張志煥,韓敏,張逸,王允,劉燦玉,曹逼力,徐坤
(山東農業(yè)大學園藝科學與工程學院/作物生物學國家重點實驗室/農業(yè)部黃淮地區(qū)園藝作物生物學與種質創(chuàng)制重點實驗室,山東泰安 271018)
水分脅迫對不同抗旱性砧木嫁接番茄生長發(fā)育及水氣交換參數(shù)的影響
張志煥,韓敏,張逸,王允,劉燦玉,曹逼力,徐坤
(山東農業(yè)大學園藝科學與工程學院/作物生物學國家重點實驗室/農業(yè)部黃淮地區(qū)園藝作物生物學與種質創(chuàng)制重點實驗室,山東泰安 271018)
【目的】干旱是威脅農業(yè)生產(chǎn)的主要氣象因素,合理利用作物抗旱種質資源是生物節(jié)水的重要內容。通過研究水分脅迫對不同抗旱性砧木嫁接番茄生長發(fā)育及水氣交換參數(shù)的影響,探討番茄采用抗旱性砧木進行嫁接栽培實現(xiàn)生物節(jié)水的可行性。【方法】試驗采用裂區(qū)設計,主區(qū)為番茄嫁接苗處理,分別為接穗‘金棚 1號’自根苗(J)、抗旱性強的砧木‘606’嫁接苗(J/T)和水分敏感的砧木‘112’嫁接苗 J/S),副區(qū)為土壤水分處理,土壤相對含水量分別為80%、60%和40%。番茄采用盆栽稱重法控制土壤水分,于植株盛果期測定展開功能葉片的色素、水勢及水氣交換參數(shù),并計算瞬時水分利用效率,同時分析不同處理的番茄產(chǎn)量及果實品質?!窘Y果】嫁接番茄的產(chǎn)量顯著高于自根番茄,尤以抗旱性較強的J/T嫁接苗為高,抗旱性較弱的J/S嫁接苗次之,二者單株產(chǎn)量分別比J自根苗高 17.50%、11.00%;果實縱經(jīng)、橫經(jīng)、硬度、Vc和番茄紅素含量也均以J/T顯著高于J和J/S??购敌圆煌腏/T、J/S嫁接番茄葉片色素含量、光合速率、葉片水勢、蒸騰速率和水分利用效率均顯著高于J,13∶00時,嫁接苗J/T、J/S的水分利用效率分別比自根苗J高15.16%和7.52%,J/T顯著高于J/S。不同土壤含水量下番茄產(chǎn)量存在顯著差異,表現(xiàn)為80%>60%>40%,而果實品質指標如可溶性固形物、可溶性蛋白、維生素C和番茄紅素等品質指標則相反;隨干旱脅迫程度的增加,嫁接番茄的增產(chǎn)效果愈加明顯,且以J/T表現(xiàn)優(yōu)于J/S,二者在土壤相對含水量80%條件下,分別較自根苗J增產(chǎn)7.47%和4.71%,而在40%條件下增產(chǎn)率分別達38.04%和22.35%;番茄葉片色素含量、光合速率、葉片水勢及蒸騰速率均隨水分脅迫加劇而顯著降低;水分利用效率則以土壤含水量60%的處理較高,40%和80%較低?!窘Y論】采用抗旱性較強的番茄砧木‘606’進行嫁接栽培,其果實產(chǎn)量較高,品質較好,葉片光合速率及葉片水分利用效率等均較高,特別在水分脅迫條件下表現(xiàn)尤為突出,說明采用抗旱性較強的砧木進行番茄嫁接栽培,可以在一定程度上實現(xiàn)生物節(jié)水的目標。
番茄;嫁接;抗旱砧木;產(chǎn)量;品質;水分利用效率
【研究意義】干旱是作物生產(chǎn)中最常見的逆境脅迫,可打破植物體內的水分代謝平衡,顯著影響葉片的光合作用和物質運輸[1-3],但抗旱性不同的作物品種在受到水分脅迫時對干旱的反應顯著不同[4]。因此,研究不同程度水分脅迫下抗旱性不同植株的生理反應,對于增強植株抗旱性具有重要意義?!厩叭搜芯窟M展】劉承等[5]研究表明,玉米干旱脅迫下,抗旱性弱的品種葉片相對含水量和光合能力降幅顯著大于抗旱性強的品種,且復水后恢復緩慢;任海祥等[6]也認為,大豆結莢鼓粒期遭受土壤水分脅迫時,抗旱性強的品種水分利用效率和產(chǎn)量均高于抗旱性弱的品種。李靜等[7]研究表明,干物質量和葉面積指數(shù)是影響黃瓜產(chǎn)量的重要指標,低水分條件下二者顯著降低,而植株水分利用效率卻顯著增高。嫁接西瓜在水分脅迫條件下可以通過改善對水分和營養(yǎng)元素的吸收,維持較高的CO2同化效率,顯著提高產(chǎn)量[8]。