李 帥,丁云宏,劉廣峰,顧岱鴻,才 博
1) 中國石油勘探開發(fā)研究院,北京 100083; 2) 中國石油勘探開發(fā)研究院廊坊分院,河北廊坊 065007;3) 國家能源致密油氣研發(fā)中心,北京 100083;4) 中國石油大學(北京)石油工程教育部重點實驗室,北京102249
【環(huán)境與能源 / Environment and Energy】
致密儲層體積改造潤濕反轉提高采收率的研究
李 帥1,2,丁云宏2,3,劉廣峰4,顧岱鴻4,才 博2
1) 中國石油勘探開發(fā)研究院,北京 100083; 2) 中國石油勘探開發(fā)研究院廊坊分院,河北廊坊 065007;3) 國家能源致密油氣研發(fā)中心,北京 100083;4) 中國石油大學(北京)石油工程教育部重點實驗室,北京102249
以致密油氣體積改造注入的壓裂液為切入口,將表面活性劑復配至壓裂液中,探索在壓裂過程中改變儲層基質潤濕性,提高采收率的方法.基于接觸角和界面張力測量,在壓裂液中分別添加陽離子表面活性劑、陰離子表面活性劑和非離子表面活性劑,在不同潤濕狀態(tài)下對致密巖心進行滲吸物模實驗.通過改變潤濕反轉前后的相滲曲線和毛管壓力曲線,對該過程進行模擬研究.結果顯示:僅依靠壓裂液不能引起潤濕反轉,滲吸采收率僅為4.95%.添加表面活性劑后潤濕性發(fā)生變化,滲吸采收率有大幅提高,其中陽離子表面活性劑改變潤濕性的能力要好于非離子表面活性劑和陰離子表面活性劑;考慮潤濕反轉的模型可對表面活性劑潤濕反轉過程進行較好描述,模擬結果與實驗數(shù)據(jù)擬合較好;現(xiàn)場一平臺井壓裂液中加入潤濕反轉劑DL-15后,體積壓裂形成復雜裂縫,產量比鄰井提高2~4 t/d.建議體積改造形成復雜縫網(wǎng)的前提下,在壓裂液中添加表面活性劑,延長燜井時間,依靠停泵后的壓差驅替和滲吸置換作用,提高開井后產量.
油田開發(fā);致密儲層;體積改造;潤濕反轉;表面活性劑;提高采收率
致密油氣儲量豐富,以美國巴肯和鷹潭為代表的致密油的開發(fā)已成為新的經濟增長點[1].致密油氣的有效開發(fā)主要得益于“水平井+體積改造”模式[2],然而該方法一次采收率僅限于5%~10%左右[3],進一步提高致密儲層采收率問題亟需解決.
潤濕性是儲層重要物理特性,影響儲層流體性質(相對滲透率[4]、毛管壓力以及流體分布等[5]).潤濕性與溫度[6]、礦物成分[7]等有關,通??赏ㄟ^加熱[8]、低礦化度鹽水[9]和表面活性劑[10]等方法改變儲層潤濕性.
對于天然裂縫發(fā)育的親油性儲層,體積壓裂后注水開發(fā)容易導致水竄,大量的原油仍存在于基質中,水驅采收率低[11-12].本研究針對該類儲層探索了將表面活性劑復配至壓裂液中,壓裂結束后燜井改變基質潤濕性進而提高采收率的方法.首先,基于接觸角和界面張力測量,在壓裂液中分別添加陽離子表面活性劑、陰離子表面活性劑和非離子表面活性劑,在不同潤濕狀態(tài)下對致密巖心分別進行物模實驗.其次,進行了潤濕反轉的數(shù)值模擬研究,與實驗結果相互驗證.最后,以新疆油田瑪18井區(qū)4口平臺井進行了現(xiàn)場試驗.
