周帥,吳冰,吳新淮,牛廣明
動(dòng)脈自旋標(biāo)記(arterial spin labeling,ASL)技術(shù)是一種無輻射、無需注入外源性對(duì)比劑、可多次重復(fù)測(cè)量的MR灌注成像技術(shù)。該技術(shù)對(duì)傳統(tǒng)計(jì)算機(jī)體層成像 (computed tomography,CT)和MR灌注技術(shù)相對(duì)禁忌的患者同樣適用,如兒科患者、肝腎功能障礙患者及需長(zhǎng)期隨訪的患者。由于該技術(shù)對(duì)運(yùn)動(dòng)偽影較敏感,目前主要應(yīng)用于腦部。應(yīng)用范圍包括腦血管病及顱內(nèi)腫瘤性病變的診斷、鑒別診斷及預(yù)后評(píng)價(jià)[1];ASL簡(jiǎn)便無創(chuàng)的特點(diǎn)使其尤其適用于兒科患者,包括產(chǎn)傷評(píng)估,鐮刀細(xì)胞貧血癥、煙霧病及腦積水患兒的血流灌注監(jiān)測(cè)[2];ASL技術(shù)不僅可以對(duì)癲癇、癡呆及認(rèn)知功能障礙相關(guān)疾病進(jìn)行診斷及鑒別診斷,還可用于病情進(jìn)展監(jiān)測(cè)和療效評(píng)估[2];ASL技術(shù)不僅可以探測(cè)病理相關(guān)的腦血流變化,而且可以用于探測(cè)性別與年齡相關(guān)的腦血流變化[3];此外,已有學(xué)者將ASL用于腦功能研究[4]。ASL相比于傳統(tǒng)灌注技術(shù)應(yīng)用范圍更廣,是腦部疾病診斷及科研的重要工具。
ASL技術(shù)是將人體血液內(nèi)可自由擴(kuò)散的水分子作為內(nèi)源性示蹤劑進(jìn)行磁共振灌注成像的技術(shù)。該技術(shù)將反轉(zhuǎn)脈沖施加于上游動(dòng)脈,使上游動(dòng)脈內(nèi)的自由擴(kuò)散水分子得以被反轉(zhuǎn)標(biāo)記,在被標(biāo)記的水分子到達(dá)目標(biāo)成像層面之前和之后分別采集兩次圖像,然后將這兩次圖像進(jìn)行剪影,則得到帶有灌注信息的圖像。從動(dòng)脈內(nèi)水分子被標(biāo)記到被標(biāo)記的水分子到達(dá)目標(biāo)成像層面的時(shí)間即為標(biāo)記后延遲(post-labeling delay,PLD)時(shí)間。腦血量計(jì)算公式如下:
其中f即CBF值,乘以6000 000才能轉(zhuǎn)換為CBF值的生理學(xué)單位ml·100 g-1·min-1;Sctrl、S1b1、Sref分別代表對(duì)照?qǐng)D像、標(biāo)記圖像及參考圖像的信號(hào)強(qiáng)度;T1b代表血液的T1值;T1g代表灰質(zhì)的T1值;α代表標(biāo)記效率;λ代表腦皮質(zhì)-血流分配系數(shù);tsat代表質(zhì)子飽和時(shí)間(2000 ms);ω為標(biāo)記后延時(shí)時(shí)間PLD[5]。
其中標(biāo)記效率、腦皮質(zhì)-血流分配系數(shù)、血液的T1值、灰質(zhì)的T1值等參數(shù)是假設(shè)的固定值。并按照上述公式計(jì)算一個(gè)CBF值[5]。ASL技術(shù)實(shí)現(xiàn)了腦血流量的定量測(cè)量。
根據(jù)標(biāo)記方法的不同可將ASL技術(shù)分為三種基本類型即連續(xù)式ASL (continuous labeling ASL,CASL)、脈沖式ASL (pulsed labeling ASL,PASL)和流速選擇ASL (velocity-selected ASL)。流速選擇ASL技術(shù)目前尚不成熟,未被廣泛應(yīng)用于臨床診療[6]。
在對(duì)ASL技術(shù)所得數(shù)據(jù)進(jìn)行分析,并將分析所得結(jié)果應(yīng)用于臨床診療之前,需要了解數(shù)據(jù)的變化在多大程度上是由誤差導(dǎo)致的,以及多大程度上是由于病變本身變化引起的,即了解數(shù)據(jù)的可重復(fù)性和可靠性,只有可靠性和可重復(fù)性均佳的數(shù)據(jù)才能用于臨床診療,才能用于隨訪和病情監(jiān)測(cè)。多中心研究已成為未來的科研趨勢(shì),在對(duì)ASL技術(shù)所得數(shù)據(jù)進(jìn)行多中心數(shù)據(jù)融合之前,對(duì)多中心數(shù)據(jù)間的可靠性和可重復(fù)性進(jìn)行評(píng)估是必要的。這包括不同廠家設(shè)備、同廠家不同型號(hào)設(shè)備以及同廠家同型號(hào)不同設(shè)備所得數(shù)據(jù)的一致性評(píng)估等。
