• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于銪取代多金屬氧簇的手性發(fā)光液晶材料

      2017-03-10 08:09:25魏學紅方慧敏袁世芳吳立新
      物理化學學報 2017年2期
      關(guān)鍵詞:山西大學手性液晶

      袁 鴻 張 靜 魏學紅 方慧敏 袁世芳 吳立新

      (1山西大學應(yīng)用化學研究所,太原 030006;2吉林大學,超分子結(jié)構(gòu)與材料國家重點實驗室,長春 130012;3山西大學化學化工學院,太原 030006)

      基于銪取代多金屬氧簇的手性發(fā)光液晶材料

      袁 鴻1,3張 靜1,*魏學紅3,*方慧敏3袁世芳1吳立新2,*

      (1山西大學應(yīng)用化學研究所,太原 030006;2吉林大學,超分子結(jié)構(gòu)與材料國家重點實驗室,長春 130012;3山西大學化學化工學院,太原 030006)

      將銪取代的多金屬氧簇引入手性液晶體系是構(gòu)筑多功能手性發(fā)光軟材料的有力工具。圓二色譜表明手性兩親分子可以通過靜電相互作用誘導非手性多金屬氧簇顯示出超分子手性。差示掃描量熱法、偏光顯微鏡和變溫X射線衍射證實這種有機無機雜化的多金屬氧簇復(fù)合物具有熱致液晶性質(zhì)。復(fù)合物的薄膜顯示出本征發(fā)光,并且我們可以通過溫度調(diào)控復(fù)合物的發(fā)光性質(zhì)。用手性介晶陽離子靜電包覆多金屬氧簇是構(gòu)筑多金屬氧簇基手性發(fā)光液晶材料的有效方法。

      多金屬氧簇;光學活性;液晶;發(fā)光;超分子自組裝;表面活性劑

      Key Words:Polyoxometalate;Optical activity;Liquid crystal;Luminescence;Supramolecular selfassembly;Surfactant

      1 Introduction

      Intense research has focused on the construction of functional chiral liquid crystal materials through supramolecular self-assembly1-4.Introduction of luminescent units into chiral liquid crystals has been proved to be an effective method to fabricate multifunctional soft materials5-9.Chiral luminescent liquid crystals (CLLCs)which integrate chiral,luminescence and self-orgnization properties of liquid crystals into single molecules supply advantages that reach beyond the sum of the individual properties.The design and development of CLLCs is particularly appealing owing to their potential applications in circularly polarized luminescence, asymmetric catalysis,chiral sensing,and chiroptical switch10-14. Polyoxometalates(PMs)have been developed into a class of fascinating building blocks in the exploitation of functional materials owing to their versatile properties15-22.We have recently demonstrated that the electrostatic encapsulation of achiral PMs with chiral amphiphiles could lead to optically active mesomorphic hybrid materials23.Chiral liquid crystals provide an asymmetric microenvironment for the organization of PMs,the properties of which could be modified and new functional materials could be fabricated.One of our persistent interests is concentrated on constructing PM-based CLLCs.The europium-substituted PMs exhibit intense red emission and are expected to be excellent luminescent building components24,25.It is promising that incorporation of europium-substituted PMs into chiral amphiphiles could allow to add luminescence to the anisotropy-related properties of chiral liquid crystals and afford novel multifunctional materials.

      Herein we describe the first example of the CLLC based on surfactant-encapsulated PM complex,CS-Eu(Fig.1).We believe that the strategy applied herein is favorable for the design of novel nanohybrid-based chiral luminescent liquid crystalline materials.

      Fig.1 Structural illustration of CS-Eu

      2 Experimental

      2.1 Materials

      11-Bromoundecanoic acid(98%)and cholesterol(99%)from Aladdin were empolyed as received.4-Dimethylaminopyridine (DMAP,98%),N,N′-dicyclohexylcarbodiimide(DCC,99%)and N,N-dimethyldodecylamine(97%)were supplied from Sigma without further purification.Silica gel(100-200 mesh)was used for the purification of column chromatography.The polyoxometalate K13[Eu(SiW11O39)2]·20H2O was synthesized according to the published procedures26.The chiral surfactant(CS)containing cholesterol group and the resulted complex CS-Eu were prepared by referencing the procedures reported previously23.