番茄水分脅迫條件下,光合速率及光飽和點降低,光補償點增加,導致光能利用效率降低[9];甚至嚴重水分脅迫下,番茄根系在土壤中的分布較淺,植株生長受抑制[10],最終導致番茄單果重和產(chǎn)量顯著降低[11]。綦偉等[12]研究認為,不同砧木嫁接的葡萄,適應水分逆境的能力主要取決于砧木;而孔祥悅等[13]的研究表明,黃瓜嫁接可促進根系對水分的吸收,在灌溉量減少情況下,有利于維持較高的產(chǎn)量。高方勝等[14]研究也表明,番茄嫁接可顯著促進植株的生長,有利于提高產(chǎn)量并改善品質?!颈狙芯壳腥朦c】關于采用抗旱性砧木嫁接提高番茄水分利用效率方面的研究鮮見報道?!緮M解決的關鍵問題】研究不同土壤水分條件下,抗旱性顯著不同番茄砧木嫁接苗的生長發(fā)育特性及葉片水氣交換參數(shù),旨在探討生物節(jié)水的可行性,并為利用抗旱砧木進行番茄嫁接節(jié)水栽培提供理論和實踐依據(jù)。
試驗在2014年預備試驗的基礎上,于2015年1—7月在山東農業(yè)大學園藝實驗站日光溫室內進行。
1.1 試驗設計
試驗采用裂區(qū)設計,主區(qū)為不同砧穗組合嫁接苗,分別為接穗‘金棚1號’自根苗(J)、抗旱性強的砧木‘606’嫁接苗(J/T)和水分敏感的砧木‘112’嫁接苗(J/S)[15];副區(qū)為土壤水分,土壤相對含水量分別為80%、60%和40%。2015年1月8日播種,幼苗長至四葉一心時采用劈接法嫁接,待幼苗培養(yǎng)至8—9片真葉展開時,選取長勢一致的幼苗,于3月12日移栽至直徑25 cm、高30 cm的塑料盆內,每盆1株,內裝風干土7.0 kg,土壤最大持水量28.6%,pH 6.67,有機質12.61 g·kg-1、堿解氮(N)132.7 mg·kg-1、速效磷(P2O5)57.3 mg·kg-1、速效鉀(K2O)149.6 mg·kg-1。模擬土壤栽植法,在溫室內按大行距100 cm、小行距70 cm、株距40 cm南北向擺盆,每行20株,2行為一個處理小區(qū),3次重復,隨機排列。待植株緩苗恢復生長時,以稱重法調控土壤水分,每天分別在7:00、13:00各稱重1次,補充土壤水分。
1.2 試驗方法
番茄盛果期(6月9日)每處理隨機選擇3株,選取上數(shù)第3片完全展開功能葉測定葉片色素、水勢、水氣交換參數(shù)。葉片色素含量采用80%丙酮浸提比色法測定[16]。植株葉片水勢(LWP)采用英國Hansatech公司生產(chǎn)的PSYPROTM水勢儀測定。水氣交換參數(shù)采用TPS-1型光合儀測定[16],包括葉片光合速率(Pn)、蒸騰速率(Tr),并計算葉片水分利用效率(WUE),WUE=Pn/Tr。
番茄果實成熟收獲過程中,分別統(tǒng)計單株產(chǎn)量;7月16日番茄拉秧時,每處理隨機選取5株,分別測定株高、莖粗和根、莖、葉鮮重;選取植株第2果穗成熟一致的果實5個,測定平均單果重及果實縱徑、橫徑,并以硬度計測定果實硬度,阿貝折射儀測定可溶性固形物[17],考馬斯亮藍G-250染色法[16]測定可溶性蛋白,鉬藍比色法[18]測定維生素C,石油醚提取比色法[19]測定番茄紅素。
1.3 統(tǒng)計分析
采用Excel 2007和DPS 7.05統(tǒng)計軟件進行統(tǒng)計分析,Duncan新復極差法進行差異顯著性檢驗。
2.1 不同處理對番茄生長及產(chǎn)量的影響
不同處理番茄單株生長量及產(chǎn)量經(jīng)統(tǒng)計分析(表1)表明,不同砧木嫁接苗和土壤水分對番茄植株生長均有極顯著影響。嫁接苗生長量均以J/T處理較高,J/S次之,J自根苗處理較低,如J/T、J/S單株產(chǎn)量分別比J高17.50%和11.00%,而J/T比J/S增加了5.86%;土壤水分則以80%處理的植株生長量較高,60%次之,40%較低,如 80%、60%土壤水分處理的單株產(chǎn)量分別較40%高139.15%和94.58%。表1還顯示,嫁接和土壤水分對番茄單株產(chǎn)量的互作效應顯著。
