鄭斌,徐普
(中南大學(xué)湘雅醫(yī)學(xué)院附屬??卺t(yī)院·海南省口腔醫(yī)學(xué)中心口腔種植科,海南???70208)
珍珠層生物性能及成骨誘導(dǎo)能力研究進(jìn)展
鄭斌,徐普
(中南大學(xué)湘雅醫(yī)學(xué)院附屬??卺t(yī)院·海南省口腔醫(yī)學(xué)中心口腔種植科,海南???70208)
珍珠層作為骨修復(fù)材料,具有誘導(dǎo)成骨作用、合適的降解性能以及良好的力學(xué)性能。文章綜述了珍珠層的結(jié)構(gòu)及成分、細(xì)胞相容性和生物降解性及對(duì)前成骨細(xì)胞和骨髓間充質(zhì)干細(xì)胞的成骨誘導(dǎo)作用,同時(shí)展望了其作為骨缺損修復(fù)材料的應(yīng)用前景。
珍珠層;前成骨細(xì)胞;間充質(zhì)干細(xì);成骨誘導(dǎo)
牙周病、外傷、腫瘤和炎癥均可導(dǎo)致骨缺損,難以恢復(fù)的骨缺損困擾著成千上萬人,并且嚴(yán)重影響他們的生活質(zhì)量。有些情況下,骨結(jié)構(gòu)改變能影響人機(jī)體平衡。因此,適用于人體生物材料的研發(fā)顯得尤為重要,促進(jìn)骨移植材料研發(fā)水平不斷提高。目前,來源于人的異體骨和動(dòng)物的異種骨因不受供應(yīng)限制而被廣泛使用,但存在著介導(dǎo)免疫反應(yīng)的危險(xiǎn)[1]。人工骨替代異體骨或異種骨避免了不良反應(yīng)出現(xiàn),具有良好的應(yīng)用前景。Lopez等[2]于1992年發(fā)現(xiàn)貝殼珍珠層具有良好的生物相容性和成骨誘導(dǎo)性,促進(jìn)了人工骨修復(fù)材料應(yīng)用研發(fā)進(jìn)展。相繼其他學(xué)者發(fā)現(xiàn),珍珠層能夠在體外實(shí)驗(yàn)環(huán)境中誘導(dǎo)成骨細(xì)胞增殖和礦化,進(jìn)一步確定其成骨誘導(dǎo)性[3-5]。珍珠主要由珍珠層組成,比貝殼珍珠層含有更多的有機(jī)基質(zhì)和微量元素[6],并且產(chǎn)量豐富,引起了較多學(xué)者的關(guān)注,期望珍珠能有更好的成骨誘導(dǎo)性能。文章從珍珠層的理化特性、生物性能及成骨誘導(dǎo)方面展開綜述。
珍珠層具有典型的“磚-泥”結(jié)構(gòu),即文石板片呈層狀分布,板片之間為有機(jī)質(zhì)。對(duì)文石板片進(jìn)一步觀測(cè)發(fā)現(xiàn),它的結(jié)構(gòu)單元并不是一個(gè)完整的單晶,而是納米晶粒的聚集體,晶粒周圍都包裹有機(jī)基質(zhì),整個(gè)板片就是一個(gè)有機(jī)-無機(jī)復(fù)合的“偽單晶”[7]。顯微結(jié)構(gòu)下發(fā)現(xiàn)了文石板片中礦化橋的存在,位于文石板片層之間,表現(xiàn)為“磚-橋-泥”的結(jié)構(gòu),進(jìn)一步認(rèn)識(shí)了珍珠層結(jié)構(gòu)[8]。Rousseau等[9]利用原子力顯微鏡(atomic force microscopy,AFM)觀察到了這種納米晶粒的存在,平均大小約45 nm。納米顆粒被鑲嵌到連續(xù)網(wǎng)狀有機(jī)質(zhì)框架中,并且每個(gè)納米顆粒是獨(dú)立的,相互間無直接接觸;同時(shí),通過高倍透射電子顯微鏡觀測(cè)到了有機(jī)質(zhì)橋的存在。文石晶型碳酸鈣構(gòu)成貝殼珍珠層和珍珠主要無機(jī)成分,約占總量的95%,還包含Na、K、Mg、Cu、Fe、Zn等多種微量元素[10];有機(jī)成分近似5%主要為蛋白質(zhì)。