      2.2 Preparation of CS-Eu

      The synthesis of the novel complex,CS-Eu,is accomplished by encapsulating the Eu-substituted PM K13Eu(SiW11O39)2· 20H2O with CS by referencing the literature27,28.A solution of CS dissolved in chloroform was added dropwise into an aqueous solution of PM with stirring at room temperature.The initial molar ratio of CS to PM was controlled at 10:1.After 3 h of stirring at 45 °C, the organic phase was separated and washed with deionized water three times.Then the complex CS-Eu was obtained by evaporating the solvent to dryness.Finally,the product was dried in a vacuum desiccator until the weight remained constant.The chemical formula of CS-Eu is suggested to be[CS]12KEu(SiW11O39)2, identified by infrared(IR)spectroscopy(Fig.S1,Supporting Information),elemental analysis and thermal gravimetric analysis (Fig.S2,Supporting Information).

      CS-Eu.IR(KBr,ν/cm-1):3450,3033,2925,2852,1735,1674, 1467,1378,1249,1172,1012,946,894,777,723(Table S1, Supporting Information).Elemental analysis:Anal.Calcd(%)for CS-Eu(C624H1152N12O102KSi2W22Eu):C,50.82;H,7.87;N,1.14. Found(%):C,50.33;H,7.79;N,1.20;corresponding to a chemical formula:[CS]12KEu(SiW11O39)2.Thermogravimetric analysis(TGA)displays a mass residue of 33.4%at 800 °C,which is in agreement with the calculated value of 35.8%from the given formula[CS]12KEu(SiW11O39)2.

      2.3Measurements

      IR spectra were recorded on a Germany Bruker Optics VERTEX 80v Fourier transform infrared spectrometer,equipped with a DTGS detector in pressed KBr pellets.A resolution of 4 cm-1was chosen,and 32 scans were signal-averaged.Elemental analysis(C, H,N)was performed on a Flash EA1112 from ThermoQuest Italia SPA.TGA was conducted using a Q500 thermal analyzer in flowing air with a heating rate of 10 °C·min-1in the temperature range from 25 to 800 °C.The UV/Vis spectra were taken by a Varian CARY 50 Probe spectrometer.Circular dichroism(CD) spectra were carried out on a Bio-Logic MOS-450 spectropolarimeter with a step size of 1 nm and at a speed of 5 s·nm-1.The optical textures of the mesophases were studied with a ZeissAxioskop 40 polarizing microscope equipped with a Linkam THMSE 600 hot stage,a central processor,and a DF1 cooling system.Differential scanning calorimetric(DSC)measurements were performed on a Netzsch DSC 204 using a 5 °C · min-1scanning rate.All the samples were sealed in aluminum capsules in air,and the atmosphere of holder was sustained under dry nitrogen.For variable-temperature X-ray diffraction(XRD)experiments,a Germany Bruker AXS D8 ADVANCE X-ray diffractometer using Cu Kαradiation at a wavelength of 0.154 nm with a mri Physikalische Ger?te GmbH TC-Basic temperature chamber was employed.Luminescence measurements were carried out on a F-4600 FL spectrophotometer and a xenon lamp was used as the excitation source.

      Fig.2 (a)CD and(b)UV/Vis spectra of CS-Eu,(c)CD and(d)UV/Vis spectra of CS casting film on quartz substrate

      3 Results and discussion

      3.1 Optical activities of CS-Eu

      To obtain insights into the chiroptical activity of CS-Eu,circular dichroism(CD)characterization was performed.Apparently,the peripheral chiral surfactants are effective promoters to induce CSEu to display chiral signals.It is believed that the cholesterol moiety with(S)configuration tends to give a negative sign for the first Cotton effect29,30.CS-Eu is actually the case,which exhibited a negative Cotton effect at 212 nm and a positive Cotton effect at 338 nm(Fig.2(a)).More importantly,by comparing the CD spectra of CS-Eu and CS(Fig.2(b)),we observed a positive CD signal at 262 nm assigned to the induced circular dichroism(ICD) of PM in CS-Eu definitively,demonstrating that encapsulation by chiral surfactants is a feasible strategy for developing PM-based materials with optical activities.The characteristic band at 262 nm is derived from O → W ligand to metal charge transfer(LMCT) band31as observed in the UV/Vis spectrum(Fig.2(c)),the ICD should be attributed to be supramolecular chirality32-35which originates from the chirality transfer from the chiral organic moieties to the LMCT band through electrostatic interactions.The optical activity of CS-Eu is very stable,indicated by the observation of no apparent changes in CD spectrum over several months,which is of practical significance in the potential applications of the chiral structure.

