒展?fàn)顟B(tài),適當(dāng)?shù)酿ざ认驴梢宰璧K湍流漩渦的產(chǎn)生,降低漩渦的發(fā)生頻率,從而產(chǎn)生較好的減阻效果。EPIC-CMHEC溶液減阻效果增強(qiáng),可作為滑溜水使用。
圖8 不同質(zhì)量分?jǐn)?shù)EPIC-CMHEC和0.15% CMHEC溶液摩擦系數(shù)及減阻率隨廣義雷諾數(shù)的變化
1.以羧甲基羥乙基纖維素和環(huán)氧氯丙烷為主要原料,獲得了水溶性改性羧甲基羥乙基纖維素,紅外光譜圖表明環(huán)氧氯丙烷成功接上纖維素分子,反應(yīng)得到的EPIC-CMHEC水溶性較好,溶液表觀黏度相比CMHEC溶液也明顯提高。
2.不同濃度的EPIC-CMHEC和CMHEC溶液均表現(xiàn)出剪切變稀的性質(zhì),廣義牛頓流體Cross模型能夠較好地模擬溶液黏度隨時(shí)間的變化關(guān)系。相同濃度下EPIC-CMHEC溶液彈性模量G′和黏性模量G″均高于CMHEC溶液,觸變性也強(qiáng)于CMHEC溶液,說(shuō)明EPIC-CMHEC溶液黏彈性和結(jié)構(gòu)強(qiáng)度比CMHEC溶液明顯提高,同時(shí)EPICCMHEC溶液耐溫性也明顯提高。
3.對(duì)于濃度為0.15%、0.12%、0.10%、0.08%的EPIC-CMHEC溶液,最大減阻率分別達(dá)到了74.65%、73.65%、72.70%和70.40%,其減阻率高于CMHEC溶液,摩擦系數(shù)低于CMHEC溶液。因此EPIC-CMHEC溶液的減阻性能相比CMHEC溶液也明顯提高。
4.研究的改性纖維素EPIC-CMHEC為纖維素壓裂液的理論研究和應(yīng)用提供流變學(xué)基礎(chǔ),可望為纖維素基壓裂液應(yīng)用于頁(yè)巖氣等非常規(guī)油氣藏開(kāi)采和減阻劑提供指導(dǎo)。
[1]金雷平.耐高溫黏彈性表面活性劑壓裂液體系及流變學(xué)研究[D].華東理工大學(xué),2015. JIN Leiping.Study on high temperature viscoelastic surfactant fracturing fluid and its rheological properties[D].East China University of Science and Technology,2015.
[2]明華,舒玉華,盧擁軍,等.一種速溶無(wú)殘?jiān)w維素壓裂液[J].油田化學(xué),2014,31(4):492-496. MING Hua,SHU Yuhua,LU Yongjun,et al.A cellulose fracturing fluid with instant solution and nonresidue[J].Oilfield Chemistry,2014,31(4): 492-496.
[3]王煦,楊永釗,蔣爾梁,等.壓裂液用纖維類物質(zhì)的研究進(jìn)展[J].西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2010, 32(3):141-144. WANG Xu,YANG Yongzhao,JIANG Erliang,et al.Research progress of fibrous substance used in fracturing fluid[J].Journal of Southwest Petroleum Universit(yScience & Technology Edition),2010,32(3): 141-144.
[4]GUO J,MA J,ZHAO Z H,et al.Effect of fiber on the rheological property of fracturing fluid[J].Journal of Natural Gas Science and Engineering,2015,23(21):232-244.
[5]MA M,F(xiàn)ANG B,Lu Y J,et al.Intrinsic rheokinetics on gelation process of hydrophobic amphoteric cellulose[J].Journal of Dispersion Science andTechnology,2015,37(8):1076-1082.
[6]王麗偉,盧擁軍,劉玉婷,等.羥乙基羧甲基纖維素與金屬離子交聯(lián)作用機(jī)理[J].科學(xué)技術(shù)與工程,2015,15(33):166-169. WANG Liwei,LU Yongjun,LIU Yuling,et al. Crosslinking mechanism of hydroxyethyl carboxymethylcellulose and metal lons[J].Science Technology andEngineering,2015,15(33):166-169.
