韓渭麗,曹 瑩,錢美睿,聶勇戰(zhàn)
胃微生態(tài)與胃癌的研究進(jìn)展
韓渭麗,曹 瑩,錢美睿,聶勇戰(zhàn)
胃微生態(tài)平衡是人體健康的重要前提,幽門螺桿菌(Helicobacter pylori, Hp)是目前已發(fā)現(xiàn)的與胃癌相關(guān)的關(guān)鍵病原體之一,普遍存在于人胃黏膜上皮。Hp感染可引起胃內(nèi)其他菌群的改變,還可引起長(zhǎng)期慢性的胃黏膜損傷,導(dǎo)致一系列胃黏膜上皮惡性進(jìn)展和胃癌的發(fā)生。本文就胃微生態(tài)與Hp感染的關(guān)系、Hp感染在胃癌發(fā)生中的作用、胃內(nèi)其他菌群在胃癌發(fā)生中的作用及微生態(tài)制劑在胃癌治療的作用進(jìn)行綜述。進(jìn)一步揭示Hp感染對(duì)胃微生態(tài)平衡的影響,胃微生態(tài)平衡和Hp感染在胃癌發(fā)生發(fā)展中的作用及微生態(tài)制劑在胃癌治療中的意義。
胃微生態(tài);幽門螺桿菌;胃癌;毒力因子;微生態(tài)制劑
人體微生物與多種疾病存在密切關(guān)系,其在與宿主共進(jìn)化過(guò)程中形成共生關(guān)系,具有調(diào)節(jié)宿主消化吸收、代謝、免疫的重要作用[1]。人胃腸道菌群結(jié)構(gòu)復(fù)雜,胃內(nèi)菌群平衡是人類胃腸道健康的基礎(chǔ)和前提,幽門螺桿菌(Helicobacter pylori, Hp)是目前發(fā)現(xiàn)的胃微生態(tài)菌群中與胃癌發(fā)生密切相關(guān)的病原體,Hp毒力因子一直被認(rèn)為是胃癌發(fā)生的重要因素之一[2]。胃癌的發(fā)生是一個(gè)多因素、多階段進(jìn)行性發(fā)展的過(guò)程,其發(fā)生受多種因素的影響,如老年、男性、消化道腫瘤家族史陽(yáng)性、吸煙、不良飲食、Hp感染等,其中,Hp感染者胃癌的發(fā)病風(fēng)險(xiǎn)將增加75%以上[3]。世界人群50%存在不同程度的Hp感染,我國(guó)人群具有Hp高感染率和胃癌高發(fā)的特點(diǎn)[4]。目前,胃微生態(tài)和Hp感染在胃癌發(fā)生發(fā)展過(guò)程中的作用尚不十分明確。近年來(lái),越來(lái)越多的研究發(fā)現(xiàn)Hp感染可誘導(dǎo)胃腸菌群失衡。本文主要總結(jié)胃微生態(tài)與Hp感染的關(guān)系,Hp感染在胃癌發(fā)生中的作用,胃內(nèi)其他菌群在胃癌發(fā)生中的作用及胃微生態(tài)制劑在胃癌治療的作用。
Hp可定植于人類胃黏膜,引發(fā)胃腸道菌群失衡,形成慢性活動(dòng)性胃炎,并可進(jìn)一步發(fā)展成為消化性潰瘍或胃上皮黏膜惡性病變,影響胃黏膜上皮細(xì)胞免疫功能[5-6]。有研究對(duì)86例成人和兒童進(jìn)行16S rRNA基因測(cè)序發(fā)現(xiàn),無(wú)Hp感染的兒童和成人胃內(nèi)菌群組成相似,僅在低豐度類菌群存在細(xì)微差異;而Hp感染的兒童胃內(nèi)高豐度菌群比例與非感染的同齡人相比,差異顯著;并且相對(duì)于Hp感染的成人,Hp感染兒童有較高水平的IL-10和TGF-β表達(dá);上述表明感染Hp后胃內(nèi)菌群結(jié)構(gòu)發(fā)生明顯改變,且對(duì)兒童機(jī)體免疫具有一定影響[7]。Hp感染還可能影響胃內(nèi)菌群活性,成人上消化道(胃、十二指腸和口腔)菌群活性檢測(cè)發(fā)現(xiàn), Hp陽(yáng)性患者胃黏膜和胃液活性菌群中Hp占主導(dǎo)地位,而其他菌群活性明顯不同,因此Hp感染可對(duì)宿主胃活性菌群造成一定影響[8]。此外,對(duì)Hp陽(yáng)性患者胃內(nèi)菌群分析表明,Hp感染增加了變形桿菌、螺旋菌和酸桿菌,同時(shí)減少了放線菌、擬桿菌和厚壁菌,明顯改變胃內(nèi)細(xì)菌豐度[9]。再者,對(duì)雙胞胎胃內(nèi)菌群分析發(fā)現(xiàn),Hp陰性雙胞胎胃內(nèi)菌群結(jié)構(gòu)及組成無(wú)明顯差異;然而,同一對(duì)雙胞胎Hp陽(yáng)性者胃內(nèi)菌群結(jié)構(gòu)相較于Hp陰性者發(fā)生巨大改變,可見(jiàn)Hp感染對(duì)胃內(nèi)菌群的影響大于遺傳效應(yīng)[10]。