      3.2 Liquid crystal properties of CS-Eu

      Interestingly,the non-covalent attached amphiphiles at the periphery of PM act as mesogenic precursors trigger CS-Eu to exhibit liquid crystalline properties,demonstrably characterized by differential scanning calorimetry(DSC),polarized optical microscopy(POM),and temperature-dependent X-ray diffraction (XRD).DSC traces of CS-Eu(Fig.S3,Supporting Information) displayed glass transitions at 10 and 9 °C on the first cooling and second heating processes,respectively.Due to the low enthalpy of CS-Eu,no clear peak corresponding to the phase transition from mesophase to isotropic state was detected at high temperature. When cooling from isotropic liquids,a birefringent texture with strong fluidity was investigated at 156 °C(Fig.S4(a),Supporting Information),suggesting the transition from isotropic state to mesophase.Mesomorphic properties were recognized by the formation of grain textures(Fig.3)upon cooling to 30 °C.On heating process,the birefringence was observed up to 163 °C(Fig. S5(b))and disappeared at 168 °C(Fig.S5(c)),indicating theclearing point of CS-Eu.

      We employed temperature-dependent XRD to elucidate the mesophase and stacking structure of CS-Eu.As displayed in Fig.4 (a),a less-ordered layered structure with a spacing of 4.21 nm at 30 °C was calculated from the four equidistant diffractions at 4.21, 2.21,1.50,and 1.10 nm,which are assigned to(001),(002),(003), and(004)reflections,respectively36-38.In addition,a diffused halo centered at 20°corresponding to a spacing of 0.45 nm was observed,typical of disordered conformation of the aliphatic moieties39.Combining the grain texture,the mesophase of CS-Eu is assigned as chiral smectic A phase.It is noticed that CS-Eu reveals a dependence of layer spacing on temperature(Table S2,Supporting Information);that is,the layer spacing decreases slowly with temperature increasing,which is closely related to the increasing of gauche conformation of the alkyl chains during heating.The upword shifts of the asymmetrical and symmetrical CH2stretching vibrations in temperature-dependent IR spectra (Fig.4(b))clearly illustrate the increasing of gauche conformation of the alkyl chains.The increasing of gauche conformation will result in the shortened molecular length of alkyl chains in CS-Eu, which triggers the decreasing of the layer spacing.It is worth noting that CS-Eu is a room temperature ionic liquid crystal over a wide temperature range,which is meaningful for the potential applications.

      Fig.3 Grain texture of CS-Eu at 30 °C on the cooling run

      Fig.4 (a)Temperature-dependent XRD patterns of CS-Eu on heating runs,and(b)temperature dependence of the positions of IR bands of antisymmetrical and symmetrical CH2stretching mode of CS-Eu

      Based on the XRD results,the possible aggregation structure of CS-Eu in mesophase could be speculated.The layer distance in the mesophase is much smaller than the simulated packing(ca 7.56 nm)of CS-Eu in sandwich structure,acquired by combining the short-axis diameter of PM(1.00 nm)and the length of two organic surfactants(3.28 nm,calculated by MM2 force field method). Taking this into account,it is reasonable to assume the presence of a conformational distortion or a partially interdigitation of the aliphatic moieties,as schematically illustrated in Fig.5.

      3.3 Luminescent properties of CS-Eu

      Apparently,from the red luminescence of CS-Eu under ultraviolet excitation(Fig.6(a)),we see that the luminescence of PM is well retained in the complex.The spectrum of CS-Eu(Fig.6(b)) displays the characteristic5D0-7Fj(j=0,1,2,3,4)transitions of Eu3+when excited at 254 nm,for instance,5D0-7F0,581 nm;5D0-7F1,594 nm;5D0-7F2,616 and 621 nm;5D0-7F3,653 nm;5D0-7F4,695 and 703 nm.The symmetrically forbidden transition5D0-7F0at 581 nm is clearly detected as a single peak, indicating the low symmetry and the existence of one local site symmetry for the chemical environment of the Eu3+ion in CS-Eu21.

      To evaluate the thermal stability of luminescence of CS-Eu in the mesophase,the temperature dependence of luminescence intensity was studied.As shown in Fig.6(c),with temperature increasing,the characteristic peaks of Eu3+show a slow decrease in luminescent intensity owing to the quenching from nonradiative transition40.The results imply that the photophysical properties of CS-Eu can be adjusted by accurately controlling the temperature, which is favorable for the realization of Eu-substituted PM-based luminescent devices.

