• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of a two-dimensional flapping wing in advanced mode *

    2017-03-14 07:06:53ZhiyongLiang梁志勇LiangWei魏亮JingyuLu盧錦煜XiaohongQin覃小紅

    Zhi-yong Liang (梁志勇), Liang Wei (魏亮), Jing-yu Lu (盧錦煜), Xiao-hong Qin (覃小紅)

    1. College of Science, Donghua University, Shanghai 201620, China, E-mail: zhyliang@dhu.edu.cn

    2. Key Laboratory of Textile Science and Technology, Ministry Education, College of Textiles,

    Donghua University, Shanghai 201620, China

    Introduction

    The micro-flapping wing aircraft is an aircraft based on the bionic principle, as the flying birds and insects. Compared with the fixed wing and rotary wing aircraft, the main features of the micro-flapping wing aircraft are that they are integrated systems that integrate the functions of lifting, hovering and propelling, they can complete a long-distance flight with a small amount of energy, and with a stronger mobility.A very small Reynolds number (about 101-104smaller)is involved, in which the viscosity effect of air increases greatly. In the boundary layer, the laminar flow separates, resulting in laminar separating bubbles and the aerodynamic characteristics are significantly different from those in a high Reynolds number situation[1]. The flight of flapping wings was studied extensively.

    Zhang et al.[2]simulated the periodic motion of small insects by the dynamic hybrid grid technology and the unsteady method of incompressible flow based on the virtual compression technology. Bai et al.[3]simulated the hovering flight of a single flapping wing of fruit flies in three modes: the advanced mode,the symmetric mode and the delay mode, and combined with aerodynamic coefficients and flow structures, they analyzed the mechanism by which fruit flies obtain a high lift force in their hovering flight.Ohmiet et al.[4,5]studied the starting process of the vortex at a high attack angle with the wing?s pitching movement, including the forms of the vortex, and the factors that affect the formation of the vortex.Triantafyllou et al.[6]proved that the structure of the trailing vortex has a great influence on the formation of the propulsion. Nskata et al.[7]presented a new model of flapping-wing aerodynamics, called a CIQSM, based on a combination of the CFD data and the quasi-steady modelling. Tay et al.[8,9]used a numerical simulation method to investigate the validation of the immersed boundary method and the flapping micro-aerial vehicle. The aerodynamic performance of the flexible flapping wing was investigated through numerical simulations based on the fluid-structure coupling method[10]. Banazadeh and Taymourtash[11]presented the modeling and the simulation of open loop dynamics of a rigid body insect-like flapping wing. MH Dickson?s research indicates that the turning phase of insect’s wings will affect the direction of the first peak lift force and it?s emergence moment, and that the flapping wing flight has a unique advantage in using the trail flow to obtain a part of lift force, which leads to a conclusion that the flapping wing could absorb the energy of the trailing flow. Based on the insect wing study a twodimensional single flapping wing model is built, and the dynamic mesh technique and the UDF function are used to simulate the flight of a flapping wing in the advanced mode. The unsteady mechanism is studied and some useful conclusions are drawn.

    1. The model

    This paper takes the NACA0012 wing as the two-dimensional simplified wing section, and studiesthe flapping motion in the state of the hovering flight. The controlling parameters for the wing moving up and down are set symmetrically, and the axis of rotation is set a quarter chord length from the leading edge. The following functions in the model are adopted to describe the translation and the rotationof the hovering flapping movement. Thevelocity is expressed as:

    where τ is the time,mu is the maximum speed of the translational motion,tτΔ is the total time of the translational motion, andcτ is the flapping cycle.

    The angular velocity function[12]of the rotation motion is expressed as

    wheremω is the maximum angular velocity,rτΔ is the total time of the pitching rotation, and φΔ is the phase difference of the rotation and the translation.

    Some main physical parameters are:

    The attack angle iso30, the rotation angle is 120o, and the leading phase is 8.0%. The calculation area is a rectangle of 0.16 m×0.06 m, and the chord length of the wing NACA0012 is c = 0.01m. The four edges of the calculation field are static wall boundaries, and the boundary of the wing is the dynamic wall boundary. The triangular unstructured grids are used in this model. The total number of the grids is 4.67×104. The movement of the flapping wing has a high speed, it behaves as in the turbulence model. The smooth spring model and the local reforming model are used to produce the dynamic grids.

