田鋒,范術(shù)麗,魏恒玲,王寒濤,趙樹(shù)琪,3,龐朝友,胡守林,喻樹(shù)迅
(1.塔里木大學(xué)植物科學(xué)學(xué)院,新疆阿拉爾 843300;2.中國(guó)農(nóng)業(yè)科學(xué)院棉花研究所/棉花生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,河南安陽(yáng) 455000;3.黃岡市農(nóng)業(yè)科學(xué)院,湖北黃岡 438000)
短季棉生育期性狀的遺傳分析
田鋒1,2,范術(shù)麗2,魏恒玲2,王寒濤2,趙樹(shù)琪2,3,龐朝友2,胡守林1,喻樹(shù)迅2
(1.塔里木大學(xué)植物科學(xué)學(xué)院,新疆阿拉爾 843300;2.中國(guó)農(nóng)業(yè)科學(xué)院棉花研究所/棉花生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,河南安陽(yáng) 455000;3.黃岡市農(nóng)業(yè)科學(xué)院,湖北黃岡 438000)
【目的】研究短季棉生育期的遺傳規(guī)律,為棉花早熟性狀QTL定位和分子標(biāo)記輔助育種提供理論基礎(chǔ)?!痉椒ā坷盟膫€(gè)陸地棉品種構(gòu)建兩個(gè)雜交群體,采用主基因+多基因聯(lián)合世代分析,對(duì)棉花早熟性相關(guān)的播種-開(kāi)花(Flowering time,F(xiàn)T),花鈴期(Flowering and boll-setting period, FBP),全生育期(Whole growing period,WGP)這三個(gè)性狀進(jìn)行遺傳分析?!窘Y(jié)果】?jī)蓚€(gè)組合,除組合Ⅱ中F1的花鈴期和F2的播種-開(kāi)花期偏向晚熟親本外,其他表型性狀均偏向早熟親本,但總體偏早熟親本;組合Ⅰ及組合Ⅱ的相同性狀均符合同一個(gè)遺傳模型,且均受兩對(duì)主基因控制?!窘Y(jié)論】三個(gè)表型性狀是由主基因和多個(gè)微效基因共同作用,且主要由主基因控制;三個(gè)表型性狀的遺傳力高,且加性效應(yīng)大。
短季棉;生育期;主基因+多基因;遺傳分析
【研究意義】棉花一直是我國(guó)重要的經(jīng)濟(jì)作物,棉花種植業(yè)的發(fā)展關(guān)系到紡織工業(yè)的興衰,同時(shí)也涉及到我國(guó)近一億棉農(nóng)及兩千多萬(wàn)紡織工人的就業(yè)、再就業(yè)問(wèn)題[1-2]。人多地少,糧棉爭(zhēng)地的問(wèn)題一直存在,這使棉花種植面積一再縮減,導(dǎo)致國(guó)內(nèi)棉花產(chǎn)量無(wú)法滿足內(nèi)需,還需要向外大量進(jìn)口[3]。緩解糧棉爭(zhēng)地矛盾,解決我國(guó)棉花供需以及糧食需求的一個(gè)有效方法就是提高糧棉復(fù)種指數(shù),實(shí)現(xiàn)糧棉由一熟向兩熟發(fā)展[4]。因此,選育生育期較短,品種優(yōu)良的短季棉品種勢(shì)在必行[5]。棉花早熟相關(guān)性狀是復(fù)雜的數(shù)量性狀,受到多個(gè)數(shù)量性狀位點(diǎn)和環(huán)境的共同影響,了解棉花關(guān)于早熟的遺傳規(guī)律,對(duì)培育短季棉品種具有的指導(dǎo)意義?!厩叭搜芯窟M(jìn)展】前人根據(jù)數(shù)量遺傳學(xué)的方法,從整體上分析了某一性狀的多個(gè)微效基因的遺傳效應(yīng),但無(wú)法解析單一基因的遺傳效應(yīng)[6-7]。在相關(guān)棉花早熟性的遺傳分析中,范術(shù)麗[8]利用兩個(gè)組合的四個(gè)世代群體,對(duì)棉花早熟相關(guān)性狀主基因-多基因的遺傳規(guī)律進(jìn)行了分析,揭示了早熟相關(guān)性狀主基因存在的普遍性。董娜[7]根據(jù)六個(gè)世代,利用了主基因-多基因混合遺傳模型分析方法,說(shuō)明早熟相關(guān)性狀的基因表達(dá)很容易受到環(huán)境的影響。【本研究切入點(diǎn)】喻樹(shù)迅等[9]在對(duì)所推廣的早熟棉品種進(jìn)行的遺傳相關(guān)分析中提出,生育期可以作為早熟性的指示性狀。艾先濤等[10]認(rèn)為,通過(guò)品種遺傳多樣性的分析可以減少育種過(guò)程中的盲目性與重復(fù)性。利用多世代聯(lián)合遺傳分析,對(duì)棉花早熟性狀進(jìn)行分析,確定控制早熟性基因的作用方式?!緮M解決的關(guān)鍵問(wèn)題】研究采用主基因-多基因混合遺傳模型對(duì)組合Ⅰ(中棉所60×中棉所50)和組合Ⅱ(中棉所41×中棉所74)的四個(gè)世代群體P1、P2、F1、F2,對(duì)棉花生育期三個(gè)早熟相關(guān)性狀的遺傳規(guī)律進(jìn)行分析,明確棉花早熟性狀的遺傳模型及基因作用方式,估測(cè)出兩組合的主基因遺傳效應(yīng)和遺傳力,為棉花早熟性狀QTL定位及分子標(biāo)記輔助育種提供理論基礎(chǔ)[10]。