對(duì)Hp陽(yáng)性雌性小鼠模型研究發(fā)現(xiàn),Hp定植雌性小鼠胃內(nèi),使硬壁菌門、擬桿菌、變形菌等豐度明顯降低,厚壁菌門等豐度增加[11]。有研究發(fā)現(xiàn),通過(guò)16S rDNA檢測(cè)發(fā)現(xiàn)蒙古沙鼠胃黏膜感染Hp后,可檢測(cè)到Hp和乳酸桿菌的混合菌,且乳酸桿菌處主導(dǎo)地位。表明乳酸桿菌可以抑制胃內(nèi)Hp[12]。
胃內(nèi)微生物與Hp能夠相互作用,Hp感染可影響胃內(nèi)其他菌群結(jié)構(gòu)、豐度和活菌活性,能特定上調(diào)或下調(diào)某些菌群,其對(duì)胃內(nèi)菌群結(jié)構(gòu)的影響大于遺傳作用;其次,胃內(nèi)其他菌群如乳酸桿菌等益生菌可以抑制胃內(nèi)Hp活性。
2.1 Hp毒力因子在胃癌中的作用 Hp感染引起的胃疾病與Hp毒力因子、宿主胃黏膜狀況和胃內(nèi)微環(huán)境密切相關(guān)。其中Hp毒力因子是始動(dòng)因素,主要包括Cag致病島(cag pathogenicity island, Cag PAI)、空泡毒素(vacuolating cytotoxin gene A, VacA)和黏附素Baba[13]。有研究發(fā)現(xiàn),160例Hp陽(yáng)性患者中CagA、VacA和Baba陽(yáng)性率分別為69%、100%和78%[14]。
2.1.1 Cag PAI Cag PAI是Hp的主要毒力因子之一,編碼Ⅳ型分泌系統(tǒng)[15]。CagA能夠通過(guò)多種分子機(jī)制影響至關(guān)重要的蛋白表達(dá)或功能,CagA可介導(dǎo)Wnt/β-catenin信號(hào)通路上調(diào),Wnt /β-catenin信號(hào)通路是調(diào)節(jié)胚胎發(fā)育和成年組織穩(wěn)態(tài)的關(guān)鍵途徑,在胃腸道腫瘤中起著關(guān)鍵作用[16-17];此外,CagA能夠激活PI3K/Akt及下游信號(hào)通路,誘導(dǎo)P53失活等導(dǎo)致腫瘤的發(fā)生[16]。CagA作為主要的毒力因子能夠使β-連環(huán)蛋白及其靶向胃腺癌起始細(xì)胞標(biāo)記的微小RNA(microRNA , miRNA)-320a和miR-4496表達(dá)下調(diào),從而抑制體外細(xì)胞自我更新能力[18]。CagA與胃癌、消化性潰瘍之間存在顯著相關(guān),胃癌組患者Hp感染率為72.8%,Hp陽(yáng)性患者中CagA表達(dá)和抗CagA-IgG陽(yáng)性率分別為63.4%和61.8%;與非潰瘍性消化不良患者相比,二者在胃癌和消化性潰瘍患者中顯著增高[19]。此外,CagA表達(dá)陽(yáng)性患者臨床結(jié)局較差,CagA陽(yáng)性的Hp感染患者胃癌風(fēng)險(xiǎn)高于Hp陰性患者[16]。
2.1.2 VacA VacA因具有使上皮細(xì)胞空泡化的功能而得名,VacA在Hp定植和生存中具有重要的作用[20]。VacA毒性還具有促進(jìn)感染、調(diào)節(jié)淋巴細(xì)胞、改變膜通透性以及改變自噬細(xì)胞功能導(dǎo)致Hp在哺乳動(dòng)物上皮細(xì)胞內(nèi)存活等功能[21-22]。研究顯示,不同VacA亞型,包括VacA m1、i1、d1、c1,與CagA的基因型顯著相關(guān),均可增加胃癌發(fā)生的風(fēng)險(xiǎn),其OR值依次為4.29、6.11、3.18、15.53和2.59;多因素回歸分析顯示,調(diào)整性別和年齡,VacA c1型的胃癌發(fā)生風(fēng)險(xiǎn)可高達(dá)38.320倍;因此VacA c1有望成為預(yù)測(cè)55歲男性患者胃癌發(fā)生的重要指標(biāo)[23]。此外,在89例Hp感染者中,VacA i1型占51.68%(46/89),在胃癌、消化性潰瘍和慢性胃炎患者中分別占87.50%(21/24)、39.58%(19/48)和35.29%(6/17);與慢性胃炎患者相比,胃癌患者VacA i1型高達(dá)13.142倍,表明VacA i1與該地區(qū)胃癌發(fā)病風(fēng)險(xiǎn)顯著相關(guān),具有一定的指導(dǎo)意義[24]。