1.1 實驗原理
儲層巖石與經過原油飽和并長時間老化后,原油中的有機酸吸附在固體界面,同時增加膠質瀝青質的吸附量,使巖心呈現(xiàn)油濕狀態(tài).油濕巖心與表面活性劑相互作用則可逐步轉變?yōu)樗疂駹顟B(tài)[13-14].本實驗將3種表面活性劑(陽離子型、陰離子型和非離子型)按一定比例復配至壓裂液中,對油濕巖心進行潤濕反轉及滲吸實驗.
1.2 實驗材料
選擇新疆油田瑪18井區(qū)塊致密巖心柱1—巖心柱4,其空氣滲透率為2×10-3~5×10-3μm2,孔隙度為8%~10%.將同一塊巖心切為2部分:上部為巖心切片(直徑為25 mm,厚度 為2 mm)用于進行接觸角測量;下部為巖心柱(直徑為25 mm,高度為26 mm)用于進行滲吸實驗.按照圖1分別制作巖心柱(編號為巖心柱1、巖心柱2、巖心柱3、巖心柱4)和巖心切片(編號為切片1-1、2-1、3-1和4-1).表面活性劑為質量分數(shù)0.3%的陽離子型表面活性劑(1831)、陰離子型表面活性劑(K12)和非離子型表面活性劑(APG0180).實驗所用壓裂液配方為蒸餾水+質量分數(shù)為0.1%的羥丙基瓜膠(hydroxypropyl guargum, HPG)+質量分數(shù)為2%的KCl,實驗用油為采出原油與煤油按照體積比3∶1配置,該模擬油儲層在溫度為86 ℃時密度為0.83 g/cm3,黏度為2.1 mPa·s.
圖1 接觸角測量及滲吸實驗所用巖心柱示意圖Fig.1 Core sample for contact angle measurement and imbibition experiment
1.3 實驗方法
1.3.1 接觸角測定
將飽和巖心切片放于烘箱內,在60 ℃條件下老化7 d,取出并打磨光滑后采用三相法DSA100接觸角測量儀測量接觸角.
1.3.2 界面張力測定
采用德國KRUSS公司生產的K100表面/界面張力儀,在86 ℃條件下分別測量壓裂液、陽離子表面活性劑、非離子表面活性劑以及陰離子表面活性劑與實驗用油之間的界面張力.
1.3.3 滲吸實驗
1)在變排量下(0.1 mL/min→0.2 mL/min→0.3 mL/min)向巖心柱1至巖心柱4注入10倍孔隙體積的實驗用油,以此飽和巖心,同樣將巖心在實驗溫度下老化7 d,使其具油濕性.
2)將老化后的巖心分別放入壓裂液和3種表面活性劑中進行滲吸實驗,滲吸過程中采用電子天平實時記錄巖心質量變化,巖心在不同溶液中的滲吸采收率為
(1)
其中, R為滲吸采收率; Δm為巖樣質量增量; ρw為表活劑密度; ρo為原油密度; Vo為飽和油的體積(單位:cm3).
3)滲吸實驗結束后,將巖心取出,50 ℃烘烤2~3 min, 冷卻后切片, 再重新測量接觸角.
2.1 實驗現(xiàn)象
2.1.1 接觸角
初始狀態(tài):清水在初始飽和油巖心切片上的接觸角為105°~125°,說明實驗初期巖心呈現(xiàn)一定的油濕性(圖2).
圖2 潤濕反轉前后接觸角變化Fig.2 Contact angle before and after wettability alteration
潤濕反轉后:滲吸實驗結束后,重新切片并測量接觸角,巖心柱1(壓裂液處理)接觸角的變化不大,為103.1°,說明巖心1經過壓裂液處理后,原油吸附量有所減少,親油性有所減弱;巖心柱2(陽離子表面活性劑處理)的接觸角最小,為32.6°,巖心柱3(非離子表面活性劑處理)和巖心柱4(陰離子表面活性劑處理)的接觸角分別為53.9°和73.4°.說明巖心柱2到巖心柱4經過表面活性劑處理則出現(xiàn)不同程度的潤濕反轉,巖心由親油性向親水性發(fā)生轉變.