      Fig.5 Schematic drawing of packing model of CS-Eu in the mesophase at 30 °C

      Fig.6 (a)Photographs of CS-Eu under daylight(top)and under the irradiation of 254 nm light(bottom),(b)emission spectrum of CS-Eu casting film on quartz substrate(λex=254 nm),and (c)variable-temperature emission spectra of CS-Eu

      4 Conclusions

      We report the first demonstration of a multifunctional chiral lumescinent liquid crystal material,which was achieved by encapsulation of Eu-substituted PM with chiral surfactantsviaelectrostatic interactions.Importantly,optical activities in achiral PM could be induced successfully by chiral transfer from the peripheral chiral organic amphiphiles through intermolecular interactions.The synergistic properties combining the chiral liquid crystals and the inherent luminescence of PM endow the hybrid multifunctional material with unfathomable potential in circularly polarized luminescence,asymmetric catalysis,and chiroptical switches.

      Supporting Information:available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

      (1)Goossens,K.;Lava,K.;Bielawski,C.W.;Binnemans,K.Chem.Rev.2016,116,4643.doi:10.1021/cr400334b

      (2)Dierking,I.Symmetry2014,6,444.doi:10.3390/sym6020444

      (3)Chen,L.;Chen,Y.W.;Yao,K.;Zhou,W.H.;Li,F.;Nie,H.R.Acta Phys.-Chim.Sin.2010,26,971.[諶 烈,陳義旺,姚 凱,周魏華,李 璠,聶華榮.物理化學學報,2010,26,971.] doi:10.3866/PKU.WHXB20100409

      (4)Tan,X.P.;Li,Z.;Xia,M.;Cheng,X.H.RSC Adv.2016,6, 20021.doi:10.1039/C6RA00065G

      (5)Cheng,Z.H.;Zang,Y.Li,Y.;Li,B.Z.;Hu,C.J.;Li,H.K.; Yang,Y.G.Liq.Cryst.2016,43,777.doi:10.1080/ 02678292.2016.1144809

      (6)Tang,J.C.;Huang,R.;Gao,H.F.;Cheng,X.H.;Prehm,M.; Tschierske,C.RSC Adv.2012,2,2842.doi:10.1039/ c2ra01362b

      (7)Yao,B.;Cong,Y.H.;Zhang,B.Y.;Wang,Z.Q.;Chen,F.;Sun, C.RSC Adv.2016,6,42745.doi:10.1039/c6ra07388c

      (8)Nguyen,T.D.;Hamad,W.Y.;MacLachlan,M.J.Adv.Funct. Mater.2014,24,777.doi:10.1002/adfm.201302521

      (9)Sánchez-Carnerero,E.M.;Agarrabeitia,A.R.;Moreno,F.; Maroto,B.L.;Muller,G.;Ortiz,M.J.;de la Moya,S.Chem. Eur.J.2015,21,13488.doi:10.1002/chem.201501178

      (10)Watanabe,K.;Osaka,I.;Yorozuya,S.;Akagi,K.Chem.Mater.2012,24,1011.doi:10.1021/cm2028788

      (11)Zou,W.J.;Yan,Y.;Fang,J.;Yang,Y.;Liang,J.;Deng,K.;Yao, J.L.;Wei,Z.X.J.Am.Chem.Soc.2014,136,578.doi:10.1021/ ja409796b

      (12)Zhao,D.Y.;He,H.X.;Gu,X.G.;Guo,L.;Wong,K.S.;Lam, J.W.Y.;Tang,B.Z.Adv.Optical Mater.2016,4,534. doi:10.1002/adom.201500646

      (13)Chu,G.;Feng,J.;Wang,Y.;Zhang,X.;Xu,Y.;Zhang,H.J.Dalton Trans.2014,43,15321.doi:10.1039/c4dt00662c

      (14)Zhao,Y.Z.;Zhang,L.Y.;He,Z.M.;Chen,G.;Wang,D.; Zhang,H.Q.;Yang,H.Liq.Cryst.2015,42,1120.doi:10.1080/ 02678292.2015.1025871

      (15)Ju,W.;Song,X.L.;Yan,G.;Xu,Kun.;Wang,J.;Yin,D.H.;Li, L.;Qu,X.F.;Li Y.G.;Li,J.J.Mater.Chem.B2016,4,4287. doi:10.1039/C6TB00986G

      (16)Wei,H.B.;Zhang,J.L.;Shi,N.;Liu,Y.;Zhang,B.;Zhang,J.; Wan,X.H.Chem.Sci.2015,6,7201.doi:10.1039/c5sc02020d