表1 不同處理番茄生長量及產(chǎn)量的多重比較Table 1 Multiple comparison of tomato growth and yield among different treatments
2.2 不同處理對番茄果實品質的影響
表2是不同處理番茄果實品質統(tǒng)計分析結果,可以看出,J/T處理的果實縱徑、橫徑、硬度、Vc和番茄紅素含量均顯著高于J/S嫁接苗和J自根苗,而J/S僅在果實硬度、可溶性固形物、Vc和番茄紅素含量等方面高于 J,表明不同砧木嫁接苗果實的品質存在顯著差異。不同土壤水分對番茄果實品質的影響較不同砧木更為顯著,果實縱徑、橫徑、硬度均以80%顯著大于60%,60%顯著大于40%,而可溶性固形物、可溶性蛋白、Vc及番茄紅素則相反。表2還表明,除維生素C和番茄紅素外,嫁接和土壤水分對果實品質的互作效應不顯著。
2.3 不同處理對番茄葉片光合色素含量的影響
表3顯示,嫁接和土壤水分對番茄葉片光合色素含量有極顯著影響,嫁接苗J/T色素含量較高,J/S次之,其中二者的葉綠素含量分別較J高10.47%、6.50%;土壤水分以80%處理的色素含量顯著高于60%,又顯著高于 40%,如前二者的葉綠素含量分別較后者高24.71%和11.58%,類胡蘿卜素含量分別高17.07%和7.32%;但嫁接和土壤水分處理對葉片光合色素含量的交互作用無顯著差異。
表2 不同處理番茄果實品質的多重比較Table 2 Multiple comparison of tomato fruit quality among different treatments
表3 不同處理番茄葉片光合色素的多重比較Table 3 Multiple comparison of tomato photosynthetic pigments among different treatments
2.4 不同處理對番茄葉片光合速率的影響
本試驗測定水氣交換參數(shù)的環(huán)境條件如圖 1。通過對不同處理番茄葉片水氣交換參數(shù)進行統(tǒng)計分析,結果見圖2。
圖1 試驗環(huán)境因子日變化動態(tài)Fig. 1 Diurnal changes of environmental factors in the experiment
圖2 不同處理對番茄葉片光合速率日變化的影響Fig. 2 Effects of different treatments on diurnal changes of Pn in tomato leaves
由圖 2可以看出,不同處理番茄葉片光合速率(Pn)日變化均呈不對稱的雙峰曲線,且兩峰值均分別出現(xiàn)在11:00和15:00。主區(qū)因子嫁接處理的Pn除7:00無顯著差異外,其他時間均以J/T處理較高,J/S次之,J處理較低,且尤以11:00差異最為顯著,此時J處理Pn為25.60 μmol·m-2·s-1,J/T、J/S處理分別比J高15.04%和7.15%。副區(qū)因子土壤水分處理的Pn值一天內均以80%的較高,60%的次之,40%的較低,且其處理間差異明顯高于嫁接處理的差異。進一步分析發(fā)現(xiàn),不同砧木嫁接番茄的 Pn受土壤水分的影響較大,而在水分脅迫條件下抗旱性強的砧木嫁接更有利于維持較高的Pn。
2.5 不同處理對番茄葉片水分耗散與利用效率的影響
不同處理番茄葉片水勢(LWP)、蒸騰速率(Tr)和葉片水分利用效率(WUE)的日變化動態(tài)統(tǒng)計分析結果如圖3所示??梢钥闯?,不同處理番茄LWP在一天中均表現(xiàn)為先降低后升高的趨勢,主區(qū)因子嫁接處理以J/T較高,J/S次之,J較低,13:00嫁接苗J/T、J/S的LWP分別比自根苗J高15.16%和7.52%;副區(qū)因子土壤水分處理則以 80%較高,60%次之,40%較低。不同處理番茄葉片Tr的日變化均呈單峰曲線,峰值出現(xiàn)在13:00,嫁接處理以J/T較高,J/S次之,此時二者分別比自根苗J高4.48%和3.27%;土壤水分處理則以 80%較高,60%次之,40%較低。番茄葉片WUE也因嫁接苗砧木及土壤水分不同而顯著不同,主區(qū)因子以嫁接苗J/T、J/S顯著高于自根苗J,而副區(qū)因子則以土壤水分處理60%的較高,80%的較低,40%的居中。