1.1 材 料
選用早熟棉品種和中熟棉品種為親本構(gòu)建兩個(gè)分離群體(組合Ⅰ:中棉所60×中棉所50;組合Ⅱ:中棉所41×中棉所74)。2014年在安陽(yáng)配置兩個(gè)雜交組合,獲得F1代種子,同年將獲得的F1代種子在海南進(jìn)行加代,自交得到F2代種子。2015年5月25日在河南安陽(yáng)種植兩個(gè)雜交組合的親本及其F1各3行,種植組合Ⅰ的F2分離群體414株,種植組合Ⅱ的F2分離群體468株。
1.2 方 法
1.2.1 性狀調(diào)查
對(duì)兩雜交組合的親本、F1及F2群體進(jìn)行單株調(diào)查。親本及F1代植株各調(diào)查30個(gè)單株,其F2分離群體單株全部調(diào)查。調(diào)查性狀包括:播種-開(kāi)花(Flowering time,F(xiàn)T)、花鈴期(Flowering and boll-setting period, FBP)、全生育期(Whole growing period,WGP)3個(gè)表型性狀。
1.2.2 遺傳模型及參數(shù)估計(jì)
采用章元明等[11]提出的利用P1、P2、F1、F2四個(gè)世代的主基因+多基因混合遺傳分析法對(duì)單株表型數(shù)據(jù)進(jìn)行分析。根據(jù)所計(jì)算出的各遺傳模型AIC值(Akaike's Information Criterion,AIC)來(lái)確定候選基因型,進(jìn)一步對(duì)候選基因模型進(jìn)行均勻性檢驗(yàn)、Smirnov檢驗(yàn)以及Kolmogorov檢驗(yàn),最終根據(jù)檢驗(yàn)結(jié)果選定最適模型,并對(duì)估算出的各項(xiàng)遺傳參數(shù)進(jìn)行分析。
2.1 表型性狀特性
研究表明,組合Ⅰ中的母本相對(duì)于父本為晚熟品種,并且兩個(gè)親本間播種-開(kāi)花時(shí)間相差11.57 d,花鈴期相差13 d,全生育期相差24.57 d;組合Ⅱ的母本為晚熟品種,父本為早熟品種,調(diào)查數(shù)據(jù)顯示,兩個(gè)親本間播種-開(kāi)花相差7.44 d,花鈴期相差8.16 d ,全生育期相差15.6 d;兩個(gè)組合親本之間的差異有統(tǒng)計(jì)學(xué)意義。從表型數(shù)據(jù)可以看出,組合Ⅰ中F1、F2表型偏向早熟親本中棉所50,由此可以肯定早熟親本的早熟性在后代群體中部分呈顯性遺傳;組合Ⅱ中除F1的花鈴期和F2的播種-開(kāi)花期偏向晚熟親本中棉所41,其它性狀的都偏向早熟親本,對(duì)兩個(gè)組合的總體而言,群體表型偏向早熟親本,在后代群體中,早熟性部分呈顯性遺傳。表1
表1 各世代表型特征
2.2 遺傳模型的選擇和適合性檢測(cè)
采用四世代聯(lián)合分析的方法,根據(jù)兩個(gè)組合的播種-開(kāi)花、花鈴期、全生育期的田間表型數(shù)據(jù)估算出24種遺傳模型的AIC值,并根據(jù)最小AIC值的原則在每個(gè)指標(biāo)中選取兩個(gè)候選模型。結(jié)果顯示兩個(gè)組合的播種-開(kāi)花、全生育期、花鈴期的候選模型全都為E和E-1。通過(guò)對(duì)以上候選的遺傳模型進(jìn)行適合性檢驗(yàn),結(jié)合檢驗(yàn)結(jié)果確定最適遺傳模型。表2
適合性檢驗(yàn)結(jié)果所示,根據(jù)兩個(gè)組合不同生育期性狀模型的統(tǒng)計(jì)量達(dá)到的顯著水平及最小AIC的原則,確定組合Ⅰ、組合Ⅱ不同生育期的最適遺傳模型。兩個(gè)雜交組合的播種-開(kāi)花及全生育期的最適遺傳模型均符合模型E(兩對(duì)加性-顯性-上位性主基因+加性-顯性-上位性多基因模型);花鈴期的最適遺傳模型也都符合模型E-1(即兩對(duì)加性-顯性-上位性主基因+加性-顯性多基因模型)。根據(jù)最適模型可以看出,組合Ⅰ及組合Ⅱ各生育期的最適遺傳模型是相一致的,兩個(gè)雜交組合在生育期的遺傳性狀穩(wěn)定,這三個(gè)生育期性狀可以作為早熟性的指示性狀。表3
2.3 遺傳參數(shù)的估計(jì)
利用最小二階乘法分別估計(jì)組合Ⅰ及組合Ⅱ播種-開(kāi)花、花鈴期、全生育期最適遺傳模型的一階參數(shù)和二階參數(shù),分析兩個(gè)雜交組合各個(gè)生育時(shí)期的遺傳規(guī)律。表4
2.3.1 播種-開(kāi)花主-多基因的遺傳分析