可靠性和可重復(fù)性可以分別使用組內(nèi)相關(guān)系數(shù)(intraclass correlation coefficient,ICC)和個(gè)體內(nèi)變異率(within-subject coefficient of variation,wsCV)來表示[5]。ICC取值范圍為0~1,該值越靠近1表明數(shù)據(jù)的可靠性越好,反之亦然;wsCV取值范圍也是0~1,該值越小表明數(shù)據(jù)越穩(wěn)定,反之亦然[5]。計(jì)算公式分別為:
式中MSB代表受試者間平均方差;MSW代表受試者內(nèi)平均方差;k代表每個(gè)受試者重復(fù)掃描次數(shù)[4]
式中CBF代表腦血流量,SD代表標(biāo)準(zhǔn)差,ΔCBF代表兩次測(cè)量結(jié)果間的數(shù)據(jù)差異[7]。
ASL序列從1992年由Detre等[8]最早提出CASL技術(shù),并在1994年將其成功應(yīng)用于人腦血流灌注研究[8-9],已發(fā)展到如今的PASL、準(zhǔn)連續(xù)ASL(pseudo-continuous ASL,pCASL)等類型ASL序列相繼提出。目前已有幾家團(tuán)隊(duì)對(duì)各種類型ASL序列的一致性做出評(píng)估,并對(duì)不同類型序列間的一致性進(jìn)行了比較。Gevers等[10]2009年募集10例健康成年志愿者,在Philips 3.0 T (Philips Medical Systems,Best,the Netherlands)設(shè)備上對(duì)CASL數(shù)據(jù)的短期及長(zhǎng)期一致性進(jìn)行了驗(yàn)證,并得出結(jié)論:CASL序列的短期及長(zhǎng)期可重復(fù)性均較好(不同腦區(qū)的短期可重復(fù)性ICC為0.79~0.85,長(zhǎng)期可重復(fù)性ICC為0.61~0.78)。Tatewaki等[11]于2014年在Philips 3.0 T (Achieva,Philips Healthcare,Best,The Netherlands) 設(shè)備上對(duì)pASL的亞類型序列QUASAR (Quantitative signal targeting with alternating radiofrequency labeling of arterial regions,QUASAR)所得數(shù)據(jù)的一致性進(jìn)行驗(yàn)證,認(rèn)為QUASAR數(shù)據(jù)在灰質(zhì)可重復(fù)性較高,在白質(zhì)相對(duì)較差(灰質(zhì)數(shù)據(jù)的ICC為0.70,白質(zhì)部分ICC為0.30)。
在實(shí)施多中心數(shù)據(jù)大融合之前,需要解決的另一個(gè)問題是不同設(shè)備間數(shù)據(jù)的一致性問題,這包括同廠家設(shè)備及不同廠家設(shè)備間數(shù)據(jù)的一致性。Gevers等[12]2011年在三個(gè)都配有Philip 3.0 T(Philips Healthcare,Best,the Netherlands)磁共振儀的研究中心,募集6名健康志愿者在每個(gè)研究中心都進(jìn)行兩次掃描,時(shí)間間隔為1~3周,掃描菜單包括CASL,PASL和pCASL三種序列,并分別對(duì)三種序列所得數(shù)據(jù)的可重復(fù)性及變異性進(jìn)行比較,得出結(jié)論認(rèn)為:pCASL及多重TI值的PASL所得數(shù)據(jù)的可重復(fù)性好,變異率??;在pCASL全腦掃描數(shù)據(jù)變異應(yīng)<20%。Mutsaerts等[13]2015年募集14名健康志愿者分別在配有GE 3.0 T (2006,60 cm bore opening,General Electric Healthcare,Milwaukee,WI,US)、Philip 3.0 T (2007,60 cm bore opening,Philips Healthcare,Best,The Netherlands)和Siemens 3.0 T (2011,70 cm bore opening,Siemens Healthcare,Erlangen,Germany)設(shè)備的三家研究中心各掃描兩次,對(duì)采用二維(2 dimensional,2D)和三維(3 dimensional,3D)讀出方式的pCASL所得數(shù)據(jù)的一致性進(jìn)行驗(yàn)證,得出結(jié)論:參數(shù)設(shè)置的微小差別對(duì)數(shù)據(jù)的影響大于硬件、讀出方式及軟件差別對(duì)所得數(shù)據(jù)的影響,提示在進(jìn)行多中心數(shù)據(jù)融合之前,不同廠家設(shè)備參數(shù)設(shè)置還需進(jìn)一步規(guī)范、統(tǒng)一。