• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      LIPSCHITZ TYPE SMOOTHNESS OF MULTILINEAR FRACTIONAL INTEGRAL ON VARIABLE EXPONENTS SPACES

      2017-04-12 14:31:39SUNAiwenWANGMinSHULisheng
      數(shù)學雜志 2017年2期
      關(guān)鍵詞:積分算子安徽師范大學計算機科學

      SUN Ai-wen,WANG Min,SHU Li-sheng

      (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

      LIPSCHITZ TYPE SMOOTHNESS OF MULTILINEAR FRACTIONAL INTEGRAL ON VARIABLE EXPONENTS SPACES

      SUN Ai-wen,WANG Min,SHU Li-sheng

      (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

      In this paper,we study the boundedness of multilinear fractionalintegraloperators on variable exponent spaces.It is obtained that these operators are both bounded from strong and weak Lebesgue spaces with variable exponent spaces into Lipschitz type spaces with variable exponent,which gives some new results for previous published papers.A simple way is obtained that is colsely linked with a class of fractional integral operator.

      Lipschitz spaces;multilinear fractional integral;variable exponent

      1 Introduction

      Let(Rn)m=Rn× Rn× ···× Rnbe the m-fold product space of Rn,the multilinear fractionalintegrals on Rnare defined by

      When The famous Hardy-Littlewood-Sobolev theorem tells us that the fractional integral operator Iβis a bounded operator from the usual Lebesgue spaces Lp1(Rn)to Lp2(Rn)when 1 < p1< p2< ∞ andp1

      1?Kenig and Stein[1]as wellas Grafakos and Kalton[2]considered the boundedness of a family of related multilinear fractional integrals.Lan[3]presented the boundedness of multilinear fractional integral operators on weak type Hardy spaces.Recently,Yasuo[4] considered the boundedness of multilinear fractionalintegraloperators on Herz spaces.

      It is well known that function spaces with variable exponents were intensively studied during the past 20 years,due to their applications to PDE with non-standard growth conditions and so on,we mention e.g.[5,6].A great dealofwork was done to extend the theory offractionalintegralon the classical Lebesgue spaces to the variable exponent case(see[7–9]). However,these articles do not consider the behavior of Iβwhen.Recently,Ramseyer,Salinas and Viviani[10]studied that Lipschitz type smoothness of fractional integral on variable exponent spaces,when.Hence,whenit will be an interesting problem whether we can establish the boundedness of multilinear fractional integral from Lebesgue spaces Lp(·)into Lipschitz-type spaces with variable exponents.The main purpose of this paper is to answer the above problem.

      To meet the requirements in the next sections,here,the basic elements ofthe theory of the Lebsegue spaces with variable exponent are briefly presented.

      Lp(·)(?)is a Banach space with the norm defined by

      We say a function p(·):Rn?→ R is locally log-H¨older continuous,if there exists a constant C such that

      For brevity,C always means a positive constant independent of the main parameters and may change from one occurrence to another.be the characteristic function of the setdenotes the Lebesgue measure of S.f ~ g means C?1g ≤ f ≤ C g.

      Defi nition 1.1[10]Given an exponent function p(·)we say that a measurable function f belongs to Lp(·),∞if there exists a constant C such that for every t > 0.

      It is not diffi cult to see that

      is a quasi-norm in Lp(·),∞.

      Defi nition 1.2[10]Given 0 < β < n and an exponent function p(·)with 1 < p?≤p+< ∞ we say that a locally integrable function f belongs to Lipβ,p(·)if there exists a constant C such that

      RemarkIt is easy to see that in definition the average can be replaced by a constant in the following sense

      In this paper,we consider the case of bilinear fractional integral.

      Defi nition 1.3[4]

      where 0 < β < 2n.

      Now it is in this position to state our results.

      2 Lemmas

      Lemma 2.1[11]If p(·) ∈ P(Rn),then for all f ∈ Lp(·)(Rn)and all g ∈ Lp′(·)(Rn)we have

      where rp:=1+1/p?? 1/p+.

      Lemma 2.2[10]Let p(·)be an exponent function in Plog(Rn)such that 1 < p?≤ p+<∞ and p(x) ≤ p(∞)for|x|> r0with r0> 1.Then there exiZsts a positive constant C depending on r0and the constants associated Plog(Rn)such thatfor every ball B and f ∈ Lp(·),∞.

      The following lemma see Corollary 4.5.9 in[12].

      and

      Lemma 2.3Let p(·) ∈ Plog(Rn),then for every ball B ? Rn,we have

      We remark that Lemma 2.4 were showed in[13]and we willgive the proof of it.

      Lemma 2.4Let p(·) ∈ Plog(Rn)and x2∈ 2B(x1,r),then we have

      ProofWe consider two cases,by Lemma 2.3.

      Case 1|B|≥ 1.

      Case 2|B|≤ 1.

      where we denote that x′∈ B(x1,r)and x′′∈ B(x2,r).