通過(guò)最優(yōu)遺傳模型E(兩對(duì)加性-顯性-上位性主基因+加性-顯性-上位性多基因混合遺傳模型)對(duì)兩個(gè)組合播種-開(kāi)花的性狀進(jìn)行遺傳參數(shù)的估計(jì),研究表明,組合Ⅰ、組合Ⅱ控制開(kāi)花的兩對(duì)主基因的加性效應(yīng)分別為7.174、5.189和3.474、1.402,顯性效應(yīng)分別為4.684、2.709和-1.172、-1.393,兩個(gè)雜交組合的第一對(duì)主基因的顯性程度高于第二對(duì)主基因的顯性程度;兩對(duì)主基因間的上位效應(yīng)分別為-2.709和-0.884;兩個(gè)雜交組合控制播種-開(kāi)花的主基因的遺傳率分別為63.007%和64.289%,多基因的遺傳率分別為36.993%和35.702%,主基因的遺傳率高于多基因的遺傳率,組合Ⅰ、組合Ⅱ播種-開(kāi)花性狀主要是由主基因控制。表4
表2 四世代不同模型的AIC值
Table 2 The AIC values of different genetic models
模型Model組合ⅠCrossⅠ組合ⅡCrossⅡ播種-開(kāi)花FT花鈴期FBP全生育期WGP播種-開(kāi)花FT花鈴期FBP全生育期WGPA-12541651429633808593124283691291279693715931235613049A-225403613296147293150792725291884993715753235718037A-32608449230231035163305336914297034893741711736854744A-4260844923009725586326829541292796313738374836276733B-12408418528743833012909746094283177733642109134935093B-22474606729334704593079391357289814063670265135578B-324764436294283154331115070829146553680168935693772B-42474443629408308113071541992291263333724215135922246B-52573497830026171883279325684296302933721436336740776B-62571497630006145023277325439296102813731614736720764C-02389000528918173832990611572282649223642574535304683C-12387529336298833035037598289537993677078435300168D-02392172128910324712982646484283048733640831335272559D-12390639629354172363037727539289937743673254935266016D-22389506829356374513037053955289737873679076235320144D-32388639629334169923035728027289737043679086735320261D-42389502929356376953037052246289738653671254435246018E2320392828722500002899019043280258253631556234712878E-1235768292867644287289705835280809913627868934669348E-22385822529272849123006617432289062523663904334832434E-32383508529296523443031061279288715143671171634887578E-42381508529276523443029062256288809993669158734867473E-52383947529326196293045791504291380273703945835300642E-623798228292576635730285896288879273671088435240281
注:“__”表示候選模型
Note: “__”Means candidate model
表3 早熟性狀遺傳模型適合性檢驗(yàn)
Table 3 Tests for goodness-of-fit about genetic models of earliness traits
組合Cross性狀Traits模型Modle世代Generation模型適合性檢驗(yàn)統(tǒng)計(jì)量 StatisticparameteroffitmodelU12U22U32nW2DnⅠ播種-開(kāi)花EP10022(07001)0003(08073)37064?(00136)00650244P20001(08522)0319(04524)192960?(00002)01490253F10004(08052)0012(07425)0017(07197)00190170F20001(08591)0000(09984)0233(04869)13370159E-1P10087(05871)1145(03010)17098?(00420)00560220P24919(01364)22269?