    2. The results and discussions

    2.1 Lift and drag coefficients

    Figure 1 shows the lift and drag coefficients in a cycle, the vertical axis is the lift or drag coefficients,and the abscissa is the time, covering the range of 0-1.As shown in the Fig.1(a), the lift coefficient changes slowly in the intermediate stage, and there are two areas in which the lift coefficient changes dramatically.In the range of -0.05-0.02, the lift coefficient reduces rapidly and then has a rapid increase in the other direction and the lowest value of the lift coefficient increases to 2.23 quickly. In this stage the attack angle becomes an obtuse angle due to the fact that the flapping wing turns in the advance phase. In the end of the turning phase, the flapping wing turns into the other phase, in which the wing keeps a same attack angle flapping and the lift coefficient decreases rapidly from the first peak 2.23 to 0.07, and then it turns into the translation motion, in which the attack angle and the velocity keep unchanged, the lift coefficient turns into the rising and stable stages. In the range of 0.25-0.38, the lift coefficient comes into its second rising stage and it reaches the peak value. In this rising stage, the flapping wing keeps in a same attitude of pitching nose-up. After that, the wing turns into the position of its stalling angle, so that the lift coefficient decreases rapidly to negative values.Figure 1(b) shows that the drag coefficient behaves quite differently when flapping up and down. When in the range of 0-0.05, the drag coefficient is positive,there are two peaks, and also the velocity increases rapidly. In this stage, the flapping wing keeps in an attitude of pitching nose-up. While in the range of 0.50-0.10 the drag coefficient is negative and also sees two valley values.

    2.2 The vortex distribution of the flapping wing

    Fig.1 The lift and drag coefficients in a cycle

    Fig.2 (Color online) The vortex distributions at different times

    Figure 2 shows the vortex distribution at different times. The interaction between the vortex and the flapping wing is a significant factor of the high lift coefficient. With a proper angle of the flapping wing,a high lift force can be achieved. As shown in the pictures, in the stage of a uniform velocity (Fig.2(a)), the horizontal angle of attack remains a constant and there is a continuous vortex shedding from the wake flow.At the same time, the backflow area of the front edge constantly strengthens and finally, a strong front vortex is formed. And the vortex attached at the front edge provides a certain lift force for the wing, makes a gentle change of the lift coefficient in this phase. And then, the wing pulls up with a constant or rapid speed(Figs.2(a), 2(b)), the vortex of the trailing edge breaks away from the wing and a rotating vortex is formed,acting on the wing. Along with the continuous enhancement of the leading edge vortex, the lift coefficient of the flapping wing reaches the high peak. Then the wing enters into a deceleration phase (Figs.2(b), 2(c)).At about τ / τc= -0 .07, the states on the top and the bottom of the wing alternate each other, the vortex of the trailing edge accumulates on the direction of the forward motion and interacts with the wing, to form the trailing edge vortex at this time and the previous turning vortex cannot alternate each other, with a continuous decline of the lift coefficient. In the next stage, the wing accelerates in the other direction(Figs.2(e), 2(g)), the latter trailing edge vortex and the previous turning vortex which sheds from the trailing edge can alternate each other. And since the two vortexes are opposite in their circling directions, so they can produce a strong vortex to raise the lift coefficient again.

    2.3 The pressure distribution of the flapping wing

    Figure 3 clearly demonstrates the pressure distribution around the wing. In the translational stage(Fig.3(a)), there are two pressure centers, respectively located in the front and the back of the trailing edge.The forward total pressure obviously is higher than the other, which steadies the lift coefficient in the stage. In the initial stage (Figs.3(a), 3(b)), the wing begins to overturn, the low-pressure center near the wing is destroyed. Since the angular velocity increases,the volume of the bottom wing increases suddenly, the air becomes thin and the intensity of the pressure reduces, which leads to a stable low pressure area.Oppositely a high-pressure zone appears on the top.Due to the pressure difference, the lift coefficient increases at this stage. As the wing goes into the early deceleration phase (Figs.3(b), 3(c)), due to the fact that the states on the top and the bottom alternate,together with the fact that the original high pressure area under the wing gradually sheds to the wake flow.A low pressure center forms on the upper area of the original leading edge, which makes the pressure difference decrease and results in the falling of the lift coefficient. Then the wing goes into the later deceleration stage. Because the original high pressure area under the plane turns into the low pressure area and the shedding high pressure area is attached at the trailing edge of the original upper plane, the pressure difference increases again, this makes the lift coefficient rise again. The different angles and speeds of the movement can lead to different pressure distributions,pressure center behind the wing (Fig.3(a)), keeping two pressure centers in the following phase of equal attack angle.