[7]ZHAO Z H,MA J,GUO J C,et al.Experimental investigation of rheological properties of fiber-laden crosslinked fracturing fluids[J].Journal of Natural Gas Science and Engineering,2016,32(2):28-34.
[8]羅成成,王暉,陳勇.纖維素的改性及應(yīng)用研究進(jìn)展[J].化工進(jìn)展,2015,34(3):767-773. LUO Chengcheng,WANG Hui,CHEN Yong.Progress in modification of cellulose and application[J].Chemical Industry and Engineering Progress,2015,34(3):767-773.
[9]鹿保鑫,王喜剛,周睿,等.稻草纖維素醚化改性及其結(jié)構(gòu)表征[J].黑龍江八一農(nóng)墾大學(xué)學(xué)報(bào),2010,22(4):71-76. LU Baoxin,WANG Xigang,ZHOU Rui,et al. Etherifying modification and structure characterizations of carboxymethyl cellulose[J].Journal of Heilongjiang Bayi Agricultural University,2010,22(4):71-76.
[10]段瑤瑤,明華,代東每,等.纖維素壓裂液在蘇里格氣田的應(yīng)用[J].特種油氣藏,2014,21(6):123-125. DUAN Yaoyao,MING Hua,DAI Donghai,et al. Application of cellulose fracturing fluid in sulige gas field[J].Special Oil and Gas Reservoirs,2014,21(6):123-125.
[11]邵自強(qiáng),楊斐霏,王文俊,等.羧甲基纖維素的環(huán)氧氯丙烷交聯(lián)改性研究[J].纖維素科學(xué)與技術(shù),2007,15(2):26-29. SHAO Ziqiang,YANG Feiwen,WANG Wenjun,et al.Study on CMC crosslinked by 3-chloro-1,2-epoxypropane[J].Journal Cellulose Science andTechnology,2007,15(2):26-29.
[12]梁凱,杜予民,李艷,等.三偏磷酸鈉交聯(lián)殼聚糖膜的制備及其性能研究[J].分析科學(xué)學(xué)報(bào),2008,24(2):136-140. LIANG Kai,DU Yumin,LI Yan,et al.The preparation and properties of chitosan films crosslinked by sodium trimetaphosphate[J].Journal of Analytical Science,2008,24(2),136-140.
[13]劉茹.交聯(lián)黃原膠的制備及其溶液流變性[D].山東大學(xué), 2015. LIU Ru.Synthesis and solution rheology of crosslinked xanthan gum[D].Shandong University,2015.
[14]李秉正.三偏磷酸鈉交聯(lián)淀粉微球的制備與性能研究[D].中國(guó)農(nóng)業(yè)大學(xué), 2006. LI Binzheng.Preparation and properties of trisodium trimetaphosphate crosslinked starch microspheres[D]. China Agricultural University,2006.
[15]李芳良,何建華,麻昌愛(ài).三偏磷酸鈉制備木薯交聯(lián)淀粉的研究[J].廣西輕工業(yè),2007,23(3):18-19. LI Fangliang,HE Jianhan,MA Changai.Study on sodium trimetaphosphate crosslinked cassava starch[J].Guangxi Journal of Light Industry,2007,23(3):18-19.
[16]楊婷婷,李海平,侯萬(wàn)國(guó).環(huán)氧氯丙烷交聯(lián)黃原膠溶液的流變及抗溫性能[J]. 高分子材料科學(xué)與工程,2015, 31(5):39-43. YANG Tingting,LI Haiping,HOU Wangguo. Rheological properties and temperature resistance of epichlorohydrin crosslinked xanthan gum aqueous solutions[J].Polymer Materials Science and Engineering,2015,31(5):39-43.
[17]袁彥超,陳炳稔,王瑞香.甲醛、環(huán)氧氯丙烷交聯(lián)殼聚糖樹(shù)脂的制備及性能[J]. 高分子材料科學(xué)與工程,2004, 20(1):53-57. YUAN Yanchao,CHEN Binniang,WANG Ruixiang. Studies of properties and preparation of chitosan resin crosslinked by formaldehyde and epichlorohydrin[J]. Polymer Materials Science and Engineering,2004,20(1):53-57.
