徐新新 宋峰 王瑞鋒
摘要:
由于車輛行駛狀況復(fù)雜多樣,傳統(tǒng)靜態(tài)工況無(wú)法復(fù)現(xiàn)各類惡劣路況下后底盤轉(zhuǎn)向節(jié)真實(shí)應(yīng)力,因此在利用MotionView建立整車剛?cè)狁詈隙囿w動(dòng)力學(xué)模型的基礎(chǔ)上,將后轉(zhuǎn)向節(jié)利用柔性體進(jìn)行模擬;在進(jìn)行虛擬試驗(yàn)場(chǎng)仿真分析的同時(shí)采用模態(tài)綜合法計(jì)算結(jié)構(gòu)動(dòng)應(yīng)力,得到后轉(zhuǎn)向節(jié)最高應(yīng)力位置及發(fā)生時(shí)刻.仿真結(jié)果與整車道路試驗(yàn)結(jié)果的對(duì)比表明仿真方法準(zhǔn)確.
關(guān)鍵詞:
汽車; 轉(zhuǎn)向節(jié); 動(dòng)應(yīng)力; 模態(tài)綜合法; 剛?cè)狁詈希?慣性釋放; 應(yīng)變片; 虛擬試驗(yàn)場(chǎng)
中圖分類號(hào): U462.2
文獻(xiàn)標(biāo)志碼: B
Abstract:
Due to the complex vehicle driving conditions, the actual stress of chassis steering knuckle under various bad road conditions can not be forecasted correctly by the traditional static load conditions. A rigidflexible coupling multibody dynamics model is built by MotionView, in which the rear steering knuckles are simulated as flexible bodies. The virtual proving ground simulation analysis is done while the dynamic stresses are calculated by modal synthesis method, and the location and occurring time of maximum stresses of rear steering knuckles are identified. The comparison between simulation results and the results obtained by road test for whole car shows the correctness of the simulation method.
Key words:
automobile; steering knuckle; dynamic stress; modal synthesis method; rigidflexible coupling; inertia relief; stain gauge; virtual proving ground
0引言
轉(zhuǎn)向節(jié)是底盤的重要構(gòu)件,連接著車輪以及懸架總成,其不僅承受地面對(duì)車輪的垂向沖擊,而且承受車輛轉(zhuǎn)彎或制動(dòng)時(shí)產(chǎn)生的橫向和縱向力以及力矩,因此轉(zhuǎn)向節(jié)的強(qiáng)度性能直接影響汽車行駛的安全性和可靠性.傳統(tǒng)的轉(zhuǎn)向節(jié)強(qiáng)度分析方法主要通過(guò)靜態(tài)工況進(jìn)行仿真分析,但靜態(tài)工況加載比較單一,難以復(fù)現(xiàn)汽車在壞路上行駛時(shí)轉(zhuǎn)向節(jié)的真實(shí)受力情況.本文利用MotionView多體動(dòng)力學(xué)軟件建立整車剛?cè)狁詈夏P停ㄟ^(guò)整車虛擬路面仿真提取仿真過(guò)程中轉(zhuǎn)向節(jié)最大應(yīng)力,評(píng)判轉(zhuǎn)向節(jié)強(qiáng)度性能,最后通過(guò)與轉(zhuǎn)向節(jié)貼片試驗(yàn)進(jìn)行應(yīng)力對(duì)比驗(yàn)證仿真方法的準(zhǔn)確性.
1模型定義
1.1轉(zhuǎn)向節(jié)柔性體生成
使用MotionView軟件中的FlexTools模塊,根據(jù)轉(zhuǎn)向節(jié)bdf格式有限元模型,選用CraigBampton模態(tài)綜合法,并設(shè)置輸出轉(zhuǎn)向節(jié)應(yīng)力應(yīng)變信息,生成h3d格式的轉(zhuǎn)向節(jié)柔性體文件,生成界面及柔性體模型見(jiàn)圖1.
1.2整車模型搭建
在MotionView軟件中建立整車模型[1],包括前、后懸架系統(tǒng),轉(zhuǎn)向系統(tǒng),傳動(dòng)系統(tǒng),車身,動(dòng)力總成和輪胎.在建模過(guò)程中保證襯套、減振器、彈簧以及限位塊等彈性元件的參數(shù)設(shè)置與實(shí)測(cè)值相同,硬點(diǎn)坐標(biāo)及各底盤部件質(zhì)量慣量可直接在數(shù)值模型中進(jìn)行量取,搭建完成的整車質(zhì)量質(zhì)心參數(shù)與實(shí)車保持一致,根據(jù)輪胎的力學(xué)特性數(shù)據(jù)擬合輪胎模型,并制作輪胎屬性文件[24],最后將整車模型中轉(zhuǎn)向節(jié)的剛體模型替換為柔性體.建立的整車剛?cè)狁詈夏P鸵?jiàn)圖2.