(00298)72812?(00035)01970279F10650(03692)0237(04852)0221(04931)00410212F20011(07472)0239(04844)5760(01214)14220145花鈴期EP10000(09757)0000(09716)0005(07946)00100136P20001(08768)0002(08327)4368(01483)00170171F10000(09682)0000(08911)0024(06941)00030118F20000(09016)0005(07867)0132(05463)01730099E-1P10000(09833)0000(08837)0065(06142)00110136P20003(08187)0000(09561)1508(02678)00140156F10000(09901)0000(09917)0000(09284)00020107F20000(09990)0001(08768)0152(05323)01540093全生育期EP10001(08503)0000(09915)0044(07418)001901705P20053(06304)0000(08895)2924(01910)003402108F10004(07981)0001(08506)9242(00812)005702335F20000(09915)0012(07418)2657(02017)031101052E-1P10445(04143)0186(05116)0083(05913)004201991P27102(01026)1540(02653)12131(00620)021402949F10458(04107)0013(07334)11069(00682)009502718F20015(07251)0000(09473)1452(02723)035001176Ⅱ播種-開(kāi)花EP10001(08692)0001(08681)2870(01930)00190160P20250(04794)0000(09933)53582?(00068)00870235F10000(08845)0089(05848)6938(01046)00280187F20000(08845)0003(08091)0162(05261)02620095E-1P10318(04527)0014(07327)5660(01229)00420207P28851(00846)0507(03988)119399?(00009)03240298F10033(06702)0000(09908)8266(00900)00340201F20007(07731)0000(09908)1149(03006)03150111花鈴期EP10000(09521)0000(08824)00167(07198)00080143P20067(06108)0677(03644)7535(00975)00320195F10001(08761)0068(06097)4281(01504)00170167F20000(09960)0000(09977)0000(09938)00080040E-1P10000(09801)0000(08837)0057(06253)00090148P20090(05840)0661(03671)4893(01370)00290193F10000(09083)0067(06109)6381(01120)00190164F20000(09083)0000(09901)0000(09583)00080039全生育期EP10282(04662)0008(07645)261178?(00001)02140277P20000(09185)1385(02779)241927?(00001)01580241F10002(08285)0116(05597)4982(01352)00360185F20000(09642)0000(09413)0000(09039)00370062E-1P10039(06563)0057(06250)183088?(00002)01460252P20163(05249)5939(01185)204404?(00002)01670229F10002(08381)0003(08213)8248(00901)00370191F20000(08814)0001(08716)0000(09457)00410067
注:*:差異顯著(P<0.05);U12、U22、U32:均勻性檢驗(yàn);nW2:Smirnov檢驗(yàn);Dn:Kolmogorov 檢驗(yàn)
Note:*: Significant difference at 0.05 levels;U12,U22andU32: were statistics of uniformity test;nW2was the statistic of Smirnov test;Dnwas the statistic of Kolmogorov test
2.3.2 花鈴期主-多基因的遺傳分析