2.1.3 抗原結(jié)合黏附素Baba Baba是抗原結(jié)合黏附素,能夠促使細(xì)菌黏附到胃黏膜表面,增強(qiáng)菌株毒力,從而成為識(shí)別消化性潰瘍和胃癌的危險(xiǎn)性的標(biāo)志之一。Hp感染可使DL1等某些氨基酸替換,進(jìn)而共同表達(dá)功能較多的Baba異構(gòu)體[25]。研究發(fā)現(xiàn),依賴于Baba黏附到胃黏膜上皮上的Hp能抑制細(xì)胞分化并受到ArsS調(diào)控[26],Baba等抗原結(jié)合黏附素能夠使Hp在胃黏膜表層形成穩(wěn)定的定植[27]。此外,Baba可能有除黏附蛋白外的其他功能,Baba的降低可能與適應(yīng)性免疫或Toll樣受體信號(hào)通路有關(guān)[28]。Baba2等基因表達(dá)在胃癌患者中明顯高于胃潰瘍性疾病和十二指腸疾病患者,Baba結(jié)合OipA、SabA等在精確有效地診斷Hp感染中具有重要意義[29-30]。
2.2 根除Hp在胃癌治療中的作用 Hp是胃癌發(fā)生的關(guān)鍵致病菌,嚴(yán)重的萎縮、腸上皮化生、胃癌與Hp感染有關(guān),根除Hp可能在預(yù)防胃癌發(fā)生和惡性進(jìn)展中具有重要作用[31]。接受Hp根除治療的胃癌患者病死率遠(yuǎn)低于安慰劑治療患者(1.50% vs. 2.10%),死亡風(fēng)險(xiǎn)較低[32]。此外,根除Hp可降低老年患者病死率,并且能夠降低胃腸上皮化生或異型增生患者胃癌發(fā)生率[33]。有研究對(duì)1000余例消化性潰瘍患者根除Hp后平均隨訪約10年,發(fā)現(xiàn)Hp根除成功組患者患癌率顯著低于根除失敗組(0.21% vs. 0.45%),Hp根除成功組患者患癌的最長(zhǎng)間隔是14.5年,而失敗組為13.7年,表明Hp根除對(duì)胃癌的預(yù)防作用優(yōu)于未根除[34]。在我國(guó)胃癌高發(fā)區(qū)進(jìn)行1600余例Hp感染者隨訪研究,發(fā)現(xiàn)根除Hp可降低無(wú)萎縮等胃癌前病變患者胃癌發(fā)生率,療效顯著,高于未根除組(P=0.02),充分表明根除Hp在胃癌預(yù)防中的重要作用[35]。
由此可見(jiàn),Hp感染是胃癌發(fā)生的重要細(xì)菌因素,根除Hp能夠有效的在病因上預(yù)防胃癌發(fā)生,降低胃癌患者死亡風(fēng)險(xiǎn)。
與健康人群相比,消化系統(tǒng)疾病患者胃內(nèi)微生物結(jié)構(gòu)差異顯著。微生物DNA微陣列分析顯示,從非萎縮性胃炎到腸型胃癌,細(xì)菌多樣性呈穩(wěn)步下降[36]。此外,我國(guó)一項(xiàng)720例志愿者橫斷面研究結(jié)果同樣表明,胃微生物多樣性的減少與胃癌的發(fā)生相關(guān),胃微生物豐度與胃蛋白酶原Ⅱ呈線性相關(guān),降低胃微生物豐度,胃蛋白酶原Ⅰ/Ⅱ也降低,是慢性胃炎及胃癌易感性的標(biāo)志之一[37]。與健康人群胃微生物群落對(duì)比發(fā)現(xiàn),Hp陽(yáng)性的胃癌患者梭狀芽胞桿菌和普雷沃菌屬較多,而丙酸桿菌、棒狀桿菌和葡萄球菌明顯減少[38]。雖然胃癌的發(fā)生與胃內(nèi)某些特定菌群有關(guān),包括乳酸桿菌、肺炎克雷伯菌等增加和普林單胞菌屬、奈瑟菌屬等的減少,但仍須進(jìn)一步研究其在胃癌發(fā)生中的作用機(jī)制。
胃內(nèi)微生態(tài)平衡是維持身體健康,預(yù)防胃癌的關(guān)鍵。胃內(nèi)微生物多樣性受食物多樣性和藥物等影響。Hp感染是與胃癌相關(guān)的最具代表性的細(xì)菌病原因素,因此胃癌的細(xì)菌學(xué)治療主要為根除Hp。Hp根除治療的關(guān)鍵是防止抗藥性和二次耐藥。然而,標(biāo)準(zhǔn)的三聯(lián)療法即質(zhì)子泵抑制劑、阿莫西林和克拉霉素聯(lián)用,對(duì)Hp感染的根除率在世界范圍內(nèi)呈下降趨勢(shì)[39-40]。