1.3路面模型搭建
使用等效容積法[5]在有限元軟件中對(duì)比利時(shí)路、魚(yú)鱗坑路、圓餅路和點(diǎn)坑路進(jìn)行建模,并轉(zhuǎn)換為
rdf格式虛擬試驗(yàn)場(chǎng)路面文件,建立的路面模型見(jiàn)圖3.
2.2仿真結(jié)果
通過(guò)整車虛擬路面仿真可輸出轉(zhuǎn)向節(jié)各時(shí)刻最大應(yīng)力隨時(shí)間變化曲線及最大應(yīng)力時(shí)刻轉(zhuǎn)向節(jié)應(yīng)力云圖,見(jiàn)表2.
由表2仿真結(jié)果可知:在點(diǎn)坑路工況下,轉(zhuǎn)向節(jié)出現(xiàn)最大應(yīng)力203 MPa,小于轉(zhuǎn)向節(jié)材料的屈服極限,滿足強(qiáng)度設(shè)計(jì)要求.
3動(dòng)應(yīng)力分析方法精度驗(yàn)證
4試驗(yàn)驗(yàn)證
在轉(zhuǎn)向節(jié)表面粘貼應(yīng)變片.由于各路段轉(zhuǎn)向節(jié)最大應(yīng)力位置處不易貼片,故選用較平整位置進(jìn)行貼片,在后懸轉(zhuǎn)向節(jié)貼4個(gè)應(yīng)變片,編號(hào)為1~4號(hào).采集轉(zhuǎn)向節(jié)貼片處應(yīng)變[9]曲線,通過(guò)計(jì)算獲取轉(zhuǎn)向節(jié)各路段貼片處最大應(yīng)力,并與整車虛擬路面仿真獲取的各路段貼片位置處應(yīng)力最大值進(jìn)行對(duì)比,結(jié)果見(jiàn)表4.1號(hào)應(yīng)變片與3號(hào)應(yīng)變片試驗(yàn)應(yīng)力結(jié)果小于30 MPa,所以不列入對(duì)比結(jié)果表;此外,點(diǎn)坑路工況試驗(yàn)危險(xiǎn)度較高,出于車輛及人員安全考慮,未進(jìn)行該路況試驗(yàn).
由表4可知:3種路況下仿真與試驗(yàn)結(jié)果應(yīng)力幅值最多相差6 MPa,且差異均在14%以內(nèi),可驗(yàn)證模型搭建以及仿真方法的準(zhǔn)確性.考慮到仿真與試驗(yàn)的差異,將虛擬試驗(yàn)場(chǎng)動(dòng)應(yīng)力分析所得最大應(yīng)力203 MPa上浮14%后為231 MPa,仍小于轉(zhuǎn)向節(jié)材料屈服極限,故認(rèn)為結(jié)構(gòu)設(shè)計(jì)滿足惡劣路況行駛強(qiáng)度要求.
5結(jié)論
(1)利用整車剛?cè)狁詈夏P停抡嬗?jì)算車輛在壞路上行駛時(shí)轉(zhuǎn)向節(jié)的應(yīng)力,結(jié)果顯示各工況下轉(zhuǎn)向節(jié)應(yīng)力幅值均小于其屈服強(qiáng)度,轉(zhuǎn)向節(jié)不存在強(qiáng)度破壞風(fēng)險(xiǎn),仿真分析結(jié)果為轉(zhuǎn)向節(jié)設(shè)計(jì)提供支持.
(2)提取最大應(yīng)力時(shí)刻轉(zhuǎn)向節(jié)各安裝點(diǎn)載荷,在有限元模型中進(jìn)行慣性釋放分析,各工況應(yīng)力計(jì)算結(jié)果與整車仿真柔性體直接提取應(yīng)力結(jié)果一致,驗(yàn)證模態(tài)綜合法動(dòng)應(yīng)力分析的準(zhǔn)確性.
(3)通過(guò)貼應(yīng)變片進(jìn)行實(shí)車道路試驗(yàn),仿真與試驗(yàn)結(jié)果差異在14%以內(nèi),驗(yàn)證模型搭建以及仿真方法的準(zhǔn)確性,雖未采集點(diǎn)坑路工況下轉(zhuǎn)向節(jié)應(yīng)力,但基于其他工況仿真精度來(lái)看,點(diǎn)坑路況時(shí)結(jié)構(gòu)可滿足強(qiáng)度設(shè)計(jì)要求,其結(jié)果可作為考察轉(zhuǎn)向節(jié)應(yīng)力性能依據(jù).