Wu等[5]2014年募集8例志愿者在兩臺(tái)GE 3.0 T (HDx,Signa MR 750 System,GE Healthcare,Milwaukee,WI)設(shè)備上對(duì)采取3D讀出方式的pCASL序列的一致性進(jìn)行驗(yàn)證,并在試驗(yàn)中使用PLD=1.5 s和PLD=2.5 s兩個(gè)標(biāo)記后延遲時(shí)間,試驗(yàn)結(jié)果表明多重PLD可以更好的評(píng)價(jià)CBF (cerebral blood flow)。
性別、年齡不同,其腦血流量也不同。Parkes等[14]2004年募集34名健康志愿者在GE 1.5 T(General Electric Signa 1.5 T)設(shè)備上,使用CASL對(duì)年齡和性別相關(guān)的CBF變化進(jìn)行探測(cè),結(jié)果表明:隨著年齡的增長(zhǎng),灰質(zhì)與白質(zhì)的血流比值會(huì)明顯下降(每年下降約0.79%,P<0.05),這種結(jié)果的出現(xiàn)主要是由于灰質(zhì)血流量下降導(dǎo)致的(每年下降0.45%,P=0.02,局部分析表明年齡相關(guān)的灰質(zhì)血流量降低主要發(fā)生在額葉皮層;女性全腦血容量相對(duì)男性要高13%。ASL可對(duì)CBF進(jìn)行定量測(cè)量,可準(zhǔn)確探測(cè)生理及病理相關(guān)的CBF變化。Emily等[15]采用3D讀出方式的pCASL對(duì)正常志愿者、阿爾茲海默癥患者以及輕度認(rèn)知功能障礙老年患者實(shí)施掃描,并對(duì)所得數(shù)據(jù)一致性進(jìn)行比較,認(rèn)為三維-pCASL (three-dimensional pseudo-continuous ASL,3D-pCASL)可用于阿爾茲海默癥(Alzheimer's disease,AD)早期及輕度認(rèn)知功能障礙(mild cognitive impairment,MCI)的診斷。婁昕、吳冰、黃點(diǎn)點(diǎn)等采用多重PLD設(shè)置3D-ASL對(duì)后循環(huán)腦區(qū)、聽覺及視覺中樞區(qū)域CBF值測(cè)量一致性進(jìn)行及評(píng)價(jià),認(rèn)為三維-ASL(3 dimensional ASL,3D-ASL)可以對(duì)后循環(huán)腦區(qū)、聽覺及視覺中樞進(jìn)行CBF測(cè)量,測(cè)量結(jié)果可用于相關(guān)疾病診斷及多中心數(shù)據(jù)研究[16-18]。Gevers等[19]血管編碼pCASL對(duì)健康志愿者及動(dòng)脈狹窄病人進(jìn)行研究表明:血管編碼pCASL所得數(shù)據(jù)可重復(fù)性良好,可準(zhǔn)確探測(cè)動(dòng)脈狹窄所致CBF變化,測(cè)量結(jié)果可用于動(dòng)脈狹窄病人的診斷及隨訪。
藥理學(xué)磁共振成像已經(jīng)越來越多地用于探測(cè)藥物相關(guān)的血流動(dòng)力學(xué)改變[20]。CBF擁有作為一項(xiàng)探測(cè)指標(biāo)應(yīng)用于藥物研究的各個(gè)階段,并監(jiān)測(cè)和預(yù)測(cè)療效的潛能[21-22]。Mutsaerts等[23]2015年募集22名健康志愿者,分別采用3D和2D讀出方式的pCASL對(duì)咖啡因相關(guān)的血流動(dòng)力學(xué)變化進(jìn)行探測(cè),并對(duì)探測(cè)結(jié)果進(jìn)行可靠性評(píng)估。認(rèn)為讀出方式的不同會(huì)影響藥理相關(guān)ASL數(shù)據(jù)的多中心數(shù)據(jù)融合,在進(jìn)行多中心數(shù)據(jù)融合之前,ASL的應(yīng)用還需進(jìn)一步標(biāo)準(zhǔn)化。Tancredi等[24]2015年募集8名健康志愿者,每人在Siemens 3.0 T (Siemens TIM TRIO,Siemens Medical Solutions,Erlangen,Germany)磁共振儀進(jìn)行兩次掃描,時(shí)間間隔為24 h,并通過交替的逐漸將掃描環(huán)境中的CO2和O2百分比分別提高到5%和60%,使用雙回波pCASL進(jìn)行掃描,并對(duì)所得數(shù)據(jù)進(jìn)行敏感性和穩(wěn)定性評(píng)價(jià)。試驗(yàn)結(jié)果表明雙回波pCASL可以敏感探測(cè)到碳酸過多和氧過多相關(guān)的CBF變化,數(shù)據(jù)穩(wěn)定性良好(兩次測(cè)量結(jié)果數(shù)據(jù)間變異率為3.5%)。此外還有研究表明PASL可以準(zhǔn)確探測(cè)利尿劑相關(guān)的CBF變化[25]。