前人研究表明,嫁接栽培在于通過砧木為接穗品種提供一個良好的根系系統(tǒng),從而提高植株對水肥吸收能力[20]及對高溫、鹽漬、干旱等逆境脅迫的抵抗能力[21]。SELCUK等[22]研究表明,水分虧缺灌溉條件下,嫁接西瓜較自根西瓜產(chǎn)量高;SAVVAS等[23]也認為,鹽脅迫條件下嫁接番茄果實數(shù)及產(chǎn)量較自根番茄顯著增加;而嫁接藍莓的總酚、維生素C、可溶性固形物、番茄紅素和可滴定酸含量均高于自根藍莓[24]。本研究表明,嫁接番茄生長量及果實產(chǎn)量顯著高于自根番茄,特別是抗旱性較強的番茄砧木表現(xiàn)尤為突出;此外,嫁接番茄果實可溶性固形物、維生素C含量等顯著高于自根番茄,這與高方勝[14]、FRANCISCO[25]等研究結果一致。但也有嫁接番茄果實產(chǎn)量與品質存在一定負相關的報道[26]。
圖3 不同處理對番茄葉片水分狀況日變化的影響Fig. 3 Effects of different treatments on diurnal changes of water status in tomato leaves
植物葉片水勢會隨著土壤水勢的下降而降低,以利于植物從土壤中吸收水分[27],但若土壤水勢過低,則植株吸水受阻,致使植株體內水分匱乏,影響相關生理代謝進程,加速葉片色素降解或導致葉綠素合成不足[28],使葉片色素含量降低,進而減少葉綠體的光吸收,降低光合作用[29]。植物在水分脅迫條件下蒸騰作用減緩,以減少其體內水分散失[30],而水分利用效率卻顯著增強,以維持體內正常代謝[31]。本研究結果顯示,抗旱性較強番茄砧木嫁接苗葉片水勢和水分利用效率顯著高于抗旱性弱的嫁接番茄和自根番茄,葉片光合速率、蒸騰速率也有類似的趨勢,表明通過嫁接增強根系的吸收能力,維持較高的水分利用效率可能是嫁接番茄抗旱性較強的生理機制之一[32];而不同土壤水分條件下,則以60%土壤水分處理的番茄水分利用效率較高,80%和40%的較低,表明番茄采用抗旱性較強的砧木進行嫁接栽培,可以在一定程度上達到生物節(jié)水的目的。
采用抗旱性較強的砧木進行番茄嫁接栽培,其植株葉片水分狀況較自根栽培顯著改善,生長量顯著增加,葉片光合速率及水分利用效率等顯著提高。因此,嫁接栽培番茄果實產(chǎn)量較高,品質較好,尤其在土壤水分脅迫條件下表現(xiàn)尤為突出,表明采用抗旱性較強的砧木進行番茄嫁接栽培,可在一定程度上實現(xiàn)生物節(jié)水。
References
[1] 山侖, 張歲岐. 節(jié)水農業(yè)及其生物學基礎. 水土保持研究, 1999, 6(1): 3-7. SHAN L, ZHANG S Q. Water saving agriculture and its biological basis. Research of Soil and Water Conservation, 1999, 6(1): 3-7. (in Chinese)
[2] BAI L P, SUI F G, GE T D SUN Z H, LU Y Y, ZHOU G S. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere, 2006, 16(3): 326-332
[3] 張永征, 李海東, 李秀, 肖靜, 徐坤.光強和水分脅迫對姜葉片光合特性的影響. 園藝學報, 2013, 40(11): 2255-2262. ZHANG Y Z, LI H D, LI X, XIAO J, XU K. Effects of light intensity and water stress on leaf photosynthetic characteristics of ginger. Acta Horticulturae Sinica, 2013, 40(11): 2255-2262. (in Chinese)