(4)轉(zhuǎn)向節(jié)失效形式不僅包括強(qiáng)度破壞,還有可能疲勞失效,除動(dòng)應(yīng)力分析外,整車虛擬試驗(yàn)場(chǎng)仿真方法還可提取結(jié)構(gòu)各安裝點(diǎn)動(dòng)態(tài)載荷作為疲勞計(jì)算[10]輸入,從而達(dá)到零部件性能提前驗(yàn)證、縮短整車開(kāi)發(fā)周期的目的.
參考文獻(xiàn):
[1]
李修峰, 王亞斌, 王晨. MotionView & MotionSolve應(yīng)用技巧與實(shí)例分析[M]. 北京: 機(jī)械工業(yè)出版社, 2013: 115157.
[2]陳志偉, 董月亮. MSC Adams多體動(dòng)力學(xué)仿真基礎(chǔ)與實(shí)例解析[M]. 北京: 中國(guó)水利水電出版社, 2012: 13.
[3]方杰, 吳光強(qiáng). 輪胎機(jī)械特性虛擬試驗(yàn)場(chǎng)[J]. 計(jì)算機(jī)仿真, 2007, 24(6): 243247. DOI: 10.3969/j.issn.10069348.2007.06.063.
FANG J, WU G Q. Virtual proving ground of tire mechanical characteristics[J]. Computer Simulation, 2007, 24(6) : 243247. DOI: 10.3969/j.issn.10069348.2007.06.063.
[4]陳軍. MSC.ADAMS 技術(shù)與工程分析實(shí)例[M]. 北京: 中國(guó)水利水電出版社, 2008: 173175.
[5]楊國(guó)權(quán), 趙又群, 郝鵬飛. 車輛虛擬試驗(yàn)場(chǎng)的路面建模方法研究[J]. 系統(tǒng)仿真技術(shù), 2010, 6(3): 183186. DOI: 10.3969/j.issn.16731964.2010.03.003.
YANG G Q, ZHAO Y Q, HAO P F. Method about the road modeling of vehicle virtual proving ground[J]. System Simulation Technology, 2010, 6(3) : 183186. DOI: 10.3969/j.issn.16731964.2010.03.003.
[6]趙曉鵬, 馮樹(shù)興, 張強(qiáng), 等. 越野汽車試驗(yàn)場(chǎng)載荷信號(hào)的采集及預(yù)處理技術(shù)[J]. 汽車技術(shù), 2010(9): 3842. DOI: 10.3969/j.issn.10003703.2010.09.010.
ZHAO X P, FENG S X, ZHANG Q, et al. Acquisition and pretreatment of load signals of an offroad vehicle from a proving ground[J]. Automobile Technology, 2010(9): 3842. DOI: 10.3969/j.issn.10003703.2010.09.010.
[7]WIRJE A, CARLSSON K. Modeling and simulation of peak load events using AdamsDriving over a curb and skid against a curb[EB/OL]. (20110412) [20161001]. http://papers. sae.org /2011010733. DOI: 10.4271/2011010733.
[8]張少雄, 楊永謙. 船體結(jié)構(gòu)強(qiáng)度直接計(jì)算中慣性釋放的應(yīng)用[J]. 中國(guó)艦船研究, 2006, 1(1): 5861. DOI: 10.3969/j.issn.16733185.2006.01.014.
ZHANG S X, YANG Y Q. Application of inertia relief in direct calculation of structural strength for ships[J]. Chinese Journal of Ship Research, 2006, 1(1): 5861. DOI: 10.3969/j.issn.16733185.2006.01.014.
[9]PANSE S M, GOSAVI S. Integrated structural durability test cycle development for a car and its components[DB/OL]. (20040308)[20160901]. http://papers.sae.org/2004011654/. DOI: 10.4271/2004011654.
[10]肖志金, 朱思洪. 基于虛擬樣機(jī)技術(shù)的輕型載貨汽車車架疲勞壽命預(yù)測(cè)方法[J]. 機(jī)械設(shè)計(jì), 2010, 27(1): 5963.
XIAO Z J, ZHU S H. Prediction method of fatigue lifespan of lightduty truck frame based on virtual prototype technology[J]. Journal of Machine Design, 2010, 27(1): 5963.
(編輯武曉英)