通過(guò)最優(yōu)遺傳模型E-1(兩對(duì)加性-顯性-上位性主基因+加性-顯性多基因混合遺傳模型)對(duì)花鈴期這一性狀進(jìn)行遺傳參數(shù)估計(jì),結(jié)果可以看出,組合Ⅰ、組合Ⅱ控制花鈴期的兩對(duì)主基因的加性效應(yīng)分別為3.671、0.511和7.473、2.613;顯性效應(yīng)分別為-0.121、-4.480和-4.149、-4.658,兩個(gè)雜交組合控制花鈴期主基因的顯性效應(yīng)均為負(fù)值,控制花鈴期性狀的兩對(duì)主基因呈負(fù)向不完全顯性;組合Ⅰ控制花鈴期的多基因的加性效應(yīng)和顯性效應(yīng)分別為2.318、3.535,組合Ⅱ控制花鈴期的多基因的加性效應(yīng)和顯性效應(yīng)分別為-6.003、7.168;兩個(gè)雜交組合控制花鈴期主基因的遺傳率分別為67.675%、86.405%;多基因的遺傳率分別為32.325%、13.595%,主基因遺傳率相比多基因遺傳率要高,花鈴期性狀主要是由主基因來(lái)控制。表4
2.3.3 全生育期主-多基因的遺傳分析
通過(guò)最優(yōu)遺傳模型E-1(兩對(duì)加性-顯性-上位性主基因+加性-顯性多基因混合遺傳模型)對(duì)全生育期性狀進(jìn)行遺傳參數(shù)估計(jì),研究表明,組合Ⅰ、組合Ⅱ控制全生育期的兩對(duì)主基因的加性效應(yīng)分別為6.365、3.513和8.460、4.450;顯性效應(yīng)分別為-0.283、-4.091和-1.000、1.298;組合Ⅰ、組合Ⅱ的兩對(duì)主基因間均存在上位性效應(yīng),上位性效應(yīng)分別為3.128和0.932;組合Ⅰ多基因的加性效應(yīng)和顯性效應(yīng)分別為2.406、1.687,組合Ⅱ多基因的加性效應(yīng)和顯性效應(yīng)分別為-5.109、-1.227;兩個(gè)雜交組合主基因的遺傳率分別為60.875%和70.837%;多基因的遺傳率分別為39.125%和29.163%,主基因遺傳率較高,全生育期性狀是由主基因控制。表4
表4 棉花早熟性狀遺傳參數(shù)估計(jì)
Table 4 The estimates of genetic parameters of fit model of earliness characters
參數(shù)Parameter組合ⅠCrossⅠ組合ⅡCrossⅡ播種-開(kāi)花FTE花鈴期FBPE-1全生育期WGPE-1播種-開(kāi)花FTE花鈴期FBPE-1全生育期WGPE-1m(m1)54045470181052685837451275111679m25084055909m36720660694m45307259979da717436716365347474738460db518905113513140226134450ha4684-0121-0283-1172-4149-1000hb2709-4480-4091-1393-46581298i-270932713128-088427920932jab-51900726230108891255-2219jba-518-0507-3508-013970889-0507l-26994195347913965970006[d]23182406-6003-5109[h]353516877168-1227σp24590517659214122014819546042σmg2289235032560978454164332615σpg216981673336054356655213427hmg2(%)630076767560875642988640570837hpg2(%)369933232539125357021359529163
注:m、m1、m2、m3、m4:中親值;da、ha:主基因a的加性效應(yīng)和顯性效應(yīng);db、hb:主基因b的加性效應(yīng)和顯性效應(yīng):[d]、[h]:多基因加性效應(yīng)和顯性效應(yīng);i、l:兩個(gè)主基因的加×加效應(yīng)和顯×顯效應(yīng);jab:加性(a)×顯性(b)效應(yīng);jba:加性(b)×顯性(a)效應(yīng);σp2:表型方差;σmg2:主基因方差;σpg2:多基因方差;hmg2:主基因遺傳率;hpg2:多基因遺傳率性
Note:m,m1,m2,m3,m4:Mid-parent value;da、ha: Additive effect and dominant effect of the first pair major gene;db、hb: Additive effect and dominant effect of the second pair major gene; [d]、[h]: Additive effective value and dominant effective value of polygene;i、l: Additive effect plus additive effect and dominant effect plus dominant effect of the two major genes;jab: Additive effect plus dominant effect of the two major genes;jba: Dominant effect plus additive effect of the two major genes;σp2: Phenotypic variance;σmg2: Major gene variance;σpg2: Polygenic variance;hmg2: Major gene heritability;hpg2: Polygene heritability