      Indeed,since x2∈ 2B(x1,r),x′∈ B(x1,r)and x′′∈ B(x2,r)we note that|x′? x′| ≤ 4r, we make use of local-H¨older continuity of p(x)and get,

      Lemma 2.5Let pi(·) ∈ Plog(Rn)for i=1,2 and,then for every

      ball B=B(x,r) ? Rn,we have

      ProofWe will give the proof of inequality(2.2),the argument for inequality(2.1)is similar,we omit the details here.We consider two cases,by Lemma 2.3.

      Case 1|B|≤ 1.

      Case 2|B|≥ 1.

      Lemma 2.6Let p(·) ∈ Plog(Rn),then there exists a constant C > 0 such that for all balls B and allmeasurable subsets S=B(x0,r0) ? B=B(x1,r1),

      RemarkWe can easily show that inequality(2.4)implies ‖χ2B‖p′(·)≤ C‖χB‖p′(·).

      ProofWe will prove inequality(2.3),the argument for inequality(2.4)is similar,we omit the details here.We consider three cases,by Lemma 2.3.

      where we denote that xS∈ S and xB∈ B.

      Indeed,since|xB? xS|≤ 2r1,we make use of local-H¨older continuity of p′(x)and get

      Lemma 2.7Let p(·) ∈ Plog(Rn)such that 1 < p?≤ p+< ∞,B=B(x0,R)and k < n ? n/p?,then there exists a constant C > 0 such that

      ProofUsing Lemma 2.1,we obtain

      Lemma 2.6 gives

      Lemma 2.8Let p(·) ∈ Plog(Rn)such that 1 < p?≤ p+< ∞,B=B(x0,R)and k > n ? n/p+,then there exists a constant C > 0 such that

      ProofApplying Lemma 2.1,we derive the estimate

      Lemma 2.6 implies that

      Lemma 2.9Suppose pi(·)then

      ProofFor y1,y2∈ 2B,one can obtain the following inequality in[4]

      When n < β < 2n,using Lemma 2.1 and 2.5,we obtain

      When 0 < β < n,we write

      when j > ?1 we define D3=0.

      For y1∈ Aiy2∈ Aj,we have|y1? y2|≥ |y1|? |y2|> 2i?2R.Then

      Now Lemma 2.1 yields

      By Lemma 2.5,we get

      Next we estimate D2.

      Noting that|y1? y2|≤ |y1|+|y2|< C2iR for y1∈ Ai,y2∈ Aj,using Lemmas 2.1 and 2.7,we have

      By Lemmas 2.4 and 2.5,we arrive at the inequality

      Finally,we estimate D3.

      We note y1∈ Ai,y2∈ Aj,|y1? y2|≥ |y1|? |y2|> 2j?2R and derive

      Hence,we apply Lemma 2.1 and 2.5 and obtain

      When β =n,the proof is similar.Therefore we omit the details.We use the following inequality

      As long as we change the conclusion of Lemma 2.1 into the conclusion of Lemma 2.2 in the proof of Lemmas 2.7–2.9,we can obtain the corresponding conclusions in Lp(·),∞space.

      Corollary 2.1Let p(·) ∈ Plog(Rn)such that 1 < p?≤ p+< ∞,B=B(x0,R), p(x) ≤ p(∞)for|x|> r0with r0> 1 and k < n ? n/p?,then there exists a constant C > 0 such that Z

      Corollary 2.2Let p(·) ∈ Plog(Rn)such that 1 < p?≤ p+< ∞,B=B(x0,R), p(x) ≤ p(∞)for|x|> r0with r0> 1 and k > n ? n/p+,then there exists a constant C > 0 such that Z

      Corollary 2.3Let pi(·) ∈ Plog(Rn)such that 1 < p?i≤p+i< ∞ ,pi(x) ≤ pi(∞)for i=1,2 and|x|> r0with r0> 1.Suppose B=B(x0,R)andthen

      3 Proof of Theorems

      We will give the proof of the Theorem 1.1 below.In Corollary 2.1–Corollary 2.3,we obtain the corresponding results in Lp(·),∞space.The argument for Theorem 1.2 is similar, we omit the details here.

      Proof of Theorem 1.1We write

      And we need to estimate four terms ?Iβ(f1χ2B,f2χ2B),?Iβ(f1χRn2B,f2χ2B),?Iβ(f1χ2B,f2χRn2B) and ?Iβ(f1χRn2B,f2χRn2B).

      Hence,we arrive at the inequality

      Next we estimate ?Iβ(f1χRn2B,f2χ2B)and ?Iβ(f1χ2B,f2χRn2B).

      We only estimate ?Iβ(f1χRn2B,f2χ2B)and the estimate for ?Iβ(f1χ2B,f2χRn2B)is similar,we omit the details here.

      Let c= ?Iβ(f1χRn2B,f2χ2B)(x0),then for x ∈ B,we have

      Applying Lemma 2.8,2.1 and 2.5,we obtain

      Thus we get that

      Finally we estimate I?β(f1χRn2B,f2χRn2B).

      By Lemmas 2.8 and 2.5,we havewhere we can take s1and s2such that s1< n/p+1,s2< n/p+2and s1+s2= β ? 1.