研究表明,珍珠層EDTA提取出的可溶蛋白質(zhì)可以在體外實(shí)驗(yàn)中誘導(dǎo)文石和球文石晶體定向生成,并且具有相同多晶相和形態(tài);而不可溶蛋白對(duì)晶體聚集密度、大小數(shù)量有影響[11]。學(xué)者們進(jìn)一步從珍珠層中純化分離出一些蛋白質(zhì),進(jìn)行更深入的研究分析。多項(xiàng)研究表明它們能調(diào)控CaCO3沉積速度及表面形態(tài),調(diào)節(jié)與鈣離子結(jié)合狀況[12-16]。P10這種蛋白在生物礦化中不僅加速碳酸鈣晶體的成核,還促進(jìn)堿性磷酸酶的活性,誘導(dǎo)成骨細(xì)胞分化[17];P60作用于前成骨細(xì)胞和骨髓間質(zhì)干細(xì)胞,促進(jìn)礦化結(jié)節(jié)形成[18];N16能誘導(dǎo)小鼠前成骨細(xì)胞分化及促進(jìn)其生物礦化;抑制破骨細(xì)胞分化和骨組織吸收,對(duì)治療骨質(zhì)疏松有較大應(yīng)用潛力[19]。
眾所周知,生物相容性是生物材料在組織工程中應(yīng)用的基礎(chǔ)條件。納米珍珠粉細(xì)胞毒性試驗(yàn)相關(guān)結(jié)果表明符合生物材料的細(xì)胞毒性要求,未見溶血反應(yīng)、內(nèi)刺激反應(yīng)及體內(nèi)毒性反應(yīng),可以初步的認(rèn)為納米珍珠粉具有一定的血液和組織相容性[20]。有學(xué)者通過觀測(cè)珍珠和貝殼珍珠層磨片,羥基磷灰石片(模擬體液沉積制作)對(duì)新生小鼠成骨細(xì)胞增殖和分化的作用,發(fā)現(xiàn)細(xì)胞在珍珠片上的增殖更快,細(xì)胞外基質(zhì)面積最大[21]。Gao等[22]對(duì)比了納米和微米珍珠粉生物利用率,表明納米珍珠粉生物利用率效果更好。Chen等[23]研究表明口服納米級(jí)珍珠粉未出現(xiàn)急性毒性反應(yīng),但長(zhǎng)期慢性毒性反應(yīng)有待于觀測(cè)。
生物材料體內(nèi)降解性能是評(píng)價(jià)生物材料安全性的重要指標(biāo)。骨修復(fù)材料充填于骨缺損區(qū),其體內(nèi)生物降解速率應(yīng)和新骨改建形成相適應(yīng)。由于珍珠層僅含有1%~5%的有機(jī)質(zhì),而骨組織含有22%左右有機(jī)質(zhì),造成珍珠層的持續(xù)吸收速率低于骨吸收速率,珍珠層降解慢可能影響骨改建過程[24]。對(duì)于珍珠層降解,也有學(xué)者認(rèn)為破骨細(xì)胞降解珍珠層種植體的能力有限,其中珍珠層種植體大小、由光滑到粗糙的形態(tài)及周圍細(xì)胞環(huán)境是決定其生物降解的關(guān)鍵因素[25]。珍珠層粉粒徑的大小也是影響其降解的關(guān)鍵因素之一,湯勇智等[26]發(fā)現(xiàn),納米級(jí)珍珠粉降解率高于微米級(jí),骨修復(fù)能力也強(qiáng)于微米級(jí)。因此,珍珠層生物降解率與粒徑大小和形態(tài)相關(guān),當(dāng)珍珠層的粒徑逐漸變小,形態(tài)由光滑到粗糙,其降解吸收呈現(xiàn)上升的趨勢(shì)。