近年來(lái),各種微生態(tài)制劑,包括益生菌、益生元、合生元在生活中得到廣泛應(yīng)用,具有保護(hù)胃黏膜、增強(qiáng)免疫反應(yīng)等作用。益生菌被定義為活的微生物,是由生理活菌或死菌組成,主要包括乳酸桿菌、雙歧桿菌、腸球菌等,能夠增強(qiáng)免疫反應(yīng)、抑制細(xì)菌生長(zhǎng)、調(diào)節(jié)免疫系統(tǒng)和改善腸道屏障功能[41]。益生元主要指能促進(jìn)體內(nèi)益生菌生長(zhǎng),而不被體內(nèi)消耗的成分。益生元中龍膽低聚糖能夠促進(jìn)雙歧桿菌生長(zhǎng)并且對(duì)消化道腫瘤細(xì)胞具有明顯的抑制作用,益生元蘑菇多糖能夠通過(guò)刺激腸道有益菌生長(zhǎng),達(dá)到有效的保健作用[42-43]。合生元?jiǎng)t是益生菌和益生元二者的混合成分。
一些益生菌菌株能夠降低Hp活性,合并使用后能夠提高Hp根除率;另一些則可以減少抗生素治療不良反應(yīng)的發(fā)生[44-45]。此外,在Hp陽(yáng)性兒童中,使用特定的益生菌菌株同樣能夠減少Hp耐藥,提高根除成功率,但須要進(jìn)一步驗(yàn)證是否補(bǔ)充益生菌制劑有助于兒童Hp的根除[46]。在對(duì)克拉霉素耐藥低的國(guó)家,根除Hp時(shí)添加鉍和益生菌能夠提高根除率至100%,同時(shí),添加益生菌有助于減少Hp根除過(guò)程中不良反應(yīng)的發(fā)生[47]。對(duì)650例Hp陽(yáng)性受試者采用益生菌輔助三聯(lián)療法根除Hp的治療結(jié)果分析顯示,患者腹痛、腹脹等不良癥狀大部分優(yōu)于安慰劑組,治療效果明顯提高,且減少不良癥狀和反應(yīng)[48]。因此,益生菌在Hp根除中具有重要的作用,有助于提高胃癌療效。
胃內(nèi)微生態(tài)平衡是人體健康的前提和預(yù)防胃癌發(fā)生的關(guān)鍵,Hp是胃癌發(fā)生的關(guān)鍵病原體之一。Hp感染可對(duì)胃內(nèi)菌群產(chǎn)生影響,影響機(jī)體免疫調(diào)節(jié),改變胃內(nèi)菌群活性和結(jié)構(gòu)。根除Hp能夠降低胃癌發(fā)生率,降低胃癌前病變發(fā)展為胃癌的風(fēng)險(xiǎn)和胃癌患者死亡風(fēng)險(xiǎn)。微生態(tài)制劑能夠調(diào)節(jié)機(jī)體免疫功能,抑制Hp耐藥,有效提高Hp根除率,在胃癌的預(yù)防和治療中具有重要作用。
綜上所述,維持胃內(nèi)微生態(tài)平衡,根除Hp,合理使用益生菌等微生態(tài)制劑在胃癌的防治中具有重要的作用。然而,合理的Hp根除方式須要進(jìn)一步探討并進(jìn)行大量的臨床驗(yàn)證,以避免在根除Hp過(guò)程中可能對(duì)人體造成的損傷。
[1] 蔣建文,李蘭娟. 人體微生態(tài)與疾病的研究現(xiàn)狀和展望[J].傳染病信息,2016,29(5):257-263.
[2] Wang LL, Yu XJ, Zhan SH, et al. Participation of microbiota in the development of gastric cancer[J]. World J Gastroenterol, 2014, 20(17):4948-4952.
[3] Peek RM, Kuipers EJ. Gained in translation: the importance of biologically relevant models of Helicobacter pylori-induced gastric cancer[J]. Gut, 2012, 61(1):2-3.
[4] Xie C, Lu NH. Review: clinical management of Helicobacter pylori infection in China[J]. Helicobacter, 2015, 20(1):1-10.