2.1.2 界面張力
經測量,實驗用油與壓裂液之間的界面張力最高,為30.26 mN/m,與陰離子表面活性劑之間的界面張力最低.且隨表面活性劑質量分數(shù)的增加,界面張力呈漸減趨勢(圖3).
圖3 液體與原油間界面張力Fig.3 Interfacial tension between fluid and oil
2.1.3 滲吸實驗
巖心柱1:置于壓裂液溶液中,11.4 h后開始出現(xiàn)油滴,且油滴出現(xiàn)非常緩慢,曲線平穩(wěn)后,最終采收率僅為4.95%.
巖心柱2至巖心柱4:分別置于添加陽離子表面活性劑、非離子表面活性劑和陰離子表面活性劑的壓裂液溶液中.實驗過程中可以看到油滴出現(xiàn)較快,采出油量較多,巖心柱2采收率最高,為21.29%;巖心柱3和巖心柱4分別為9.91%和15.84%(圖4).巖心經過表面活性劑的處理,一方面降低了界面張力,使油滴更容易脫離束縛,在達到平衡時置換出更多原油.另一方面,改變了巖心的潤濕性,由油濕向水濕轉變,毛管力由滲吸的阻力變?yōu)闈B吸的動力,提高了滲吸采出程度.
圖4 不同類型液體下的滲吸采收率Fig.4 Imbibition recovery rates of different fluids
2.2 結果分析
表面活性劑與儲層巖石接觸過程中,既會降低界面張力,又會改變巖石表面的潤濕性.采用黏附功降低因子(黏附功降低因子=界面張力因子×潤濕性因子)來描述這一綜合作用[15].
1)界面張力因子為
(1)
其中, σ0為壓裂液與實驗用油的界面張力(單位: mN/m); σ1為表面活性劑與實驗用油的界面張力(單位:mN/m).
2)潤濕性因子為
(2)
其中, θ0為潤濕反轉前清水在巖石表面的接觸角; θ1為潤濕反轉后清水在巖石表面的接觸角.
3)黏附功降低因子
滲吸過程中,毛管力作用將原油從巖石表面拉開脫落,需要克服黏附功.黏附功W黏與界面張力σ和接觸角θ有直接關系,定義為
W黏=σ(1-cos θ)
(3)
因此,添加表面活性劑后的黏附功降低因子為
(4)
那么, Eσ、 Eθ、 E降表征的實驗參數(shù)見表1.
表1 壓裂液與不同類型表面活性劑復配溶液下巖心實驗結果
將表1中的Eσ、 Eθ、 E降以及采出程度繪制成對數(shù)坐標系結果如圖5.由圖5可見,盡管陰離子表面活性劑降低界面張力的能力好于其他液體,但最終決定滲吸采收率的仍是黏附功降低因子,黏附功降低因子和滲吸采收率保持了較好的反比性,即黏附功降低因子越低,滲吸采收率越高.
圖5 四種液體潤濕反轉性能分析Fig.5 Performance of the four different liquids
含有親水基和親油基的表面活性劑與親油性質的巖石表面接觸時,親油基一頭會依附于巖石表面,親水基一頭向外,導致巖石向親水性轉變.但由于表面活性劑的雙層或多層吸附,可能導致潤濕反轉并不完全,即巖石也可能并不完全轉變?yōu)橛H水.另外,由于陽離子表面活性劑本身帶有正電荷,與帶有負電荷的巖石表面接觸時,還會存在電荷之間的靜電吸引作用,加劇了潤濕性的改變程度[16].因此,將表面活性劑復配到壓裂液中,提高壓裂完成后的采收率具有可行性:① 表面活性劑降低了黏附功,提高了洗油效率;② 降低界面張力,減小油滴的變形阻力,減小賈敏效應,使油滴容易剝離脫落,提高驅油效率;③ 巖石潤濕性發(fā)生變化,孔道壁面的親水性增強,縮小孔隙表面油膜厚度,擴大滲吸波及范圍的同時,也將殘余油逐漸驅替出來[17].