珍珠層植入人、羊和大鼠體內(nèi)均能刺激骨形成細(xì)胞,促進(jìn)新骨形成,未發(fā)現(xiàn)炎癥反應(yīng)[3,27-28]。大量實(shí)驗(yàn)表明,珍珠層水溶有機(jī)質(zhì)(water-soluble organic matrix,WSM)才具備實(shí)際意義上的成骨誘導(dǎo)性,不僅能促進(jìn)小鼠前成骨細(xì)胞向成骨細(xì)胞分化,而且誘導(dǎo)其礦化成骨[27,29-30]。珍珠層水溶有機(jī)質(zhì)含有約110種有機(jī)分子,分子量從100~700 Da不等,含有多肽氨基酸,分子量低于1 kD的有機(jī)分子是珍珠層水溶有機(jī)質(zhì)主要組成部分[31]。為了進(jìn)一步認(rèn)識(shí)珍珠層有機(jī)基質(zhì)中的成骨相關(guān)因子,Mouriès等[32]用高效液相色譜法根據(jù)有機(jī)基質(zhì)分子量大小劃分為SE1~SE4四段,其中相對(duì)分子量較小的SE4段成骨活性最明顯,能夠顯著促進(jìn)MCR5細(xì)胞的ALP活性,與骨形態(tài)蛋白(bone morphogenetic protein 2,BMP-2)作用相似,不同細(xì)胞略有不同。Moutahir-Belqasmi等[33]將WSM配成不同的濃度:1 μg/mL、10 μg/mL、25 μg/mL、50 μg/mL和100 μg/mL,研究對(duì)小鼠的成骨細(xì)胞作用,其中濃度為50 μg/mL的WSM對(duì)于ALP的增殖效果最好,100 μg/mL次之,余幾乎沒有影響,表明能促進(jìn)細(xì)胞ALP增加的濃度為50~100 μg/mL。珍珠層水溶有機(jī)質(zhì)對(duì)成骨有積極促進(jìn)作用,同時(shí)對(duì)骨吸收也有影響,能促進(jìn)前破骨細(xì)胞向破骨細(xì)胞分化,誘導(dǎo)破骨細(xì)胞吸收珍珠層基質(zhì),但吸收速度相比慢于骨的吸收,對(duì)破骨細(xì)胞有一定的抑制作用[34-35]。雖然珍珠層水溶有機(jī)質(zhì)表現(xiàn)出良好的促成骨效應(yīng)和破骨調(diào)控作用,但它畢竟是一種混合物,包含多種分子,珍珠層水溶有機(jī)質(zhì)良好性能可能是多種分子共同作用的結(jié)果。
珍珠層對(duì)前成骨細(xì)胞的體內(nèi)外實(shí)驗(yàn)均表明,WSM能釋放相關(guān)信號(hào)因子促進(jìn)細(xì)胞成骨分化。有學(xué)者推測(cè)WSM信號(hào)因子也能影響骨髓間充質(zhì)干細(xì)胞,使其向成骨細(xì)胞分化。在1999年Lamghari等[36]研究發(fā)現(xiàn)WSM在1.6 mg/mL時(shí),大鼠骨髓間充質(zhì)干細(xì)胞(rats bone marrow mesenchymal cells,rBMSCs) ALP活性明顯提高,同時(shí)在830 g/mL降低細(xì)胞增殖率,說明較高濃度WSM才能促進(jìn)ALP活性增加,作用類似于BMPs。隨著研究進(jìn)展,低濃度WSM及特定提取蛋白也表現(xiàn)出促成骨作用。Mouriès等[32]發(fā)現(xiàn)WSM在135 g/mL、270 g/mL和540 g/mL均增強(qiáng)骨髓間充質(zhì)干細(xì)胞ALP活性,作用與地塞米松作用相似,同時(shí)能促進(jìn)細(xì)胞增殖并且沒有表現(xiàn)出劑量相關(guān)性,而地塞米松對(duì)增殖幾乎沒有影響。也有研究表明WSM能影響相關(guān)成骨相關(guān)信號(hào)因子,尤其是在150~200 μg/mL時(shí)BMP-2的基因表達(dá)量增強(qiáng),成骨誘導(dǎo)作用明顯,表現(xiàn)為兔BMSCs中堿性磷酸酶的活性提高,成骨細(xì)胞分化增強(qiáng)[37]。珍珠層提取蛋白P60能促進(jìn)MC3T3-E1細(xì)胞和MSCs細(xì)胞周圍礦化結(jié)節(jié)的產(chǎn)生,在第8天左右均開始礦化,MSCs細(xì)胞礦化程度弱于MC3T3-E1細(xì)胞[18]。Green等[38]研究發(fā)現(xiàn)珍珠層片(500~750 μm)與人骨髓間充質(zhì)干細(xì)胞共培養(yǎng),比rhBMP-2的成骨誘導(dǎo)性更強(qiáng);EDTA提取的珍珠層可溶基質(zhì)蛋白(nacre soluble protein matrix,SPM)尤其富含酸性天冬氨酸,具有良好的成骨誘導(dǎo)性,并能促進(jìn)細(xì)胞增殖及骨鈣素的表達(dá)。