棉花的早熟性是復(fù)雜的數(shù)量性狀極易受到環(huán)境因素干擾[12-13],研究利用兩個(gè)雜交組合的四個(gè)世代群體對(duì)棉花生育期的三個(gè)性狀進(jìn)行的聯(lián)合分析,可以使試驗(yàn)的精準(zhǔn)度有所增加,也可以使主基因遺傳參數(shù)方面估計(jì)值的精度有所提高,確保了分析結(jié)果的準(zhǔn)確度和可靠性[14-15]。在前人的研究結(jié)果中總結(jié)發(fā)現(xiàn),數(shù)量性狀是一種混合遺傳模型,是由主基因和多基因共同來(lái)控制的,因此,控制數(shù)量性狀的基因在其遺傳效應(yīng)大小上存在較大的差異[16]。棉花的早熟性是由多基因控制的復(fù)雜的數(shù)量性狀,同時(shí)存在加性效應(yīng)與顯性效應(yīng)[17-19]。播種-開(kāi)花、花鈴期、全生育期等性狀是短季棉早熟的重要指標(biāo)性狀,Godoy[20]和吳吉祥等[21]的研究中指出生育期、始花期、鈴期和果枝始節(jié)都是以加性效應(yīng)為主,而顯性效應(yīng)則在次之;在研究中,組合Ⅰ各性狀第一對(duì)主基因的加性效應(yīng)分別為4.174、3.671和6.365,顯性效應(yīng)分別為4.684、-0.121和-0.283,各性狀第一對(duì)主基因的加性效應(yīng)均大于其顯性效應(yīng);第二對(duì)主基因的加性效應(yīng)分別為5.189、0.511、3.513,顯性效應(yīng)分別為2.709、-4.480、-4.091,加性效應(yīng)大于顯性效應(yīng)。組合Ⅱ各性狀的第一對(duì)主基因和第二對(duì)主基因的加性效應(yīng)分別為3.474、7.473、8.460和1.402、2.613、4.450,顯性效應(yīng)分別為-1.172、-4.149、-1.000和-1.393、-4.658、1.298,加性效應(yīng)大于顯性效應(yīng),可見(jiàn)兩組合各時(shí)期主基因的加性效應(yīng)均大于顯性效應(yīng),結(jié)果與其相符,且董娜[7]的研究結(jié)果也是如此。而周有耀等[22]則認(rèn)為早熟性狀的遺傳應(yīng)為顯性效應(yīng);范術(shù)麗[8]在對(duì)播種-開(kāi)花,全生育期和開(kāi)花-吐絮研究結(jié)果的數(shù)據(jù)中表示,播種-開(kāi)花和全生育期的加性效應(yīng)分別為-6.257和-9.697 2,顯性效應(yīng)分別為-3.451 0和-6.527 58,加性效應(yīng)小于顯性效應(yīng),開(kāi)花-吐絮的第一對(duì)主基因的加性效應(yīng)為-12.443,顯性效應(yīng)為-11.751,加性效應(yīng)小于顯性效應(yīng);第二對(duì)主基因的加性效應(yīng)和顯性效應(yīng)分別為12.488和-6.474,加性效應(yīng)大于顯性效應(yīng),兩人結(jié)果基本一致。董承光[15],宋美珍等[23]均認(rèn)為這些結(jié)果與研究的遺傳材料、環(huán)境條件及當(dāng)時(shí)年份有關(guān)。研究結(jié)果中花鈴期的遺傳模型和范術(shù)麗[8]的研究結(jié)果相符均為E-1模型,且主基因遺傳率均大于多基因遺傳率,說(shuō)明花鈴期是以主基因控制的可以在多環(huán)境下穩(wěn)定遺傳的性狀,可以作為短季棉育種選擇的重要標(biāo)志。