      (17)Yue,L.;Wang,S.;Zhou,D.;Zhang,H.;Li,B.;Wu,L.X.Nat. Commun.2016,7,10742.doi:10.1038/ncomms10742

      (18)Zhang,J.;Li,W.;Wu,C.;Li,B.;Zhang,J.;Wu,L.X.Chem. Eur.J.2013,19,8129.doi:10.1002/chem.201300309

      (19)Zhang,Y.Z.;Tao,R.;Zhao,X.M.;Sun,Z.X.;Wang,Y.J.;Xu, L.Chem.Commun.2016,52,3304.doi:10.1039/c5cc08628k

      (20)Li,J.F.;Chen,Z.J.;Zhou,M.C.;Jing,J.B.;Li,W.;Wang,Y.; Wu,L.X.;Wang,L.Y.;Wang,Y.Q.;Lee,M.Angew.Chem.Int. Ed.2016,55,2592.doi:10.1002/anie.201511276

      (21)Yang,H.K.;Ren.L.J.;Wu,H.;Wang,W.New J.Chem.2016,40,954.doi:10.1039/c5nj02271a

      (22)Wang,J.;Lin,C.G.;Zhang,J.Y.;Wei,J.;Song,Y.F.;Guo,J. B.J.Mater.Chem.C2015,3,4179.doi:10.1039/c5tc00395d

      (23)Zhang,J.;Li,J.F.;Yuan,H.;Zhang G.H.;Li,B.;Li,W.;Wei, X.H.;Duan,X.E.;Wu,L.X.Chem.Asian J.2016,11,2001. doi:10.1002/asia.201600532

      (24)Zhang,H.;Li,B.;Wu,L.X.Mater.Lett.2015,160,179. doi:10.1016/j.matlet.2015.07.105

      (25)Zhang,J.;Liu,Y.;Li,Y.;Zhao,H.X.;Wan,X.H.Angew.Chem. Int.Ed.2012,51,4598.doi:10.1002/anie.201107481

      (26)Peacock,R.D.;Weakley,T.J.R.J.Chem.Soc.A1971,1836.doi:10.1039/J19710001836

      (27)Yang,Y.;Zhang,B.;Wang,Y.Z.;Yue,L.;Li,W.;Wu,L.X.J.Am.Chem.Soc.2013,135,14500.doi:10.1021/ja4057882

      (28)He,P.L.;Xu,B.;Xu,X.B.;Song,L.;Wang,X.Chem.Sci.2016,7,1011.doi:10.1039/C5SC03554F

      (29)Jung,J.H.;Shinkai,S.;Shimizu,T.Chem.Mater.2003,15, 2141.doi:10.1021/cm0217912

      (30)Wang,J.;Yang,G.;Jiang,H.;Zou,G.;Zhang,Q.J.Soft Matter2013,9,9785.doi:10.1039/c3sm51896e

      (31)Wang,J.;Wang,H.S.;Liu,F.Y.;Fu,L.S.;Zhang,H.J.J.Lumin.2003,101,63.doi:10.1016/S0022-2313(02)00389-7

      (32)Liu,M.H.;Zhang,L.;Wang,T.Y.Chem.Rev.2015,115,7304. doi:10.1021/cr500671p

      (33)Yang,Y.;Zhang,Y.J.;Wei,Z.X.Adv.Mater.2013,25,6039. doi:10.1002/adma.201302448

      (34)Shi,L.;Li,B.;Wu,L.X.Chem.Commun.2015,51,172. doi:10.1039/c4cc07750d

      (35)Wang,X.F.;Zhang,L.;Liu,M.H.Acta Phys.-Chim.Sin.2016,32,227.[王秀鳳,張 莉,劉鳴華.物理化學學報,2016,32, 227.]doi:10.3866/PKU.WHXB201511181

      (36)Yang,H.K.;Su,M.M.;Ren,L.J.;Zheng,P.;Wang,W.RSC Adv.2014,4,1138.doi:10.1039/c3ra45550e

      (37)Liu,X.;Zhao,R.Y.;Zhao T.P.;Liu,C.Y.;Yang,S.;Chen,E. Q.RSC Adv.2014,4,18431.doi:10.1039/c4ra01652a

      (38)Cheng,X.H.;Su,F.W.;Huang,R.;Gao,H.F.;Prehm,M.; Tschierske,C.Soft Matter2012,8,2274.doi:10.1039/ c2sm06854k

      (39)Zhang,J.;Zhou,M.J.;Wang,S.;Carr,J.;Li,W.;Wu,L.X.Langmuir2011,27,4134.doi:10.1021/la2000574