珍珠層具有有機(jī)和無機(jī)完美結(jié)合的生物礦化結(jié)構(gòu),尤其是有機(jī)基質(zhì)包含促進(jìn)骨形成和骨改建主要信號(hào)因子,使珍珠層具有良好的成骨誘導(dǎo)潛能。大量實(shí)驗(yàn)對(duì)珍珠層作為骨替代材料展開了深入研究,尤其是對(duì)前成骨細(xì)胞和髓間質(zhì)干細(xì)胞的成骨誘導(dǎo),但是珍珠層誘導(dǎo)成骨機(jī)制目前還沒有明確闡明。雖然相關(guān)文獻(xiàn)報(bào)道成骨因子存在于小分子量有機(jī)基質(zhì)中,但具體調(diào)控因子及相關(guān)通路未完全明確,有待于進(jìn)一步深入研究。珍珠層作為復(fù)合材料應(yīng)用在復(fù)合支架材料中,能復(fù)合PLLA、PLGA、生物凝膠[39-41]等,表現(xiàn)出良好的生物相容性和安全性,具有可觀應(yīng)用前景。珍珠層各方面的優(yōu)良性能也展現(xiàn)了珍珠應(yīng)用潛力,尤其是納米級(jí)珍珠粉,期待進(jìn)一步的深入研究。
[1]Samsudin MR,Hameed BH,Othman MR,et al.Hydrothermal conversion of Malaysian sea coral into hydroxyapatite[J].J Solid St Sci,2005,12:360.
[2]Lopez E,Vidal B,Berland S,et al.Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro[J].Tissue Cell,1992,24(5):667-679.
[3]Atlan G,Balmain N,Berland S,et al.Reconstruction of human maxillary defects with nacre powder:histological evidence for bone regeneration[J].C RAcad Sci III,1997,320(3):253-258.
[4]Almeida MJ,Milet C,Peduzzi J,et al.Effect of water-soluble matrix fraction extracted from the nacre of Pinctada maxima,on the alkaline phosphatase activity of cultured fibroblasts[J].J Exp Zool,2000,288 (4):327-334.
[5]Ming N,Ratner BD.Nacre surface transformation to hydroxyapatite in a phosphate buffer solution[J].Biomaterials,2003,24(23):4323-4331.
[6]夏靜芬,錢國(guó)英,陳亮,等.珍珠粉和貝殼粉的化學(xué)成分和結(jié)構(gòu)特征分析[J].化學(xué)研究與應(yīng)用,2010,22(11):1467-1471.