    Fig.3 (Color online) The pressure distributions at different times

    Fig.4 (Color online) The velocity vector distributions at different times

    2.4 The Velocity vector distribution of the flapping wing

    From the velocity distribution, we can clearly see the velocity distribution around the wing. As shown in Fig.4, two annular flows appear, respectively, on the front and behind areas of the flapping wing. The two centers are on a horizontal line and the flapping wing moves back and forth between the two centers.Because of the influence of the two airstream, the vortex constantly sheds from the trailing edge. In the process of a uniform motion, the speed of the airstream away from the wing is greater than the other,while the overturn of the wing just makes the two airstream change their speeds. In the whole process the wing always maintains to have two annular flow centers. When the wing approaches one of them the annular flow center is destroyed (Figs.4(b)-4(e)), but then it will be replaced immediately by the rotational center of the wing.

    3. Conclusions

    In this paper the flapping wing is simulated numerically in the advanced mode, and the high lift mechanism of the flapping wing is studied from the following aspects: the lift and drag coefficients, the vortex distribution, the pressure distribution, and the velocity vector distribution. Based on this study some conclusions are drawn. The interaction between the leading edge vortex and the trailing edge vortex is an important factor regarding the high lift coefficient,and this conclusion is consistent with the Refs.[13-20].In different stages the flapping wing needs a proper attack angle to obtain a high lift force. Before and after the uniform-motion stage of the flapping wing,two pressure centers appear and the low pressure center falls off later. In the whole movement process,there always exist two annular airstream centers and they change their speeds alternatively.

    in different stages of time, the movement style of the flapping wing is variable. In the following stage, the wing speeds up in the other direction, with the low pressure area shedding from the leading edge of the bottom plane, the high pressure area is pushed out from the trailing edge and the pressure difference reduces again, with the falling of the lift coefficient.The detached low pressure area forms, with a low

    [1] Zaitsev A. A., Sharina L. V. Aerodynamic calculation of normal hovering flight [J]. Fluid Dynamics, 1983, 18(4):554-560.

    [2] Zhang L. P., Chang X. H., Duan X. P. et al.Numerical simulations of the “clap-fling” motion for tiny insect wings [J]. Acta Aerodynamica Sinica, 2009, 27(2):246-254.

    [3] Bai P., Cuie J., Li F. et al. Study of high aerodynamic lift mechanics of hovering insect flapping wing at low Reynolds number [J]. Acta Aerodynamica Sinica, 2007,25(2): 175-182.

    [4] Ohmi K., Coutanceau M., Loc T. P. et al.Vortex formation around an oscillating and translating airfoil at large incidences [J]. Journal of Fluid Mechanics, 1990, 211:37-60.

    [5] Ohmi K., Coutanceau M., Daube O. et al. Further experiments on vortex formation around an oscillating and translating airfoil at large incidences [J]. Journal of Fluid Mechanics, 1991, 225: 607-630.

    [6] Triantafyllou M. S., Triantafyllou G. S., Gopalkrishnan R.Wake mechanics for thrust generation in oscillating foils[J]. Physics of Fluids A-Fluid Dynamics, 1991, 3(12):2835-2837.

    [7] Nakata T., Liu H., Bomphrey R. J. A CFD-informed quasi-steady model of flapping-wing aerodynamics [J].Journal of Fluid Mechanics, 2015, 783: 323-343.

    [8] Tay W. B., DENG S., Van Oudheusden B. W. et al.Validation of immersed boundary method for the numerical simulation of flapping wing flight [J]. Computers and Fluids, 2015, 115: 226-242.

    [9] Tay W. B.,Van Oudheusden B. W., Bijl H. Numerical simulation of a flapping four-wing micro-aerial vehicle [J].Journal of Fluids and Structures, 2015, 55: 237-261.

    [10] Yang W., Wang L., Xue D. et al. Aerodynamic performance of micro flexible flapping wing by numerical simulation [J]. Procedia Engineering, 2015, 99(1): 1506-1513.

    [11] Banazadeh A., Taymourtash N. Nonlinear dynamic modeling and simulation of an insect-like flapping wing [J].Applied Mechanics and Materials, 2014, 555: 3-10.

    [12] Zhao P. F., Liu C. Y., Zhu L. W. et al. Visualization of vortex field of 2-D flapping wing motion [J]. Journal of University of Science and Technology of China, 2005,35(4): 441-447.

    [13] Liu H., Ellington C. P., Kawachi K. et al. A computational fluid dynamic study of hawkmoth hovering [J].Journal of Experimental Biology, 1998, 201(4): 461-477.

    [14] Lan S. L., Sun M. Aerodynamic properties of a wing performing unsteady rotational motions [J]. Acta Mechanica Sinica, 2001, 33(2): 173-182.