表面活性劑降低黏附功、改變接觸角、降低界面張力,使儲層巖石由油濕向水濕轉變,在宏觀上體現(xiàn)為毛管壓力、相對滲透率以殘余油飽和度的改變[18].由于致密儲層殘余油飽和度改變程度有限,這里僅通過定義潤濕反轉前后不同的相對滲透率曲線和毛管壓力曲線來模擬潤濕反轉的過程[19].
圖6 潤濕反轉模型Fig.6 Sketch map of wettability alteration
3.1 模型建立
表2 潤濕反轉前后相關參數(shù)
圖7 潤濕反轉前后相對滲透率變化Fig.7 Relative permeability before/after wettability alteration
圖8 潤濕反轉前后毛管壓力變化Fig.8 Capillary pressure before/after wettability alteration
3.2 模型驗證
采用該模型分別計算了巖心柱1和巖心柱2的滲吸采收率(圖9),可以發(fā)現(xiàn),采用潤濕反轉模型時計算的滲吸采收率約為19.6%,與巖心柱2的實驗結果較為一致;不采用潤濕反轉模型時,最終采收率為5 %左右,與巖心柱1的實驗結果一致.
圖9 實驗和模擬擬合圖Fig.9 Data fitting of experiment and modeling
選擇新疆油田瑪18井區(qū)4口平臺井進行現(xiàn)場試驗,將表面活性劑復配至壓裂液中,并通過高排量泵入地層.該區(qū)塊油藏埋深3 840~3 870 m,儲層溫度為86℃,目的層平均孔隙度約為9%,平均滲透率約為2×10-3~6×10-3μm2.該平臺共泵入壓裂液5 400 m3,其中滑溜水2 250 m3,滑溜水中按照0.1%的質量濃度比加入潤濕反轉劑,以此探索體積壓裂形成復雜裂縫,并在裂縫周圍改變儲層潤濕性以提高采收率的可行性.
該平臺井目前以4 mm油嘴自噴,平均日產油量約為9~10 t/d,比相同改造規(guī)模下的鄰井產量高出2~4 t/d,現(xiàn)場生產也說明將表面活性劑復配至壓裂液中,改變裂縫周圍儲層潤濕性,提高油井產量方法的可行性.
1) 為探究致密儲層體積改造后提高采收率的方法,基于接觸角、界面張力測量和滲吸實驗,在壓裂液中分別添加陽離子表面活性劑、陰離子表面活性劑和非離子表面活性劑,在不同潤濕狀態(tài)下對致密巖心分別進行了物模實驗.
2) 僅依靠壓裂液不能引起潤濕反轉,采收率僅為4.95%,添加表面活性劑后潤濕性發(fā)生變化,采收率有大幅提高.陰離子表面活性劑的負電荷效應使其改變潤濕性的能力要好于非離子表面活性劑和陽離子表面活性劑.
3) 采用不同的相滲曲線和毛管壓力曲線,對潤濕反轉過程進行模擬,并對實驗數(shù)據(jù)進行擬合,驗證了模型的準確性.
4)在致密儲層體積改造形成復雜縫網(wǎng)的基礎上,發(fā)揮壓裂液的潤濕反轉功能,改變儲層潤濕性,提高滲吸采油能力,增加油井產能,提高采收率,對于該類儲層的開發(fā)具有現(xiàn)實意義.