[7]Ji B,Gao H.Mechanical properties of nanostructure of biological materials[J].J Mech Phys of Solids,2004,52(9):1963-1990.
[8]Font S,Zhang XH,Bai YL.Microstructure and characteristics in theorganic matrix layers of nacre[J].J Mater Res,2002,17(17):1567-1570.
[9]Rousseau M,Lopez E,Stempflé P,et al.Multiscale structure of sheet nacre[J].Biomaterials,2005,26(31):6254-6262.
[10]張恩,邢銘,彭明生.珍珠的成分特點(diǎn)研究[J].巖石礦物學(xué)雜志, 2007,26(4):381-386.
[11]Feng QL,Pu G,Pei Y,et al.Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell [J].Journal of Crystal Growth,2000,216(1-4):459-465.
[12]Miyashita T,Takagi R,Okushima M,et al.Complementary DNA cloning and characterization of pearlin,a new class of matrix protein in the nacreous layer of oyster pearls[J].Marine Biotechnology, 2000,2(5):409-418.
[13]Weiss IM,Kaufmann S,Mann K,et al.Purification and characterization of perlucin and perlustrin,two new proteins from the shell of the mollusk haliotislaevigata[J].Biochem Biophys Res Commun,2000, 267(1):17-21.
[14]Zhang Y,Xie L,Meng Q,et al.A novel matrix protein participating in the nacre framework formation of pearl oyster,Pinctadafucata[J]. Comp Biochem Physiol B Biochem Mol Biol,2003,135(3):565-573. [15]Miyamoto H,Yano M,Miyashita T.Similarities in the structure of nacrein,the shell-matrix protein,in a bivalve and a gastropod[J].J Mollus Stud,2003,69(1):87-89.
[16]Yan Z,Jing G,Gong N,et al.N40,a novel nonacidic matrix protein from pearl oyster nacre,facilitates nucleation of aragonite in vitro[J]. Biomacromolecules,2007,8(11):3597-3601.
[17]Zhang C,Li S,Ma Z,et al.A novel matrix protein p10 from the nacre of pearl oyster(pinctada fucata)and its effects on both CaCO,crystal formation and mineralogenic cells[J].Marine Biotechnology,2006,8 (6):624-633.
[18]Lao Y,Zhang X,Zhou J,et al.Characterization and in vitro,mineralization function of a soluble protein complex P60 from the nacre of Pinctada fucata[J].Comp Biochem Physiol B Biochem Mol Biol, 2007,148(2):201-208.
[19]Ma JY,Wong KL,Xu ZY,et al.N16,a nacreous protein,inhibits osteoclast differentiation and enhances osteogenesis[J].J Nat Prod, 2016,79(1):204-212.
[20]毛秋華.納米級(jí)淡水珍珠粉的制備及其生物相容性初步研究[D].長(zhǎng)沙:中南大學(xué),2014.
[21]Shen Y,Zhu J,Zhang H,et al.In vitro osteogenetic activity of pearl [J].Biomaterials,2006,27(2):281-287.
[22]Gao H,Chen H,Chen W,et al.Effect of nanometer pearl powder on calcium absorption and utilization in rats[J].Food Chemistry,2008, 109(3):493-498.
[23]Chen HS,Chang JH,Wu JSB.Calcium bioavailability of nanonized pearl powder for adults[J].Journal of Food Science,2008,73(9):H246-H251.
[24]Duplat D,Chabadel A,Gallet M,et al.The in vitro osteoclastic degradation of nacre[J].Biomaterials,2007,28(12):2155-2162.
[25]Berland S,Delattre O,Borzeix S,et al.Nacre/bone interface changes in durable nacre endosseous implants in sheep[J].Biomaterials, 2005,26(15):2767-2773.
[26]湯勇智,陳建庭,趙成毅,等.納米珍珠層粉的降解實(shí)驗(yàn)及其復(fù)合人工骨的生物相容性研究[J].中國(guó)矯形外科雜志,2009,17(2):131-134.