      (40)Qi,W.;Li,H.L.;Wu,L.X.Adv.Mater.2007,19,1983. doi:10.1002/adma.200602430

      Chiral Luminescent Liquid Crystal Material Based on Europium-Substituted Polyoxometalate

      YUAN Hong1,3ZHANG Jing1,*WEI Xue-Hong3,*FANG Hui-Min3
      YUAN Shi-Fang1WU Li-Xin2,*
      (1Institute of Applied Chemistry,Shanxi University,Taiyuan 030006,P.R.China;2State Key Laboratory of Supramolecular Structure and Materials,Jilin University,Changchun 130012,P.R.China;3College of Chemistry and Chemical Engineering,Shanxi University,Taiyuan 030006,P.R.China)

      The incorporation of europium-substituted polyoxometalate(PM)into chiral amphiphiles is attractive for the fabrication of multifunctional chiral luminescent liquid crystalline materials.Chiral amphiphiles acted as good promoters to trigger the achiral PM to show induced supramolecular chirality through electrostatic interactions,as illustrated by circular dichroism(CD)spectra.Differential scanning calorimetry(DSC),polarized optical microscopy(POM),and temperature-dependent X-ray diffraction(XRD)analysis confirmed that the organic/inorganic hybrid polyoxometalate complex exhibited thermotropic mesomorphic behaviors.In a cast film,the complex displayed intrinsic luminescence that could be adjusted by accurately controlling the temperature.The electrostatic encapsulation of PM with chiral mesomorphic promoters provides an effective method for constructing PM-based chiral luminescent liquid crystalline materials.

      O644

      10.3866/PKU.WHXB201611032

      Received:September 23,2016;Revised:November 2,2016;Published online:November 3,2016.

      *Corresponding authors.ZHANG Jing,Email:jingzhang@sxu.edu.cn;Tel:+86-351-7018390.WEI Xue-Hong,Email:xhwei@sxu.edu.cn;

      Tel:+86-351-7018390.WU Li-Xin,Email:wulx@jlu.edu.cn;Tel:+86-431-85168481.

      The project was supported by the National Key Basic Research Program of China(973)(2013CB834503),National Natural Science Foundation of China(21502107,21574057,21101101),Natural Science Foundation of Shanxi Province,China(2014021019-5),Scientific Research Start-up Funds of Shanxi University,China(020451801001),Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China(2016118),and National Training Programs of Innovation and Entrepreneurship for Undergraduates,China(201610108010)and Scientific Instrument Center of Shanxi University,China.

      國家重點基礎(chǔ)研究發(fā)展規(guī)劃項目(973)(2013CB834503),國家自然科學基金(21502107,21574057,21101101),山西省自然科學基金(2014021019-5),山西大學引進人才建設(shè)項目(020451801001),山西省高校科技創(chuàng)新項目(2016118),國家級大學生創(chuàng)新創(chuàng)業(yè)訓練項目(201610108010)和山西大學大型科學儀器中心資助? Editorial office of Acta Physico-Chimica Sinica

      猜你喜歡
      山西大學手性液晶
      手性磷酰胺類化合物不對稱催化合成α-芳基丙醇類化合物
      分子催化(2022年1期)2022-11-02 07:10:30
      不可壓液晶方程組的Serrin解
      《液晶與顯示》征稿簡則
      液晶與顯示(2020年8期)2020-08-08 07:01:46
      山西大學管理與決策研究中心
      脫靶篇
      利奈唑胺原料藥中R型異構(gòu)體的手性HPLC分析
      脂肪酶Novozyme435手性拆分(R,S)-扁桃酸
      捧殺篇
      “取舍”篇
      液晶與顯示2015年第30卷第1期 目錄
      液晶與顯示(2015年1期)2015-02-28 21:15:54
      三门峡市| 九龙县| 隆回县| 库尔勒市| 湖北省| 淳化县| 成安县| 叶城县| 兴和县| 营口市| 新沂市| 新绛县| 灵丘县| 迁安市| 大宁县| 温泉县| 青铜峡市| 阿坝县| 贵港市| 许昌县| 政和县| 孝义市| 城市| 香格里拉县| 西畴县| 沁阳市| 兴和县| 武陟县| 丹寨县| 浙江省| 托克逊县| 湘乡市| 托克托县| 平昌县| 巴林左旗| 莱西市| 石嘴山市| 藁城市| 汝南县| 汉川市| 吉木萨尔县|