    [15] Lu K., Xie Y. H., Zhang D. et al. Numerical investigations into the asymmetric effects on the aerodynamic response of a pitching airfoil [J]. Journal of Fluids and Structures,2013, 39(5): 76-86.

    [16] Zhou C. H., Lin Y. F. Numerical study on aerodynamic performance of flapping wings [J]. Journal of Harbin Institute of Technology, 2006, 38(9): 1403-1405.

    [17] Zhang L., Shang J. H., Zhang Z. Y. et al. Tidal current energy update 2015-Hydrodynamics [J]. Journal of Hydroelectric Engineering, 2016, 35(2): 1-15(in Chinese).

    [18] Lin J., Lin B. L., Sun J. et al. Modelling hydrodynamic processes in tidal stream energy extraction [J]. Journal of Hydrodynamics, 2016, 28(6): 1-11.

    [19] Wang S. Q., Sun K., Zhang J. H. et al. The effects of roll motion of the floating platform on hydrodynamics performance of horizontal-axis tidal current turbine [J]. Journal of Marine Science and Technology, 2015, 74(C): 1058-1064.

    [20] Zhang L., Wang S. Q., Sheng Q. H. et al. The effects of surge motion of the floating platform on hydrodynamics performance of horizontal-axis tidal current turbine[J]. Journal of Marine Science and Technology, 2015,74(C): 796-802.