ASL已經(jīng)越來越多地被用于探測(cè)任務(wù)相關(guān)的腦血流變化。ASL已經(jīng)應(yīng)用于許多神經(jīng)相關(guān)的認(rèn)知區(qū)域的研究,這包括注意力相關(guān)功能區(qū)[26]、記憶相關(guān)功能區(qū)[27]、語言功能區(qū)[28]、視覺功能區(qū)[29]以及感覺運(yùn)動(dòng)功能區(qū)[30]等。Steketee等[31]2015年募集22名健康志愿者在兩個(gè)研究中心(分別配備有GE 3.0 T和Philips 3.0 T磁共振儀)各進(jìn)行兩次掃描(總共4次掃描),來評(píng)價(jià)pCASL對(duì)任務(wù)態(tài)相關(guān)的CBF變化的敏感度以及靜息態(tài)下運(yùn)動(dòng)皮層區(qū)域pCASL數(shù)據(jù)的穩(wěn)定性。結(jié)果表明pCASL有足夠的敏感性來探測(cè)任務(wù)相關(guān)的CBF變化,靜息態(tài)CBF值可以為判斷任務(wù)相關(guān)的CBF變化提供穩(wěn)定的基線參考,但是局部絕對(duì)CBF變化差異較大,尤其是當(dāng)數(shù)據(jù)來源于不同廠家設(shè)備時(shí),對(duì)其差異的解釋應(yīng)該慎重。
就目前關(guān)于ASL一致性研究來看,3D-pCASL的數(shù)據(jù)穩(wěn)定性最好,是推薦臨床使用的ASL序列類型[6,10,16-18]。同廠家3.0 T設(shè)備間測(cè)試間隔在一個(gè)月之內(nèi)的3D-pCASL數(shù)據(jù)的應(yīng)wsCV<10%[6,16-18],不同廠家間的數(shù)據(jù)變異率會(huì)稍大,但應(yīng)小于15%[13]。如數(shù)據(jù)變異超出此范圍,則應(yīng)考慮正常生理變化之外的其他因素。
數(shù)據(jù)間的比較是重要的科研手段和科研方法,這包括數(shù)據(jù)的橫向比較和縱向比較,為了使得到的結(jié)果更加可靠和具有說服力,在進(jìn)行比較之前,首先要對(duì)數(shù)據(jù)間的可靠性和可重復(fù)性進(jìn)行驗(yàn)證??煽啃院涂芍貜?fù)性研究是評(píng)價(jià)數(shù)據(jù)可靠性的重要科研手段,適用于任何涉及定量數(shù)據(jù)的科學(xué)研究,ASL只是應(yīng)用范圍中很小的一部分,其研究進(jìn)程隨科技和理論的進(jìn)步而不斷深入。隨著科研對(duì)數(shù)據(jù)準(zhǔn)確性要求的不斷提升,以及人們對(duì)一致性研究重要性認(rèn)識(shí)的逐漸加深,可靠性和可重復(fù)性研究有望常規(guī)化,將日常數(shù)據(jù)質(zhì)量控制提升到一個(gè)全新的高度。
ASL數(shù)據(jù)的可靠性和可重復(fù)性研究伴隨ASL技術(shù)發(fā)展和應(yīng)用的每一個(gè)階段,為ASL技術(shù)性能提升、高級(jí)別ASL序列的研發(fā)以及ASL技術(shù)應(yīng)用范圍的拓展做出了巨大貢獻(xiàn)。目前國內(nèi)外ASL可靠性和可重復(fù)性研究主要涉及健康志愿者同場(chǎng)強(qiáng)同一設(shè)備和不同設(shè)備間的數(shù)據(jù)可靠性、可重復(fù)性研究和少數(shù)幾種疾病狀態(tài)下的可靠性、可重復(fù)性研究,關(guān)于不同場(chǎng)強(qiáng)設(shè)備間及更多疾病狀態(tài)下數(shù)據(jù)的可靠性和可重復(fù)性研究尚不充分,隨著統(tǒng)計(jì)學(xué)、醫(yī)學(xué)的不斷進(jìn)步和設(shè)備性能的不斷提升,這些問題在不久的將來都會(huì)被解決,從而進(jìn)一步拓展ASL技術(shù)的應(yīng)用范圍。
[References]
[1] Warmuth C, Günther M, Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology,2003, 228(2): 523-532.