/ References:
[1] 吳 奇,胥 云,王曉泉,等.非常規(guī)油氣藏體積改造技術——內涵、優(yōu)化設計與實現(xiàn)[J].石油勘探與開發(fā),2012,39(3):352-358. Wu Qi, Xu Yun, Wang Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352-358.(in Chinese)
[2] 袁 彬, 蘇玉亮, 豐子泰,等. 體積壓裂水平井縫網(wǎng)滲流特征與產能分布研究[J].深圳大學學報理工版,2013,30(5):545-550. Yuan Bin, Su Yuliang, Feng Zitai, et al. Productivity distribution and flow characteristics of volume-fractured horizontal wells[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(5): 545-550.(in Chinese)
[3] 朱世琰,李海濤,孫正麗,等.低滲透氣藏分段壓裂水平井非穩(wěn)態(tài)產能模型[J].深圳大學學報理工版,2014,31(3):266-272. Zhu Shiyan, Li Haitao, Sun Zhengli, et al. Unsteady productivity model of multi-stage fractured horizontal well in low permeability gas reservoir[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(3): 266-272.(in Chinese)
[4] 劉中云,曾慶輝,唐周懷,等.潤濕性對采收率及相對滲透率的影響[J].石油與天然氣地質,2000,21(2):148-150. Liu Zhongyun, Zeng Qinghui, Tang Zhouhuai, et al. Effect of wettability on recovery and relative permeability[J]. Oil & Gas Geology, 2000, 21(2):148-150.(in Chinese)
[5] 姚鳳英,姚同玉,李繼山.油層潤濕性反轉的特點與影響因素[J].油氣地質與采收率,2007,14(4):76-78. Yao Fengying, Yao Tongyu, Li Jishan. Characteristics and influencing factors of reservoir wettability reversal[J]. Petroleum Geology and Recovery Efficiency, 2007, 14(4): 76-78.(in Chinese)
[6] Wang W, Gupta A. Investigation of the effect of temperature and pressure on wettability using modified pendant drop method[C]// SPE Annual Technical Conference and Exhibition. Dallas, USA: Society of Petroleum Engineers, 1995. http://dx.doi.org/10.2118/30544-MS.
[7] 蔣 平,張貴才,葛際江,等.潤濕反轉機理的研究進展[J].西安石油大學學報自然科學版,2007,22(6):78-84. Jiang Ping, Zhang Guicai, Ge Jijiang, et al. Progress in the research of wettability reversal mechanism[J]. Journal of Xi’an Shiyou University Natural Science Edition, 2007, 22(6):78-84.(in Chinese)
[8] Al-Hadhrami H S, Blunt M J. Thermally induced wettability alteration to improve oil recovery in fractured reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2001, 4(3): 179-186.
[9] Nasralla R A, Bataweel M A, Nasr-El-Din H A. Investigation of wettability alteration and oil-recovery improvement by low-salinity water in sandstone rock[J]. Journal of Canadian Petroleum Technology, 2013, 52(2): 144-154.
[10] Kumar K, Dao E K, Mohanty K K. Atomic force microscopy study of wettability alteration by surfactants[J]. Spe Journal, 2008, 13(2): 137-145.
[11] 楊 智,鄒才能,吳松濤,等.含油氣致密儲層納米級孔喉特征及意義[J].深圳大學學報理工版,2015,32(3):257-265. Yang Zhi, Zou Caineng, Wu Songtao, et al. Characte-ristics of nano-sized pore-throat in unconventional tight reservoir rocks and its scientific value[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(3):257-265.(in Chinese)
[12] 李 帥,丁云宏,才 博,等.致密油藏體積壓裂水平井數(shù)值模擬及井底流壓分析[J].大慶石油地質與開發(fā), 2016,35(4):72-75. Li Shuai, Ding Yunhong, Cai Bo, et al. Numerical simulation and bottom hole pressure analysis of volume fractured horizontal well in tight oil reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(4): 72-75.(in Chinese)
[13] Zhou Zhou, Abass H, Li Xiaopeng, et al. Experimental investigation of the effect of imbibition on shale permeability during hydraulic fracturing[J]. Journal of Natural Gas Science and Engineering, 2016, 29: 413-430.
[14] Alvarez J O, Schechter D S. Wettability alteration and spontaneous imbibition in unconventional liquid reservoirs by surfactant additives[C]// SPE Latin American and Caribbean Petroleum Engineering Conference. Quito, Ecuador: Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/177057-MS
[15] Standnes D C, Austad T. Wettability alteration in chalk: 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants[J]. Journal of Petroleum Science and Engineering, 2000, 28(3): 123-143.
[16] Shariatpanahi S F, Hopkins P, Aksulu H, et al. Water based EOR by wettability alteration in dolomite[J]. Energy & Fuels, 2016, 30(1): 180-187.