    亚洲片人在线观看| 午夜福利视频1000在线观看| 伊人久久大香线蕉亚洲五| 日韩欧美在线乱码| 久久久国产成人精品二区| 国产高清有码在线观看视频| 香蕉av资源在线| av在线蜜桃| 国产伦一二天堂av在线观看| 亚洲第一电影网av| 成年人黄色毛片网站| 久久久水蜜桃国产精品网| 亚洲电影在线观看av| 国产又黄又爽又无遮挡在线| 青草久久国产| 国产一区二区三区在线臀色熟女| 91av网一区二区| 夜夜看夜夜爽夜夜摸| 一级毛片高清免费大全| 欧美成人免费av一区二区三区| 色精品久久人妻99蜜桃| 欧美黄色片欧美黄色片| 人妻夜夜爽99麻豆av| 国产精品国产高清国产av| 又黄又粗又硬又大视频| 久久久久国产精品人妻aⅴ院| 欧美乱色亚洲激情| 亚洲午夜精品一区,二区,三区| 国产伦精品一区二区三区四那| 久久久精品大字幕| 夜夜夜夜夜久久久久| 99精品久久久久人妻精品| 日韩欧美三级三区| 99热只有精品国产| 人人妻人人澡欧美一区二区| 黑人巨大精品欧美一区二区mp4| 19禁男女啪啪无遮挡网站| 欧美日韩亚洲国产一区二区在线观看| 亚洲精华国产精华精| a级毛片a级免费在线| 午夜福利欧美成人| 老汉色∧v一级毛片| 国产毛片a区久久久久| 精品国产乱子伦一区二区三区| 在线看三级毛片| 欧美黑人巨大hd| 麻豆国产97在线/欧美| 亚洲精品一区av在线观看| 婷婷精品国产亚洲av| 一级毛片女人18水好多| e午夜精品久久久久久久| 又大又爽又粗| 露出奶头的视频| 婷婷六月久久综合丁香| 国产高清激情床上av| 国产不卡一卡二| 午夜a级毛片| 国产一区二区在线观看日韩 | 岛国视频午夜一区免费看| 老熟妇仑乱视频hdxx| 夜夜看夜夜爽夜夜摸| 久久久久国产精品人妻aⅴ院| 国产精品一区二区三区四区免费观看 | 亚洲av日韩精品久久久久久密| 国产不卡一卡二| 日本免费一区二区三区高清不卡| 日韩精品中文字幕看吧| 精品99又大又爽又粗少妇毛片 | 性色av乱码一区二区三区2| av欧美777| av国产免费在线观看| 少妇熟女aⅴ在线视频| 黑人欧美特级aaaaaa片| 好男人在线观看高清免费视频| 搡老妇女老女人老熟妇| 亚洲av日韩精品久久久久久密| 精品乱码久久久久久99久播| 国产男靠女视频免费网站| 熟女电影av网| 一个人看视频在线观看www免费 | 精品久久久久久成人av| 久99久视频精品免费| 色老头精品视频在线观看| 黑人欧美特级aaaaaa片| 久久精品国产99精品国产亚洲性色| 99riav亚洲国产免费| av在线天堂中文字幕| 99精品欧美一区二区三区四区| 成人三级黄色视频| 身体一侧抽搐| 色老头精品视频在线观看| 午夜精品一区二区三区免费看| 少妇的丰满在线观看| 最近在线观看免费完整版| 两个人视频免费观看高清| 久久久久久国产a免费观看| www日本黄色视频网| 免费在线观看影片大全网站| 国产伦一二天堂av在线观看| 精品久久久久久久久久免费视频| 18禁美女被吸乳视频| 97人妻精品一区二区三区麻豆| 18禁观看日本| 夜夜看夜夜爽夜夜摸| 天天一区二区日本电影三级| 99精品在免费线老司机午夜| 老司机福利观看| 国产成人aa在线观看| 男人和女人高潮做爰伦理| 俄罗斯特黄特色一大片| 1024香蕉在线观看| 久久婷婷人人爽人人干人人爱| 精品人妻1区二区| 黄色 视频免费看| 好男人电影高清在线观看| 日韩精品青青久久久久久| 两个人的视频大全免费| 国产精品98久久久久久宅男小说| 在线十欧美十亚洲十日本专区| 久久久精品大字幕| 91麻豆av在线| av片东京热男人的天堂| 国产成人av教育| 别揉我奶头~嗯~啊~动态视频| 十八禁人妻一区二区| 在线观看午夜福利视频| 亚洲精华国产精华精| 99久久无色码亚洲精品果冻| 午夜亚洲福利在线播放| 色综合站精品国产| 九色成人免费人妻av| 欧美黑人欧美精品刺激| 国产精品久久久人人做人人爽| 人人妻人人澡欧美一区二区| 国产爱豆传媒在线观看| 午夜福利高清视频| 久久久久久九九精品二区国产| 熟女电影av网| 成人av一区二区三区在线看| 亚洲人成网站在线播放欧美日韩| 精品国产亚洲在线| 亚洲熟女毛片儿| 少妇熟女aⅴ在线视频| 免费在线观看日本一区| 中文字幕精品亚洲无线码一区| 亚洲精华国产精华精| 精品一区二区三区视频在线 | 久久精品影院6| 国产三级黄色录像| 日韩欧美免费精品| 一个人观看的视频www高清免费观看 | 欧美在线黄色| 天天躁狠狠躁夜夜躁狠狠躁| av国产免费在线观看| 