[4] 張娜, 趙寶平, 郭若龍, 張艷麗, 劉景輝, 王瑩, 李立軍. 水分脅迫對不同抗旱性燕麥品種生理特性的影響. 麥類作物學報, 2012, 32(1): 150-156. ZHANG N, ZHAO B P, GUO R L, ZHANG Y L, LIU J H, WANG Y, LI L J. Effect of water stress on physiological characteristics of different oat cultivars. Journal of Triticeae Crops, 2012, 32(1): 150-156. (in Chinese)
[5] 劉承, 李佐同, 楊克軍, 徐晶宇, 王玉鳳, 趙長江, 張翼飛, 李竹,孫少慧, 富士江, 趙瑩, 谷英楠, 付健, 方永江, 劉瑀, 張發(fā)明, 馬麗峰, 石新新.水分脅迫及復水對不同耐旱性玉米生理特性的影響.植物生理學報, 2015, 51(5): 702-708. LIU C, LI Z T, YANG K J, XU J Y, WANG Y F, ZHAO C J, ZHANG Y F, LI Z, SUN S H, FU S J, ZHAO Y, GU Y N, FU J, FANG Y J, LIU Y, ZHANG F M, MA L F, SHI X X. Effects of water stress and subsequent rehydration on physiological characteristics of maize (Zea mays) with different drought tolerance. Plant Physiology Journal, 2015, 51(5): 702-708. (in Chinese)
[6] 任海祥, 童淑媛, 杜維廣, 邵廣忠, 杜震宇, 宗春美, 岳巖磊, 王玉蓮. 結莢鼓粒期土壤水分脅迫對不同大豆品種形態(tài)和生理特性的影響. 中國油料作物學報, 2011, 33(4): 362-367. REN H X, TONG S Y, DU W G, SHAO G Z, DU Z Y, ZONG C M, YUE Y L, WANG Y L. Effects of soil water stress during seed formation stage on morphological and physiological characteristics in various soybean varieties. Chinese Journal of Oil Crop Sciences, 2011, 33(4): 362-367. (in Chinese)
[7] 李靜, 張富倉, 方棟平, 李志軍, 高明霞, 王海東, 吳東科. 水氮供應對滴灌施肥條件下黃瓜生長及水分利用的影響. 中國農業(yè)科學, 2014, 47(22): 4475-4487. LI J, ZHANG F C, FANG D P, LI Z J, GAO M X, WANG H D, WU D K. Effects of water and nitrogen supply on the growth and water use efficiency of cucumber (Cucumis sativus L.) under fertigation. Scientia Agricultura Sinica, 2014, 47(22): 4475-4487. (in Chinese)
[8] ROUPHAEL Y, CARDARELLI M, COLLA G, REA E. Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. Hortscience, 2008, 43(3): 730-736.