研究以生育期差異顯著的四個(gè)陸地棉品種為親本,聯(lián)合其構(gòu)建的F1、F2為材料,利用多世代混合遺傳分析的方法,明確了兩個(gè)雜交組合播種-開(kāi)花性狀的遺傳同時(shí)符合E模型,花鈴期和全生育期性狀均符合E-1模型,播種-開(kāi)花,花鈴期,全生育期三個(gè)性狀可以穩(wěn)定遺傳,且都受兩對(duì)主基因和多基因控制。組合Ⅰ播種-開(kāi)花、花鈴期、全生育期的主基因的遺傳率分別為63.007%、67.675%、60.875%,多基因的遺傳率分別為36.993%、32.325%、39.125%;組合Ⅱ播種-開(kāi)花、花鈴期、全生育期的主基因遺傳率分別為64.298%、86.405%、70.837%,多基因遺傳率分別為35.702%、13.595%、29.163%,數(shù)據(jù)顯示,兩個(gè)雜交組合控制生育期性狀的主基因的遺傳力要高于多基因的遺傳率,兩個(gè)雜交組合的三個(gè)生育期性狀主要由主基因控制,同時(shí)還受到微效多基因的調(diào)控。聯(lián)合兩個(gè)雜交組合的表型數(shù)據(jù)來(lái)看,組合Ⅰ分離后代的三個(gè)表型數(shù)據(jù)都偏向早熟親本,組合Ⅱ分離后代中除F1的花鈴期和F2的播種-開(kāi)花偏向晚熟,其他分離后代的三個(gè)表型數(shù)據(jù)均偏向早熟,兩個(gè)雜交組合的表型總體偏向早熟;且兩個(gè)雜交組合播種-開(kāi)花、花鈴期、全生育期的主基因的加性效應(yīng)均要高于顯性效應(yīng)。遺傳力高,加性效應(yīng)大的生育期性狀可以做為選育早熟棉品種的重要指標(biāo)[20],并且,存在主基因遺傳的生育期性狀可以作為數(shù)量性狀分子標(biāo)記定位的主攻方向。
References)
[1] 喻樹(shù)迅,張雷,馮文娟.快樂(lè)植棉-中國(guó)棉花生產(chǎn)的發(fā)展方向[J].棉花學(xué)報(bào),2015,(3):283-290.
YU Shu-xun, ZHANG Lei, FENG Wen-juan. (2015). Easy and Enjoyable Cotton Cultivation: Developments in China's Cotton Production [J].CottonScience, (3):283-290.(in Chinese)
[2] 喻樹(shù)迅,張雷,馮文娟.棉花生產(chǎn)規(guī)?;?、機(jī)械化、信息化、智能化和社會(huì)服務(wù)化發(fā)展戰(zhàn)略研究[J].中國(guó)工程科學(xué),2016,(1):137-148.
YU Shu-xun, ZHANG Lei, FENG Wen-juan. (2016). Study on Strategy of Large Scale, Mechanization, Informationization, Intelligence and Social Services for Cotton Production [J].EngineeringSciences, (1):137-148. (in Chinese)
[3] 喻樹(shù)迅.我國(guó)棉花生產(chǎn)現(xiàn)狀與發(fā)展趨勢(shì)[J].中國(guó)工程科學(xué),2013,(4):9-13.
YU Shu-xun. (2013). Present situation and development trend of cotton production in China [J].EngineeringSciences, 15(4): 9-13. (in Chinese)
[4] 楊偉華,王延琴,周大云,等.植物修復(fù)重金屬污染土壤研究進(jìn)展[J].湖南農(nóng)業(yè)科學(xué),2014,(18):41-44.
YANG Wei-hua, WANG Yan-qin, ZHOU Da-yun, et al. (2014). Research Progress in Remediation of Heavy-Metal Contaminated Soils by Planting Cotton [J].HunanAgriculturalSciences, (18):41-44. (in Chinese)
[5] 喻樹(shù)迅,范術(shù)麗.我國(guó)棉花遺傳育種進(jìn)展與展望[J].棉花學(xué)報(bào),2003,15(2):120-124.
YU Shu-xun, FAN Shu-li. (2003). The Evolutions and Prospect of Cotton Genetics and Breeding in China [J].CottonScience, 15(2):120-124. (in Chinese)
[6] 袁有祿,張?zhí)煺?郭旺珍,等.棉花高品質(zhì)纖維性狀的主基因與多基因遺傳分析[J].遺傳學(xué)報(bào),2002,29(9):827-834.
YUAN You-lu, ZHANG Tian-zhen, GUO Wang-zhen, et al. (2002). Major-polygene effect analysis of super quality fiber properties in upland cotton (GossypiumhirsutumL.)[J].ActaGeneticaSinica, 29(9): 827-834. (in Chinese)
[7] 董娜.短季棉早熟及相關(guān)性狀的混合遺傳與QTL定位研究[D].新鄉(xiāng):河南科技學(xué)院碩士論文,2010.