亚洲成人精品中文字幕电影| 一进一出好大好爽视频| 精品乱码久久久久久99久播| 哪里可以看免费的av片| 国产午夜精品久久久久久| 狠狠狠狠99中文字幕| 嫁个100分男人电影在线观看| 男插女下体视频免费在线播放| 国产成人aa在线观看| 99久久成人亚洲精品观看| 免费观看精品视频网站| 日本在线视频免费播放| 欧美国产日韩亚洲一区| 男女那种视频在线观看| 无限看片的www在线观看| 在线观看免费视频日本深夜| 老熟妇仑乱视频hdxx| 日韩 欧美 亚洲 中文字幕| 亚洲美女视频黄频| 欧美黑人欧美精品刺激| 亚洲18禁久久av| 老汉色av国产亚洲站长工具| 午夜福利免费观看在线| 琪琪午夜伦伦电影理论片6080| 亚洲无线在线观看| 亚洲无线在线观看| 精品久久久久久久毛片微露脸| 90打野战视频偷拍视频| 淫秽高清视频在线观看| 嫩草影院精品99| 免费观看人在逋| 国产高清有码在线观看视频| 亚洲av熟女| 天天躁日日操中文字幕| 久久亚洲真实| 日本 欧美在线| 色精品久久人妻99蜜桃| 麻豆av在线久日| 毛片女人毛片| 国产成人影院久久av| 亚洲五月婷婷丁香| 麻豆国产av国片精品| 久久性视频一级片| 精品欧美国产一区二区三| 麻豆成人午夜福利视频| 青草久久国产| 亚洲成av人片免费观看| 国产真实乱freesex| 免费在线观看成人毛片| 亚洲一区高清亚洲精品| 欧美丝袜亚洲另类 | 亚洲自拍偷在线| 国产精品av视频在线免费观看| 99re在线观看精品视频| 五月伊人婷婷丁香| 国内揄拍国产精品人妻在线| 99久久精品热视频| 99精品欧美一区二区三区四区| 国产午夜精品久久久久久| 亚洲av电影在线进入| 国产精品女同一区二区软件 | 亚洲国产欧洲综合997久久,| www.999成人在线观看| 久久久国产精品麻豆| 欧美性猛交╳xxx乱大交人| 在线观看美女被高潮喷水网站 | 精品欧美国产一区二区三| 热99re8久久精品国产| 亚洲精品456在线播放app | 国产亚洲欧美98| 波多野结衣巨乳人妻| 一本精品99久久精品77| 人妻丰满熟妇av一区二区三区| 美女被艹到高潮喷水动态| 精品福利观看| 色哟哟哟哟哟哟| 少妇熟女aⅴ在线视频| 不卡av一区二区三区| 欧美日韩综合久久久久久 | 久久草成人影院| 久久久久国内视频| 亚洲五月婷婷丁香| 亚洲欧美激情综合另类| 精品久久久久久成人av| 级片在线观看| 亚洲午夜理论影院| 成人高潮视频无遮挡免费网站| 成年版毛片免费区| 精品一区二区三区视频在线观看免费| 大型黄色视频在线免费观看| 在线视频色国产色| 国产欧美日韩一区二区三| 国产高清视频在线观看网站| 听说在线观看完整版免费高清| 一夜夜www| 男插女下体视频免费在线播放| 美女 人体艺术 gogo| 特大巨黑吊av在线直播| 精品久久久久久久久久久久久| 99久久精品一区二区三区| 国产免费男女视频| 18禁观看日本| 成年女人看的毛片在线观看| 搡老岳熟女国产| 亚洲av日韩精品久久久久久密| 男女视频在线观看网站免费| 久久这里只有精品19| 国产成人av激情在线播放| 免费无遮挡裸体视频| 99国产极品粉嫩在线观看| 国产精品av视频在线免费观看| 免费无遮挡裸体视频| 国产精品乱码一区二三区的特点| 亚洲国产欧美网| 精品国产超薄肉色丝袜足j| 国产男靠女视频免费网站| 丰满的人妻完整版| 国产精品精品国产色婷婷| 91久久精品国产一区二区成人 | 欧美不卡视频在线免费观看| 免费av不卡在线播放| 国产精品综合久久久久久久免费| 亚洲国产精品999在线| 九九久久精品国产亚洲av麻豆 | 日日干狠狠操夜夜爽| 给我免费播放毛片高清在线观看| 欧美黄色淫秽网站| 国产在线精品亚洲第一网站| 两性午夜刺激爽爽歪歪视频在线观看| 老汉色∧v一级毛片| 亚洲美女黄片视频| 97超视频在线观看视频| 听说在线观看完整版免费高清| 久久久久九九精品影院| 性欧美人与动物交配| 国产高清三级在线| 亚洲自偷自拍图片 自拍| 久久久久久九九精品二区国产| 日韩欧美一区二区三区在线观看| 嫩草影院精品99| 香蕉国产在线看| 亚洲国产中文字幕在线视频| 成人欧美大片| 精品不卡国产一区二区三区| 在线视频色国产色| 视频区欧美日本亚洲| 嫁个100分男人电影在线观看| 免费看日本二区| 日日夜夜操网爽| 日本成人三级电影网站| 无遮挡黄片免费观看| 亚洲精品美女久久av网站| 又大又爽又粗| www.