[9] 韓國君, 陳年來, 黃海霞, 張萍, 張凱, 郭艷紅. 番茄葉片光合作用對快速水分脅迫的響應. 應用生態(tài)學報, 2013(4): 1017-1022. HAN G J, CHEN N L, HUANG H X, ZHANG P, ZHANG K, GUO Y H. Responses of tomato leaf photosynthesis to rapid water stress. Chinese Journal of Applied Ecology, 2013(4): 1017-1022. (in Chinese)
[10] 楊再強, 邱譯萱, 劉朝霞, 陳艷秋, 譚文. 土壤水分脅迫對設施番茄根系及地上部生長的影響. 生態(tài)學報, 2016, 36(3): 748-757. YANG Z Q, QIU Y X, LIU Z X, CHEN Y Q, TAN W. The effects of soil moisture stress on the growth of root and above-ground parts of greenhouse tomato crops. Acta Ecological Sinica, 2016, 36(3): 748-757. (in Chinese)
[11] 李建設, 周筠, 高艷明.水分脅迫及鉀肥對櫻桃番茄產(chǎn)量和品質的影響. 東北農業(yè)大學學報, 2013, 44(10): 97-103. LI J S, ZHOU Y, GAO Y M. Study on water stress and K level on yield and quality of cherry tomato. Journal of Northeast Agricultural University, 2013, 44(10): 97-103. (in Chinese)
[12] 綦偉, 厲恩茂, 翟衡, 王曉芳, 杜遠鵬, 譚皓. 部分根區(qū)干旱對不同砧木嫁接瑪瓦斯亞葡萄生長的影響. 中國農業(yè)科學, 2007, 40(4): 794-799. QI W, LI E M, ZHAI H, WANG X F, DU Y P, TAN H. Effect of partial rootzone drying on the growth of Vitis Vinifera cv. Malvasia grafted on varied rootstocks. Scientia Agricultura Sinica, 2007, 40(4): 794-799. (in Chinese)
[13] 孔祥悅, 王永泉, 眭曉蕾, 張振賢, 高麗紅. 灌水量對溫室自根與嫁接黃瓜根系分布及水分利用效率的影響. 園藝學報, 2012, 39(10): 1928-1936 KONG X Y, WANG Y Q, SUI X L, ZHANG Z X, GAO L H. Effects of irrigation on roots distribution and water use efficiency of own-rooted and grafted cucumber in solar greenhouse. Acta Horticulturae Sinica, 2012, 39(10): 1928-1936. (in Chinese)
[14] 高方勝, 王磊, 徐坤. 砧木與嫁接番茄產(chǎn)量品質關系的綜合評價.中國農業(yè)科學, 2014, 47(3): 605-612. GAO F S, WANG L, XU K. Comprehensive evaluation of relationship between rootstocks and yield and quality in grafting tomato. Scientia Agricultura Sinica, 2014, 47(3): 605-612. (in Chinese)
[15] 張志煥, 韓敏, 張逸, 王允, 徐坤. 番茄砧木苗期耐旱性鑒定評價.生態(tài)學雜志, 2016(3): 719-725. ZHANG Z H, HAN M, ZHANG Y, WANG Y, XU K. Identification and evaluation of tomato rootstock seedlings for drought tolerance. Chinese Journal of Ecology, 2016(3): 719-725. (in Chinese)
[16] 趙世杰, 史國安, 董新純. 植物生理學實驗指導. 北京: 中國農業(yè)科技出版社, 2002. ZHAO S J, SHI G A, DONG X C. Techniques of Plant Physiological Experiment. Beijing: Chinese Agricultural Science and Technology Press, 2002. (in Chinese)
[17] 韓雅珊. 食品化學試驗指導. 北京: 中國農業(yè)大學出版社. 1996. HAN Y S. Experiment Guide of Food Chemistry. Beijing: China Agricultural University Press. 1996. (in Chinese)
[18] 李軍. 鉬藍比色法測定還原型維生素 C. 食品科學, 2000, 21(8): 42-45. LI J. Molybdenum blue colorimetric method to determine reduced vitamin C. Food Science, 2000, 21(8): 42-45. (in Chinese)