[27]Lamghari M,Berland S,Laurent A,et al.Bone reactions to nacre injected percutaneously into the vertebrae of sheep[J].Biomaterials, 2001,22(6):555-562.
[28]Liao H,Mutvei H,Hammarstrom L,et al.Tissue responses to nacreous implants in rat femur:anin situ hybridization and histochemical study[J].Biomaterials,2002,23(13):2693-2701.
[29]Rousseau M,Pereira-Mouriès L,Almeida MJ,et al.The water-soluble matrix fraction from the nacre of Pinctada maxima,produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts[J].Comp Biochem Physiol B Biochem Mol Biol,2003,135(1):1-7.
[30]Rousseau M,Boulzaguet H,Biagianti J,et al.Low molecular weight molecules of oyster nacre induce mineralization of the MC3T3-E1 cells[J].J Biomed Mater ResA,2008,85(2):487-497.
[31]Bedouet L,Rusconi F,Rousseau M,et al.Identification of low molecular weight molecules as new components of the nacre organic matrix[J].Comp Biochem Physiol B Biochem Mol Biol,2006,144(4):532-543.
[32]Mouriès LP,Almeida MJ,Milet C,et al.Bioactivity of nacre water-soluble organic matrix from the bivalve mollusk Pinctada maxima,in three mammalian cell types:fibroblasts,bone marrow stromal cells and osteoblasts[J].Comp Biochem Physiol B Biochem Mol Biol,2002,132(1):217-229.
[33]Moutahir-Belqasmi F,Balmain N,Lieberrher M,et al.Effect of water soluble extract of nacre(Pinctada maxima)on alkaline phosphatase activity and Bcl-2 expression in primary cultured osteoblasts from neonatal rat calvaria[J].J Mater Sci Mater Med,2001,12(1):1-6.
[34]Kim H,Lee K,Ko CY,et al.The role of nacreous factors in preventing osteoporotic bone loss through both osteoblast activation and osteoclast inactivation[J].Biomaterials,2012,33(30):7489-7496.
[35]Duplat D,Chabadel A,Gallet M,et al.The in vitro osteoclastic degradation of nacre[J].Biomaterials,2007,28(12):2155-2162.
[36]Lamghari M,Almeida MJ,Berland S,et al.Stimulation of bone marrow cells and bone formation by nacre:in vivo and in vitro studies[J]. Bone,1999,25(2 Suppl):91S-94S.
[37]王建鈞,陳建庭,楊春露.珍珠層水溶性基質(zhì)對(duì)兔骨髓基質(zhì)干細(xì)胞BMP-2和Cbfα1基因表達(dá)的影響[J].南方醫(yī)科大學(xué)學(xué)報(bào),2007,27 (12):1838-1840.
[38]Green DW,Kwon HJ,Jung HS.Osteogenic potency of nacre on human mesenchymal stem cells[J].Mol Cells,2015,38(3):267-272.
[39]Liu Y,Huang Q,Feng Q.3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration[J].Biomedical Materials,2013,8 (6):065001.
[40]Flausse A,Henrionnet C,Dossot M,et al.Osteogenic differentiation of human bone marrow mesenchymal stem cells in hydrogel containing nacre powder[J].J Biomed Mater Res A,2013,101(11):3211-3218.
[41]Yang YL,Chang CH,Huang CC,et al.Osteogenic activity of nanonized pearl powder/poly(lactide-co-glycolide)composite scaffolds for bone tissue engineering[J].Biomed Mater Eng,2014,24(1):979-985.
R68
A
1003—6350(2017)11—1836—03
2016-12-06)
10.3969/j.issn.1003-6350.2017.11.038
海南省重點(diǎn)研發(fā)項(xiàng)目(編號(hào):ZDYF2016018);海南省??谑兄攸c(diǎn)科技計(jì)劃項(xiàng)目-2013-58(編號(hào):2013-SKG-06023)
徐普。E-mail:hnxupu@163.com