[5] Sibony M, Jones NL. Recent advances in Helicobacter pylori pathogenesis[J]. Curr Opin Gastroen, 2012, 28(1):30-35.
[6] Conteduca V, Sansonno D, Lauletta G, et al. H. pylori infection and gastric cancer: state of the art (review)[J]. Int J Oncol, 2013, 42(1):5-18.
[7] Brawner KM, Kumar R, Serrano CA, et al. Helicobacter pylori infection is associated with an altered gastric microbiota in children[J]. Mucosal Immunol, 2017.
[8] Schulz C, Schütte K, Koch N, et al. The active bacterial assemblages of the upper GI tract in individuals with and without Helicobacter infection[J]. Gut, 2016:1-10.
[9] Maldonadocontreras A, Goldfarb KC, Godoyvitorino F, et al. Structure of the human gastric bacterial community in relation to Helicobacter pylori status [J]. ISME J, 2011, 5(4):574-579.
[10] Dong Q, Xin Y, Wang L, et al. Characterization of gastric microbiota in twins[J]. Curr Microbiol, 2017, 74(2):224-229.
[11] Rolig AS, Cech C, Ahler E, et al. The degree of Helicobacter pylori-triggered inflammation is manipulated by preinfection hostmicrobiota[J]. Infection & Immunity, 2013, 81(5):1382-1389
[12] Zaman C, Osaki T, Hanawa T, et al. Analysis of the microflora in the stomach of Mongolian gerbils infected with Helicobacter pylori[J]. J Gastroen Hepatol, 2010, 25(Suppl 1):S11-S14
[13] Sun YQ, Monstein HJ, Nilsson LE, et al. Profiling and identification of eubacteria in the stomach of Mongolian gerbils with and without Helicobacter pylori infection[J]. Helicobacter, 2003, 8(2):149-157.
[14] Bernard MD, Josenhans C. Pathogenesis of Helicobacter pylori infection[J]. Helicobacter, 2014, 1(s1):11-18.
[15] Dabiri H, Jafari F, Baghai K, et al. Helicobacter pylori vacA, cagA, cagE, oipA, iceA, babA2 and babB genotypes in Iranian patients with diverse clinical outcomes[J]. Microb Pathogenesis, 2017, 105:226-230.