[19] 呂鑫, 侯麗霞, 張曉明, 李莉, 何啟偉. 番茄果實成熟過程中番茄紅素含量的變化. 中國蔬菜, 2009(6): 21-24. Lü X, HOU L X, ZHANG X M, LI L, HE Q W. Changes of tomato lycopene contents in its growing process. China Vegetables, 2009(6): 21-24. (in Chinese)
[20] 袁亭亭, 宋小藝, 王忠賓, 楊建平, 徐坤. 嫁接與施肥對番茄產(chǎn)量及氮磷鉀吸收利用效率的影響. 植物營養(yǎng)與肥料學報, 2011, 17(1): 131-136. YUAN T T, SONG X Y, WANG Z B, YANG J P, XU K. Effect of grafting cultivation and fertilization on the yield, NPK uptake and utilization of tomatoes. Plant Nutrition and Fertilizer Science, 2011, 17(1): 131-136. (in Chinese)
[21] DIETMAR S, YOUSSEF R, GIUSEPPE C, JAN H V. Grafting as a tool to improve tolerance of vegetables to abiotic stresses. Scientia Horticulturae, 2010, 127: 162-171.
[22] SELCUK O, RIZA K, NEBAHAT S, MUSTAFA ü. The effects of deficit irrigation on nitrogen consumption, yield, and quality in drip irrigated grafted and un-grafted watermelon. Journal of Integrative Agriculture, 2015, 14(5): 966-976.
[23] SAVVAS D, COLLA G, ROUPHAEL Y, SCHWARZ D. Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae, 2010, 127: 156-161.
[24] XU C X, MA Y P, CHEN H. Technique of grafting with Wufanshu (Vaccinium bracteatum Thunb.) and the effects on blueberry plant growth and development, fruit yield and quality. Scientia Horticulturae, 2014, 176: 290-296.
[25] FRANCISCO F B, PALOMA S B. The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae, 2000, 125(3): 211-217.
[26] TURHAN A, OZMEN N, SERBECI M S. Effects of grafting on different rootstocks on tomato fruit yield and quality. Hort Science, 2011, 38(4): 142-149.
[27] 趙昌杰, 劉松忠, 張強. 果樹對干旱脅迫的響應研究進展. 中國果樹, 2011(4): 60-62. ZHAO C J, LIU S Z, ZHANG Q. The research progress of fruit trees response to drought stress. China Fruits, 2011(4): 60-62. (in Chinese) [28] AHMED C B, ROUINA B B, SENSOY S, BOUKHRIS M, ABDALLAH F B. Changes in gas exchange, proline accumulation and anti-oxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environmental and Experimental Botany, 2009, 67: 345-352.
[29] PASTENES C, PIMENTEL P, LILLO J. Leaf movements and photo-inhibition in relation to water stress in field-grown beans. Journal of Experimental Botany, 2005, 56: 425-433.
[30] 付秋實, 李紅嶺, 崔健, 趙冰, 郭仰東. 水分脅迫對辣椒光合作用及相關生理特性的影響. 中國農業(yè)科學, 2009, 42(5): 1859-1866. FU Q S, LI H L, CUI J, ZHAO B, GUO Y D. Effects of water stress on photosynthesis and associated physiological characters of Capsicum annuum L.. Scientia Agricultura Sinica, 2009, 42(5): 1859-1866. (in Chinese)
[31] LIU C G, WANG Y J, PAN K W, JIN Y Q, LI W, ZHANG L. Effects of phosphorus application on photosynthetic carbon and nitrogen metabolism, water use efficiency and growth of dwarf bamboo (Fargesia rufa) subjected to water deficit. Plant Physiology and Biochemistry, 2015, 96: 20-28.