[17] Hou B, Wang Y, Cao X, et al. Mechanisms of enhanced oil recovery by surfactant-induced wettability alteration[J]. Journal of Dispersion Science and Technology, 2016, 37(9): 1259-1267.
[18] Delshad M, Pope G A, Sepehrnoori K, et al. Modeling wettability alteration using chemical EOR processes in naturally fractured reservoirs[J]. Third Semiannual Report for Work Performed under Contract, 2006. DOI: 10.2172/927590.
[19] Li Shuai, Ding Yunhong, Cai Bo, et al. Solution for counter-current imbibition of 1D immiscible two-phase flow in tight oil reservoir[J]. Journal of Petroleum Exploration and Production Technology, 2016: 1-7.
[20] 李 帥,丁云宏,才 博,等.致密儲層體積改造潤濕反轉實驗及模擬研究[J].特種油氣藏,2016 (6):89-92. Li Shuai, Ding Yunhong, Cai Bo, et al. Experimental and modeling of wettability alteration during volume fracturing in tight oil formation[J]. Special Oil & Gas Reservoirs, 2016(06):89-92.(in Chinese)
【中文責編:英 子;英文責編:天 瀾】
Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs
Li Shuai1,2, Ding Yunhong2,3?, Liu Guangfeng4, Gu Daihong4, and Cai Bo2
1) Research Institute of Petroleum Exploration & Development, Beijing 100083, P.R.China 2) Research Institute of Petroleum Exploration & Development-Langfang, Langfang 65007, Hebei Province, P.R.China 3) National Energy Tight Oil R&D Center, Beijing 100083, P.R.China 4) EOM Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, P.R.China
In view of the comparison of contact angle and interfacial tension, we study the performance of the method of enhanced oil recovery (EOR) by altering the wettability of reservoir rock surfaces through adding different types of surfactant into the fracturing fluids during hydraulic fracturing. Firstly, the cationic surfactant, anionic surfactant and nonionic surfactant, respectively, were added into fracturing fluids. Afterwards, the imbibition experiments for tight cores after treated with different surfactants were performed. Lastly, a numerical simulation was carried to model the effects of wettability alteration by changing relative permeability curves and capillary curves. The main conclusions have been summarized as follows: (i) Only fracturing fluids cannot bring wettability alteration with a recovery as just of 4.95%. However, fracturing fluids added with surfactants can bring the changes of contact angle, and the recovery can be increased to be 21.29% (anionic surfactant), 15.84% (nonionic surfactant) and 9.91% (cationic surfactant). (ii) The simulation results with different relative permeability and capillary curves can achieve excellent agreement with the experimental data, hence this numerical simulation can be an effective method to describe wettability alteration in this study. (iii) As for field application, the oil production rate of a multi-stage fractured horizontal well with added surfactants (DL-15) into the fracturing fluids can have about 2~4 t/d more than that of other wells. (iv) The practices to add appropriate surfactants into the fracturing fluids during hydraulic fracturing and extend the shut-in period after fracturing are recommended in order to improve oil production performance.
tight oil formation; volume fracturing; wettability alteration; surfactant; imbibition; enhanced oil recovery
Received:2016-11-10;Accepted:2016-11-24
Foundation:National Science and Technoogy Major Progect (2016ZX05023)
? Corresponding author:Professor Ding Yunhong. E-mail: dingyh@petrochina.com.cn
:Li Shuai, Ding Yunhong, Liu Guangfeng, et al.Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(1): 98-104.(in Chinese)
TE 355
A
10.3724/SP.J.1249.2017.01098
國家科技重大專項資助項目(2016ZX05023)
李 帥(1987—),男,中國石油勘探開發(fā)研究院博士研究生.研究方向:儲層改造與油藏數(shù)值模擬.E-mail: ls_cupb@163.com
引 文:李 帥,丁云宏,劉廣峰,等.致密儲層體積改造潤濕反轉提高采收率的研究[J]. 深圳大學學報理工版,2017,34(1):98-104.