[16] Censini S, Lange C, Xiang Z, et al. Cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and diseaseassociated virulence factors[J]. Proc Natl Acad Sci U S A, 1996, 93(25):14648-14653.
[17] Yong X, Tang B, Li BS, et al. Helicobacter pylori virulence factor CagA promotes tumorigenesis of gastric cancer via multiple signaling pathways[J]. Cell Commun Signal, 2015, 13(1):30-42.
[18] White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers[J]. Gastroenterology, 2012, 142(2):219-232.
[19] Kang DW, Yang ES, Noh YN, et al. MicroRNA-320a and -4496 attenuate Helicobacter pylori CagA-induced cancer-initiating potential and chemo-resistance by targeting β-catenin and ABCG2[J]. J Pathol, 2017, 241(5):614-625.
[20] Saber T, Ghonaim MM, Yousef AR, et al. Association of Helicobacter pylori CagA Gene with gastric cancer and peptic ulcer in Saudi patients[J]. J Microbiol Biotechn, 2015, 25(7):1146-1153.
[21] Atherton JC, Cao P, Peek RM, et al. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori association of specific vacA types with cytotoxin production and peptic ulceration[J]. J Biol Chem, 1995, 270(30):17771-17777.
[22] Memon AA, Hussein NR, Miendje Deyi VY, et al. Vacuolating cytotoxin genotypes are strong markers of gastric cancer and duodenal ulcer-associated Helicobacter pylori strains: a matched case-control study[J]. J Clin Microbiol, 2014, 52(8):2984-2989.
[23] Buck PA, Schomberg DW. [125I]iodo-epidermal growth factor binding and mitotic responsiveness of porcine granulosa cells are modulated by differentiation and follicle-stimulating hormone[J]. Endocrinology, 1988, 122(1):28-33.
[24] Bakhti SZ, Latifi-Navid S, Mohammadi S, et al. Relevance of Helicobacter pylori vacA 3′-end region polymorphism to gastric cancer[J]. Helicobacter, 2015, 21(4):305-316.
[25] Mottaghi B, Safaralizadeh R, Bonyadi M, et al. Helicobacter pylori vacA i region polymorphism but not babA2 status associated to gastric cancer risk in northwestern Iran[J]. Clin Exp Med, 2016, 16(1):57-63.
[26] Moonens K, Gideonsson P, Subedi S, et al. Structural insight into polymorphic ABO glycan binding by Helicobacter pylori[J]. Cell Host & Microbe, 2016, 19(1):55-66.
[27] Skoog EC, Padra M, ?berg A, et al. BabA dependent binding of Helicobacter pylori to human gastric mucins cause aggregation that inhibits proliferation and is regulated via ArsS[J]. Sci Rep, 2017, 7:40656-40669.
[28] Hatakeyama M. A sour relationship between BabA and Lewis b[J]. Cell Host Microbe, 2017, 21(3):318-320.
[29] Kable ME, Hansen LM, Styer CM, et al. Host determinants of expression of the Helicobacter pylori BabA adhesin[J]. Sci Rep, 2017, 7:46499-46510.
[30] Su YL, Huang HL, Huang BS, et al. Combination of OipA, BabA, and SabA as candidate biomarkers for predicting Helicobacter pylori-related gastric cancer[J]. Sci Rep, 2016, 6:36442-36453.
[31] Talebi BAA, Taghvaei T, Mohabbati MA, et al. High correlation of babA 2-positive strains of Helicobacter pylori with the presence of gastric cancer[J]. Intern Emerg Med, 2013, 8(6):497-501.
[32] Uemura N, Okamoto S, Yamamoto S, et al. Helicobacter pylori infection and the development of gastric cancer[J]. N Engl J Med, 2001, 345(11):784-789.
[33] Ma JL, Zhang L, Brown LM, et al. Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality[J]. J Natl Cancer Inst, 2012,104(6):488-492.
[34] Graham DY, Asaka M. RE: effects of Helicobacter pylori treatment on gastric cancer incidence and mortality in subgroups[J]. J Natl Cancer I, 2014,106(7):766-776.
[35] Take S, Mizuno M, Ishiki K, et al. Seventeen-year effects of eradicating Helicobacter pylori on the prevention of gastric cancer in patients with peptic ulcer; a prospective cohort study[J]. J Gastroenterol, 2015, 50(6):638-644.