      Hence,we obtain

      Consequently we prove Theorem 1.1.

      [1]Kenig C,Stein E M.Multilinear estimates and fractional integration[J].Math.Res.Lett.,1999,6: 1–15.

      [2]Grafakos L,Kalton N.Some remarks on multilinear maps and interpolation[J].Math.Ann.,2001, 319:151–180.

      [3]Lan J C.The boundedness of multilinear of fractional integral operators on weak type Hardy spaces[J].J.Math.,2006,26(3):343–348.

      [4]Yasuo K.Multilinear fractional integral operators on Herz spaces[J].Austr.J.Math.Anal.Appl., 2013,10:1–12.

      [5]Chen Y,Levine S,Rao M.Variable exponent,linear growth functionals in image restoration[J]. Siam J.Appl.Math.,2006,66(4):1383–1406.

      [6]Harjulehto P,H¨ast¨o P,L?e′uv,Nuortio M.Overview of diff erential equations with non-standard growth[J].Nonl.Anal.,2010,72(12):4551–4574.

      [7]Cruz-Uribe D,Fiorenza A,Martell J M,et al.The boundedness of classical operators on variable Lpspaces[J].Ann.Acad.Sci.Fenn.Math.,2006,31(1):239–264.

      [8]Capone C,Cruz-Uribe D,Fiorenza A.The fractional maximal operator and fractional integrals on variable Lpspaces[J].Rev.Math.Iberoamericana,2007,23(3):743–770.

      [9]Diening L.Riesz potencials and Sobolev embeddings on generalized Lebesgue and Sobolev Lp(x)and Wk,p(x)[J].Math.Nachr.,2004,268:31–43.

      [10]Ramseyer M,Salinas O,Viviani B.Lipschitz type smoothness of the fractional integral on variable exponent spaces[J].J.Math.Anal.Appl.,2013,403(1):95–106.

      [11]Kov′aˇcik O,R′akosn′?k J.On spaces Lp(x)and Wk,p(x)[J].Czechoslovak Math.,1991,41:592–618.

      [12]Diening L,Harjulehto P,H¨ast¨o P,Ruˇziˇcka M.Lebesgue and Sobolev spaces with variable exponents[M].Berlin:Springer,2011.

      [13]Ho K P.John-Nirenberg inequalities on Lebesgue spaces with variable exponents[J].Taiwanese J. Math.,2014,18(4):1107–1118.

      變指數(shù)空間上多線性分數(shù)次積分的 Lipschitz 光滑性

      孫愛文,王 敏,束立生
      (安徽師范大學數(shù)學計算機科學學院,安徽蕪湖 241003)

      本文研究了多線性分數(shù)次積分算子在變指數(shù)空間的有界性.利用多線性分數(shù)次積分轉(zhuǎn)化為相對應(yīng)的分數(shù)次積分的方法, 獲得了它從變指數(shù)強和弱Lebesgue空間到變指數(shù)Lipschitz空間的有界性, 推廣了先前的研究結(jié)果.

      Lipschitz空間; 多線性分數(shù)次積分; 變指數(shù)

      :42B20;46E30

      O174.2

      tion:42B20;46E30

      A < class="emphasis_bold">Article ID:0255-7797(2017)02-0315-10

      0255-7797(2017)02-0315-10

      ?Received date:2015-09-09 Accepted date:2016-04-27

      Foundation item:Supported by National Natural Science Foundation of China(11201003; 11301006);and University NSR Pro ject of Anhui Province(KJ2015A117;KJ2014A087).

      Biography:Sun Aiwen(1982–),female,born at Bengbu,Anhui,associate professor,major in harmonic analysis.

      猜你喜歡
      積分算子安徽師范大學計算機科學
      齊次核誘導的p進制積分算子及其應(yīng)用
      《安徽師范大學學報》(人文社會科學版)第47卷總目次
      探討計算機科學與技術(shù)跨越式發(fā)展
      一類振蕩積分算子在Wiener共合空間上的有界性
      Hemingway’s Marriage in Cat in the Rain
      淺談計算機科學與技術(shù)的現(xiàn)代化運用
      電子制作(2017年2期)2017-05-17 03:55:01
      重慶第二師范學院計算機科學與技術(shù)專業(yè)簡介
      平均振蕩和相關(guān)于具有非光滑核的奇異積分算子的Toeplitz型算子的有界性
      《安徽師范大學學報( 自然科學版) 》2016 年總目次
      一類具有準齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用
      太和县| 荥经县| 邓州市| 手游| 大英县| 社会| 武汉市| 噶尔县| 偃师市| 西昌市| 四平市| 惠来县| 洪江市| 东乌| 茂名市| 华坪县| 乌拉特中旗| 丹凤县| 静安区| 兴化市| 宾川县| 嵊泗县| 本溪市| 屏山县| 武陟县| 蓝田县| 交口县| 宜兴市| 彰化县| 寻甸| 搜索| 福清市| 城步| 名山县| 普宁市| 万宁市| 威信县| 交口县| 南澳县| 石狮市| 祁门县|