[18]徐德增,李丹,徐磊.戊二醛交聯(lián)改性再生纖維素纖維的研究[J].合成纖維工業(yè),2012,35(4):27-29. XU Dezeng,LI Dan,XU Lei.Crosslinking modification of regenerated cellulose fiber by glutaraldehyde[J].ChinaSynthetic Fiber Industry,2012,35(4):27-29.
[19]王雪娟,唐屹,吳煒譽(yù),等.戊二醛交聯(lián)膠原蛋白/ PVA復(fù)合纖維的結(jié)構(gòu)與性能[J].紡織學(xué)報(bào),2007,28(11):13-16. WANG Xuejuan,TANG Yi,WU Weiyu,et al. Research on collagen/PVA composite fibers with glutaraldehyde as cross-linker[J].Journal of TextileResearch,2007,28(11):13-16.
[20]HARDING M J,GAINES R C,GESS J M.Method for preparation of cationic cellulose:US,US4505775[P]. 1985.
[21]LUO M,JEWELL R A,NEOGI A N.Method for production of cellulose derivatives and the resulting products:US,US 6531593 B1[P].2003.
[22]盧擁軍,方波,房鼎業(yè),等.黏彈性表面活性劑膠束體系及其流變特性[J].油田化學(xué),2003,20(3):291-294. LU Yongjun,F(xiàn)ANG Bo,F(xiàn)ANG Dingye,et al. Viscoelastic surfactant micelle systems and their rheological properties[J].Oilfield Chemistry,2003,20(3):291-294.
Study on the Rheology and Drag Reducing Performance of Epoxy Chloropropane Modified Cellulose Solution
ZHU Yimei1, FANG Bo2, LU Yongjun2, QIU Xiaohui2
(1.Research Institute of Chemical Engineering,East China University of Science and Technology,Shanghai200237; 2.Langfang Branch of PetroChina Research Institution of Petroleum Exploration and Development,Langfang,Hebei065007)
To improve the viscoelasticity of carboxymethyl hydroxyethyl cellulose (CMHEC) solution to widen its field of application, a water soluble EPIC-CMHEC has been developed by reacting epoxychloropropane (EPIC) with CMHEC. EPIC-CMHEC and CMHEC water solutions were studied for their rheology (flow curve, viscoelasticity, constitutive equation, and thixotropy etc.) and drag reducing performance. The study has shown that compared with that of the CMHEC solution, the viscosity of the EPIC-CMHEC solution was notably increased. Water solution of 3 g/L EPIC-CMHEC had viscosity of 56.6 mPa·s, 2.1 times of the viscosity of a 3 g/L CMHEC solution (18.3 mPa·s), and the elasticity of the EPIC-CMHEC solution was better than that of the CMHEC solution. Sheared at 170 s-1, when temperature was increased from 20 ℃ to 80 ℃, the viscosity of 0.3% EPIC-CMHEC solution was 19 mPa·s, still higher than the viscosity of a 0.3% CMHEC solution at 25 ℃. EPIC-CMHEC solution had better drag reducing performance. The maximum percentages of drag reduction of 0.10% EPIC-CMHEC solution and CMHEC solution were 72.70% and 68.41%, respectively. The flow curves of the EPIC-CMHEC solution and the CMHEC solution can be expressed with cross constitutive equation. EPIC-CMHEC is expected to find its use in oil/gas development and where drag reducing is required.
Carboxymethyl hydroxyethyl cellulose; Epoxychloropropane; Modification; Rheology
TE357.12
A
1001-5620(2016)06-0095-06
2016-9-23;HGF=1605C5;編輯 王超)
10.3696/j.issn.1001-5620.2016.06.017
國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)課題“致密砂巖氣藏低傷害壓裂液體系研究與應(yīng)用”(2013AA064801);中國(guó)石油天然氣集團(tuán)公司科學(xué)研究與技術(shù)開(kāi)發(fā)項(xiàng)目 “井筒工作液基礎(chǔ)理論關(guān)鍵技術(shù)研究”(2014A-4212);國(guó)家級(jí)大學(xué)生創(chuàng)新訓(xùn)練計(jì)劃(X15012)。
朱儀玫,在讀碩士研究生,主要從事油田化學(xué)品流變學(xué)研究工作。電話 13127921106,E-mail:893816276@ qq.com。
*通訊作者:方波,電話 (021)64253361;E-mail:fangbo@ecust.edu.cn。