[2] Chinese society of radiology quality management and safety management group of the Chinese society of Radiology magnetic resonance study group. Arterial spin labeling MRI perfusion technology specification of application of expert consensus. Chin J Radiol, 2016, 50(11): 817-824.中華醫(yī)學(xué)會(huì)放射學(xué)分會(huì)質(zhì)量管理與安全管理學(xué)組中華醫(yī)學(xué)會(huì)放射學(xué)分會(huì)磁共振學(xué)組. 動(dòng)脈自旋標(biāo)記腦灌注MRI技術(shù)規(guī)范化應(yīng)用專家共識(shí). 中華放射學(xué)雜志, 2016, 50(11): 817-824.
[3] Parkes LM, Rashid W, Chard DT, et al. Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability,and age and gender effects. Magn Reson Med, 2004, 51(4): 736-743.
[4] Mezue M, Segerdahl AR, Okell TW, et al. Optimization and reliability of multiple postlabeling delay pseudo-continuous arterial spin labeling during rest and stimulus-induced functional task activation. J Cerebr Blood Flow Metabol, 2014, 34(12): 1919-1927.
[5] Wu B, Lou X, Wu X, et al. Intra- and interscanner reliability and reproducibility of 3D whole-brain pseudo-continuous arterial spinlabeling MR perfusion at 3 T. J Magn Reson Imaging, 2014, 39(2):402-409.
[6] Alsop DC, Detre JA, Xavier G, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med, 2015, 73(1):102-116.
[7] Mutsaerts HJ, Steketee RM, Heijtel DF, et al. Inter-vendor reproducibility of pseudo-continuous arterial spin labeling at 3 Tesla.Plos One, 2013, 9(8): e104108.
[8] Detre JA, Leigh JS, Williams DS, et al. Perfusion imaging. Magn Reson Med, 1992, 23(1): 37-45.
[9] Roberts DA, Detre JA, Bolinger L, et al. Quantitative magnetic resonance imaging of human brain perfusion at 1.5 T using steadystate inversion of arterial water. Proc Natl Acad Sci U S A. 1994,91(1): 33-37.
[10] Gevers S, Majoie CB, Xw VD, et al. Acquisition time and reproducibility of continuous arterial spin-labeling perfusion imaging at 3 T. AJNR Am J Neuroradiol, 2009, 30(5): 968-971.
[11] Tatewaki Y, Higano S, Taki Y, et al. Regional reliability of quantitative signal targeting with alternating radiofrequency (STAR)labeling of arterial regions (QUASAR). J Neuroimaging, 2014,24(6): 554-561.
[12] Gevers S, van Osch MJ, Bokkers RP, et al. Intra- and multicenter reproducibility of pulsed, continuous and pseudo-continuous arterial spin labeling methods for measuring cerebral perfusion. J Cerebr Blood Flow Metabol, 2011, 31(8): 1706-1715.
[13] Mutsaerts HJ, van Osch MJ, Zelaya FO, et al. Multi-vendor reliability of arterial spin labeling perfusion MRI using a nearidentical sequence: Implications for multi-center studies. Neuroimag,2015, (113): 143-152.
[14] Parkes LM, Rashid W, Chard DT, et al. Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability,and age and gender effects. Magn Reson Med, 2004, 51(4): 736-743.