精华液| 中文资源天堂在线| 日本黄大片高清| 国产精品av视频在线免费观看| 舔av片在线| 久久久久性生活片| 成人一区二区视频在线观看| av福利片在线观看| 村上凉子中文字幕在线| www.999成人在线观看| 日韩av在线大香蕉| 夜夜夜夜夜久久久久| 91老司机精品| 又紧又爽又黄一区二区| 免费电影在线观看免费观看| 亚洲精品久久国产高清桃花| 人妻丰满熟妇av一区二区三区| 成人国产一区最新在线观看| 午夜免费观看网址| 国产黄色小视频在线观看| bbb黄色大片| 99热这里只有是精品50| 亚洲国产日韩欧美精品在线观看 | 久久久久久久精品吃奶| 欧美极品一区二区三区四区| 老司机在亚洲福利影院| 久久久水蜜桃国产精品网| 在线免费观看不下载黄p国产 | 国产成人欧美在线观看| 国产午夜精品论理片| 日韩欧美 国产精品| 国产免费av片在线观看野外av| 麻豆国产97在线/欧美| 免费观看的影片在线观看| 久久久久精品国产欧美久久久| 搡老熟女国产l中国老女人| 精品一区二区三区视频在线观看免费| 午夜a级毛片| 亚洲aⅴ乱码一区二区在线播放| 国产日本99.免费观看| 美女被艹到高潮喷水动态| 午夜福利在线观看免费完整高清在 | 美女扒开内裤让男人捅视频| 午夜日韩欧美国产| 国产高潮美女av| 亚洲精品色激情综合| 国产黄色小视频在线观看| 国产日本99.免费观看| 天堂av国产一区二区熟女人妻| 国产亚洲精品久久久久久毛片| 一a级毛片在线观看| 叶爱在线成人免费视频播放| 熟女人妻精品中文字幕| 国产探花在线观看一区二区| 精品国产超薄肉色丝袜足j| 婷婷六月久久综合丁香| 欧美激情在线99| 久久精品国产99精品国产亚洲性色| 99国产精品99久久久久| 我的老师免费观看完整版| www.999成人在线观看| 一本久久中文字幕| 丰满人妻熟妇乱又伦精品不卡| 老司机在亚洲福利影院| 国产一区在线观看成人免费| 免费大片18禁| 久久久国产成人精品二区| 日韩中文字幕欧美一区二区| 国产一区二区三区在线臀色熟女| 操出白浆在线播放| 一级毛片精品| 亚洲中文字幕一区二区三区有码在线看 | 99热只有精品国产| 色精品久久人妻99蜜桃| 亚洲第一电影网av| 欧美日韩瑟瑟在线播放| 国产真人三级小视频在线观看| 色综合站精品国产| aaaaa片日本免费| 亚洲av成人一区二区三| 国产精品影院久久| 成在线人永久免费视频| 亚洲人成电影免费在线| 桃色一区二区三区在线观看| 国产又黄又爽又无遮挡在线| 九九在线视频观看精品| 国产精品免费一区二区三区在线| www.www免费av| 国产综合懂色| 成年女人看的毛片在线观看| 久久久久久久久久黄片| 性色avwww在线观看| 中文字幕最新亚洲高清| 熟女电影av网| 亚洲精品色激情综合| 久久午夜亚洲精品久久| 免费观看精品视频网站| 久久久久久人人人人人| 亚洲精品美女久久av网站| 国产成人aa在线观看| 国产1区2区3区精品| 波多野结衣高清无吗| 国产一区二区三区在线臀色熟女| 日本撒尿小便嘘嘘汇集6| 9191精品国产免费久久| 亚洲自拍偷在线| 免费人成视频x8x8入口观看| 99热这里只有精品一区 | 身体一侧抽搐| 亚洲中文av在线| 久久久久性生活片| 国产免费男女视频| 在线观看一区二区三区| 夜夜爽天天搞| 最新美女视频免费是黄的| 不卡一级毛片| 久久精品综合一区二区三区| 热99re8久久精品国产| 一本综合久久免费| 啦啦啦免费观看视频1| 亚洲国产精品成人综合色| 99久国产av精品| 国产乱人伦免费视频| 国产91精品成人一区二区三区| 男人和女人高潮做爰伦理| 成人一区二区视频在线观看| 国产精品久久久久久亚洲av鲁大| 男女之事视频高清在线观看| 高清在线国产一区| 国产一区二区三区视频了| 国产黄a三级三级三级人| 老司机午夜十八禁免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 午夜a级毛片| 99久久国产精品久久久| 激情在线观看视频在线高清| 老汉色av国产亚洲站长工具| 亚洲人成伊人成综合网2020| 亚洲欧美日韩东京热| 长腿黑丝高跟| 在线免费观看的www视频| 麻豆成人午夜福利视频| 中文字幕av在线有码专区| 97人妻精品一区二区三区麻豆| 91av网站免费观看| 国产淫片久久久久久久久 | 丰满人妻一区二区三区视频av | 亚洲一区高清亚洲精品| 亚洲av成人精品一区久久| 在线十欧美十亚洲十日本专区| 色哟哟哟哟哟哟| 日本 av在线| 国产一区二区三区在线臀色熟女| 亚洲精品久久国产高清桃花| 99热6这里只有精品| www.