[32] ZHOU S S, LI M J, GUAN Q M, LIN F L, ZHANG S, CHEN W, YIN L H, QIN Y, MA F W. Physiological and proteome analysis suggest critical roles for the photosynthetic system for high water-use efficiency under drought stress in malus. Plant Science, 2015, 236: 44-60.
(責任編輯 趙伶俐)
Effect of Water Stress on Development and H2O and CO2Exchange in Leaves of Tomato Grafted with Different Drought Resistant Rootstocks
ZHANG ZhiHuan, HAN Min, ZHANG Yi, WANG Yun, LIU CanYu, CAO BiLi, XU Kun
(College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, Tai’an 271018, Shandong)
【Objective】The threat of drought is a main meteorological factor of agricultural production and rational use of the crops of drought resistant germplasm resources is an important element of biological water saving. This paper aims to study theeffect of water stress on the growth and development, water potential and gas exchange parameters of tomato leaves grafted with 2 different drought resistance rootstocks and to investigate the feasibility of biological water saving of tomato via grafting on drought resistant rootstocks.【Method】The experimental was designed by the split plot, the main plot was a grafting treatment composed of the ungrafted tomato of ‘Jinpeng 1’(J), the grafted tomato of ‘606’ (J/T) with drought-tolerant rootstock and ‘112’ (J/S) with drought-sensitive rootstock, and the subplot was a soil moisture treatment composed of 80%, 60% and 40% soil relative water content. Pot weighing method was adopted to control soil moisture of tomato. At the flourishing period of tomato plant, the expand functional leaves pigment, water potential and water-gas exchange parameters were determined and the instantaneous water use efficiency was calculated, simultaneously, the yield and fruit quality of tomato in different treatments were analyzed.【Result】The results showed that the yield of grafted tomato was significantly higher than the ungrafted tomato and the yields of J/T and J/S were 17.50% and 11.00% higher than J. Simultaneously, the vertical diameter, transverse diameter, firmness, content of vitamin C and lycopene of tomato fruit of J/T were significantly higher than J and J/S. The content of tomato leave pigments, photosynthetic rate, leaf water potential, transpiration rate and water use efficiency of J/T and J/S with different drought resistance were also significantly higher than J, and at 13:00 the water use efficiency of grafted treatment J/T and J/S were higher than ungrafted J by 15.16% and 7.52%, J/T was also significantly higher than J/S. The yield of tomato showed a significant difference under different soil moisture contents which showed an order of 80%>60%>40%, while the fruit quality indicators such as soluble solid, soluble protein, vitamin C and lycopene are contrary to the yield. With drought stress increased, the yield increase of grafted tomatoes was even more obvious. And J/T outperformed J/S, and the yield was 7.47%, 4.71% higher than ungrafted J, respectively, under the condition of the soil relative water content of 80%, and under the condition of 40% of water content, the yield increase rate was up to 38.04% and 22.35%. The contents of tomato leave pigments, photosynthetic rate, leaf water potential and transpiration rate were decreased as the water stress increased. The water use efficiency in 60% soil moisture treatment was higher than that in 40% and 80% soil moisture treatments. 【Conclusion】 Results of the experiment demonstrated that when tomato grafted with drought-tolerant rootstock ‘606’, its fruit yield was higher, fruit quality was better and the photosynthetic rate and water use efficiency were also higher, and especially prominent under water stress conditions. It was concluded that the possible way to realize biological water saving to a certain extent for tomato is grafting with drought-tolerant rootstock.
tomato; grafting; drought-tolerant rootstock; yield; quality; water use efficiency
2016-04-13;接受日期:2016-10-25
山東省現(xiàn)代農業(yè)產(chǎn)業(yè)技術創(chuàng)新體系(SDAIT-05-05)
聯(lián)系方式:張志煥,E-mail:zhihuanz@163.com。通信作者徐坤,Tel:0538-8241783; E-mail:xukun@sdau.edu.cn