[15] Emily K, Liana A, Collin L, et al. Reliability of two-dimensional and three-dimensional pseudo-continuous arterial spin labeling perfusion MRI in elderly populations: comparison with 15O-water positron emission tomography. J Magn Reson Imaging, 2014, 39(4): 931-939.
[16] Lou X, Wu B, Huang DD, et al. Inter-scanner reliability and reproducibility of three dimensional pseudo-continuous arterial spinlabeling MR perfusion of posterior circulation territory in healthy adults. Chin J Radiol, 2014, 48 (2): 151-154.婁昕, 吳冰, 黃點(diǎn)點(diǎn), 等. 正常成人后循環(huán)腦區(qū)動(dòng)脈自旋標(biāo)記灌注成像的可重復(fù)性研究. 中華放射學(xué)雜志, 2014, 48(2): 151-154.
[17] Lou X, Wu B, Wu XH, et al. Intra- and inter-scanner test-retest reliability in pseudo-continuous arterial spin-labeling MR imaging of auditory cortex perfusion in healthy adults. Chin J Otol, 2013, 11(1):54-58.婁昕, 吳冰, 吳新淮, 等. 正常成人聽皮層磁共振動(dòng)脈自旋標(biāo)記灌注成像的可重復(fù)性研究. 中華耳科學(xué)雜志, 2013, 11(1): 54-58.
[18] Huang D, Wu B, Shi K, et al. Reliability of three-dimensional pseudo-continuous arterial spin labeling mr imaging for measuring visual cortex perfusion on two 3t scanners. Plos One, 2013, 8(11):e79471-e79471.
[19] Gevers S, Bokkers RP, Hendrikse J, et al. Robustness and reproducibility of flow territories defined by planning-free vesselencoded pseudocontinuous arterial spin-labeling. AJNR Am J Neuroradiol, 2011, 33(2): 21-55.
[20] Donahue M, Jezzard P. MR perfusion imaging in neuroscience//Barker P, Golay X, Zaharchuk G. Clinical perfusion MRI: techniques and applications, 1st ed. Cambridge: Cambridge University Press,2013: 114-117.
[21] George E, Becerra L, Upadhyay J, et al. Evaluation of novel drugs using fMRI in early-phase clinical trials: safety monitoring. Drug Discovery Today, 2010, 15(15-16): 684-689.
[22] Handley R, Zelaya FO, Reinders AA, et al. Acute effects of singledose aripiprazole and haloperidol on resting cerebral blood flow(rCBF) in the human brain. Human Brain Mapping, 2013, 34(2):272-282.
[23] Mutsaerts HJ, Steketee RM, Heijtel DF, et al. Reproducibility of pharmacological ASL using sequences from different vendors:implications for multicenter drug studies. MAGMA, 2015, 28(5):427-436.
[24] Tancredi FB, Lajoie I, Hoge RD. Test-retest reliability of cerebral blood flow and blood oxygenation level‐dependent responses to hypercapnia and hyperoxia using dual‐echo pseudo‐continuous arterial spin labeling and step changes in the fractional composition of inspired gases. J Magn Reson Imaging, 2015, 42(4): 1144-1157.
[25] Yen YF, Field AS, Martin EM, et al. Test-retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge. Magn Reson Med, 2002, 47(5): 921-928.
[26] Demeter E, Hernandez-Garcia L, Sarter M, et al. Challenges to attention: a continuous arterial spin labeling (ASL) study of the effects of distraction on sustained attention. Neuroimage, 2011,54(2): 1518-29.
[27] Fernández-Seara MA, Wang J, Wang Z, et al. Imaging mesial temporal lobe activation during scene encoding: comparison of fMRI using BOLD and arterial spin labeling. Human Brain Mapping, 2007,28(12): 1391-1400.
[28] Kemeny S, Ye FQ, Birn R, et al. Comparison of continuous overt speech fMRI using BOLD and arterial spin labeling. Human Brain Mapping, 2005, 24(3): 173-183.
[29] Cavusoglu M, Bartels A, Yesilyurt B, et al. Retinotopic maps and hemodynamic delays in the human visual cortex measured using arterial spin labeling. Neuroimage, 2012, 59(4): 4044-4054.
[30] Wang J, Aguirre GK, Kimberg DY, et al. Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med,2003, 49(5): 796-802.
[31] Steketee RM, Mutsaerts HJ, Bron EE, et al. Quantitative functional arterial spin labeling (fASL) MRI – sensitivity and reproducibility of regional CBF changes using pseudo-continuous ASL product sequences. Plos One, 2015, 10(7): e0132929.