熟女人妻精品国产| 欧美乱码精品一区二区三区| 九九在线视频观看精品| 日韩欧美精品v在线| 国产高清视频在线观看网站| 日本a在线网址| 亚洲人成电影免费在线| 丰满人妻熟妇乱又伦精品不卡| 欧美日本视频| 黄色 视频免费看| 国产主播在线观看一区二区| 最近视频中文字幕2019在线8| 母亲3免费完整高清在线观看| 欧美色欧美亚洲另类二区| 成人一区二区视频在线观看| 村上凉子中文字幕在线| 亚洲精华国产精华精| 国内精品久久久久精免费| 男女午夜视频在线观看| 母亲3免费完整高清在线观看| 亚洲欧美日韩高清在线视频| 亚洲真实伦在线观看| 久久天躁狠狠躁夜夜2o2o| 国产1区2区3区精品| 国产又色又爽无遮挡免费看| 禁无遮挡网站| 一本综合久久免费| 国产精品免费一区二区三区在线| 精品一区二区三区四区五区乱码| 一个人看的www免费观看视频| 日韩三级视频一区二区三区| 久久精品国产99精品国产亚洲性色| 欧美日韩综合久久久久久 | 岛国在线观看网站| 岛国视频午夜一区免费看| 国产亚洲欧美98| 九九在线视频观看精品| 听说在线观看完整版免费高清| 丰满人妻熟妇乱又伦精品不卡| 日韩精品青青久久久久久| 高清毛片免费观看视频网站| 亚洲成av人片在线播放无| 日韩欧美一区二区三区在线观看| 狂野欧美白嫩少妇大欣赏| 一二三四在线观看免费中文在| 亚洲无线在线观看| 午夜久久久久精精品| 人人妻人人澡欧美一区二区| www.www免费av| 国产午夜精品论理片| 久久久水蜜桃国产精品网| 亚洲欧美精品综合久久99| 最好的美女福利视频网| 熟女人妻精品中文字幕| 国产亚洲av高清不卡| 免费大片18禁| 看免费av毛片| 热99在线观看视频| 亚洲成a人片在线一区二区| 日韩中文字幕欧美一区二区| 制服丝袜大香蕉在线| 一级毛片女人18水好多| 丰满的人妻完整版| 女人被狂操c到高潮| 91字幕亚洲| 久久精品91无色码中文字幕| 久久精品国产综合久久久| 99热只有精品国产| 99久久综合精品五月天人人| 一进一出抽搐gif免费好疼| 亚洲精华国产精华精| 韩国av一区二区三区四区| 国产高清视频在线观看网站| 成熟少妇高潮喷水视频| 亚洲 国产 在线| 高清毛片免费观看视频网站| 日韩国内少妇激情av| 欧美一区二区国产精品久久精品| 亚洲欧洲精品一区二区精品久久久| 2021天堂中文幕一二区在线观| 一本一本综合久久| 国产精品98久久久久久宅男小说| 欧美性猛交╳xxx乱大交人| 国产探花在线观看一区二区| 草草在线视频免费看| 久久久久性生活片| 身体一侧抽搐| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品一区二区www| 长腿黑丝高跟| 国产综合懂色| 亚洲美女视频黄频| 色视频www国产| 每晚都被弄得嗷嗷叫到高潮| 国产成人av教育| 亚洲中文日韩欧美视频| 国产成人福利小说| 国产人伦9x9x在线观看| 国产精品免费一区二区三区在线| 亚洲第一电影网av| 久久99热这里只有精品18| 午夜久久久久精精品| 国产精品一区二区三区四区久久| 精品国产乱子伦一区二区三区| 欧美黄色片欧美黄色片| 国产 一区 欧美 日韩| 日本 av在线| 亚洲欧美精品综合久久99| 色在线成人网| 97超级碰碰碰精品色视频在线观看| 欧美日韩黄片免| 99riav亚洲国产免费| 国产乱人伦免费视频| 亚洲无线在线观看| 色视频www国产| 老熟妇仑乱视频hdxx| 亚洲欧美日韩高清专用| 在线a可以看的网站| 色播亚洲综合网| 亚洲欧美日韩东京热| 偷拍熟女少妇极品色| 国产熟女xx| 久久久国产精品麻豆| 国产精品野战在线观看| 久久精品影院6| 一本精品99久久精品77| 在线永久观看黄色视频| 法律面前人人平等表现在哪些方面| 日韩成人在线观看一区二区三区| xxxwww97欧美| 久久久久亚洲av毛片大全| 美女 人体艺术 gogo| 日韩欧美国产一区二区入口| av女优亚洲男人天堂 | or卡值多少钱| 91在线观看av| 最近视频中文字幕2019在线8| 亚洲av成人一区二区三| 亚洲av电影在线进入| 9191精品国产免费久久| 亚洲av电影在线进入| 9191精品国产免费久久| av在线天堂中文字幕| 黑人操中国人逼视频| 综合色av麻豆| 亚洲av片天天在线观看| 亚洲av电影在线进入| 国产熟女xx| 一个人免费在线观看电影 | 久久香蕉国产精品| 看片在线看免费视频| 亚洲国产欧美人成| 看黄色毛片网站|