[36] Wong BC, Lam SK, Wong WM, et al. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial[J]. JAMA, 2004, 291(2):187-194.
[37] Avilesjimenez F, Vazquezjimenez F, Medranoguzman R, et al. Stomach microbiota composition varies between patients with nonatrophic gastritis and patients with intestinal type of gastric cancer[J]. Sci Rep, 2014, 4:4202-4212.
[38] Yu G, Gail MH, Shi J, et al. Association between upper digestive tract microbiota and cancer predisposing states in the esophagus and stomach[J]. Cancer Epidem Biomar, 2014, 23(5):735-741.
[39] Seo I, Jha BK, Suh SI, et al. Microbial profile of the stomach: comparison between normal mucosa and cancer tissue in the same patient[J]. J Bacteriol & Virol, 2014, 44(2):162-169.
[40] Kawai T, Akira S. TLR signaling[J]. Cell Death Differ, 2006, 13(5):816-825.
[41] Federico A, Gravina AG, Miranda A, et al. Eradication of Helicobacter pylori infection: which regimen first?[J]. World J Gastroenterol, 2014, 20(3):665-672.
[42] Andrews JM, Tan M. Probiotics in luminal gastroenterology: the current state of play[J]. Intern Med J, 2012, 42(12):1287-1291.
[43] Kothari D, Goyal A. Gentio-oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase as prebiotics and as a supplement for functional foods with anti-cancer properties[J]. Food Funct, 2014, 6(2):604-611.
[44] Nowak R, Nowackajechalke N, Juda M, et al. The preliminary study of prebiotic potential of Polish wild mushroom polysaccharides: the stimulation effect on Lactobacillus strains growth[J]. Eur J Nutr, 2017.
[45] Homan M, Orel R. Are probiotics useful in Helicobacter pylori eradication [J]. World J Gastroentero, 2015, 21(37):10644-10653.
[46] Zhang MM, Qian W, Qin YY, et al. Probiotics in Helicobacter pylori eradication therapy: a systematic review and meta-analysis[J]. World J Gastroenterol, 2015, 21(14):4345-4357.
[47] Lucia P, John FO, Enea B, et al. Probiotics for the treatment of Helicobacter pylori infection in children[J]. World J Gastroentero, 2014, 20(3):673-683.
[48] Shekhar S, Kelly C, Watson M. Improved eradication rate of standard triple therapy by adding bismuth and probiotic supplement for Helicobacter pylori treatment in thailand[J]. Asian Pac J Cancer Prev, 2014,15(22):9909-9913.
(2017-05-19收稿 2017-06-18修回)
(本文編輯 閆晶晶)
Research progress of gastric microecology and gastric cancer
HAN Wei-li, CAO Ying, QIAN Mei-rui, NIE Yong-zhan*
State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi′an 710043, China *Corresponding author, E-mail: nieyongzhan@gmail.com
Gastric microecology is the critical premise of human health. Helicobacter pylori (Hp) is one of the pivotal pathogens related to gastric cancer, and Hp is commonly present in human gastric epithelial cells. Hp infection can give rise to changes of other bacterial flora in the stomach and long-term chronic gastric mucosal injuries, thus lead to a series of malignant progression of gastric mucosa, and even gastric cancer. In this review, we summarize the relationship of gastric microecology and Hp infection, the role of Hp infection and other gastric flora in gastric carcinogenesis, and the effect of microecologics in gastric cancer treatment. This review aims to further reveal the influence of Hp infection in gastric microecology, the role of gastric microecology and Hp infection in gastric carcinogenesis, and the significance of microecologics in the treatment of gastric cancer.
gastric microecology; Helicobacter pylori; gastric cancer; virulence factor; microecologics
R735.2;R37
A
1007-8134(2017)03-0144-04
10.3969/j.issn.1007-8134.2017.03.005
重大慢性非傳染性疾病防控研究(2016YFC1303204);國(guó)家科技部支撐項(xiàng)目(2015BAI13B00)
710043 西安,第四軍醫(yī)大學(xué)西京消化病醫(yī)院腫瘤生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室(韓渭麗、曹瑩、錢美睿),消化內(nèi)科(聶勇戰(zhàn))
聶勇戰(zhàn),E-mail: nieyongzhan@gmail.com