DONG Na. (2010).MixedInheritanceandQTLLocationStudyonEarlinessanditsReiatedTraitsofShortSeasonCotton[D]. Master Dissertation. Henan Institute of Science and Technology, Xinxiang. (in Chinese)
[8] 范術(shù)麗.短季棉早熟性相關(guān)性狀的遺傳及QTL 定位研究[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院博士論文, 2004.
FAN Shu-li. (2004).StudyoninheritanceofearlinessanditsrelativetraitsofshortseasoncottonandQTLsmapping[D].PhD Dissertation. The Chinese Academy of Agricultural Sciences, Beijing. (in Chinese)
[9] 喻樹(shù)迅,黃禎茂.短季棉品種早熟性構(gòu)成因素的遺傳分析[J].中國(guó)農(nóng)業(yè)科學(xué),1990,23(6):48-54.
YU Shu-xun, HUANG Zhen-mao.(1990). Inheritance analysis on earliness components of short season cotton varieties in G.hirsutum[J].ScientiaAgriculturaSinica, 23(6): 48-54. (in Chinese)
[10] 艾先濤,李雪源,王俊鐸,等.北疆陸地棉育成品種表型性狀遺傳多樣性分析[J].分子植物育種,2011,9(1):113-122.
Ai Xian-tao, Li Xue-yuan, Wang Jun-duo, et al. Genetic Diversity on Agronomic Phenotypes in Upland Cotton Varieties of North Xinjiang Area[J].MolecularPlantBreeding, 2011,9(1):113-122. (in Chinese)
[11] 章元明,蓋均鎰,張孟臣.利用P1、F1、P2和F2或F2∶3世代聯(lián)合的數(shù)量性狀分離分析[J].西南農(nóng)業(yè)大學(xué)學(xué)報(bào),2000,22(1):6-9.
ZHANG Yuan-ming, GAI Jun-yi, ZHANG Meng-chen. (2000). Jointly segregating analysis of P1P2F1and F2or F2∶3families [J].JournalofSouthwestAgriculturalUniversity, 22(1): 6-9. (in Chinese)
[12] 林忠旭,馮常輝,郭小平,等. 陸地棉產(chǎn)量、纖維品質(zhì)相關(guān)性狀主效 QTL 和上位性互作分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),2009,42(9):3 036-3 047.
Lin Zhong-xu, Feng Chang-hui, Guo Xiao-ping, et al. (2009). Genetic Analysis of Major QTLs and Epistasis Interaction for Yield and Fiber Quality in Upland Cotton[J].ScientiaAgriculturaSinica, 42(9):3,036-3,047. (in Chinese)
[13] 柳賓.棉花早熟性、產(chǎn)量和纖維品質(zhì)性狀的遺傳分析和QTL定位[D]. 山東:山東農(nóng)業(yè)大學(xué),2010.
Liu Bin. (2010).GeneticAnalysisandQTLMappingforMaturity,YieldandFiberQualityTraitsofCotton[D]. Shandong: Shandong Agricultural University.(in Chinese)
[14] 殷劍美,武耀廷,朱協(xié)飛.陸地棉產(chǎn)量與品質(zhì)性狀的主基因與多基因遺傳分析[J].棉花學(xué)報(bào),2003,15(2): 67-72.
YIN Jian-mei, WU Yao-ting, ZHU Xie-fei, et al. (2003). Genetic analysis of yield traits and fiber qualities by using major gene plus polygene mixed inheritance model in upland cotton (G.hirsutumL.)[J].CottonScience, 15(2):67-72. (in Chinese)
[15] 董承光,王娟,周小鳳,等.新疆早熟陸地棉早熟性狀的遺傳分析[J].西北農(nóng)業(yè)學(xué)報(bào),2014,23(12):96-101.
DONG Cheng-guang, WANG Juan, ZHOU Xiao-feng, et al. (2014). Inheritance of earliness traits in Xinjiang early maturityupland cotton (GossypiumhirsutumL.)[J].ActaAgriculturaeBoreali-OccidentalisSinica, 23(12):96-101. (in Chinese)
[16] 杜雄明,汪若海,劉國(guó)強(qiáng),等.棉花纖維相關(guān)性狀的主基因-多基因混合遺傳分析[J].棉花學(xué)報(bào),1999,11(2):73-78.
DU Xiong-ming, WANG Ruo-hai, LIU Guo-qiang, et al. (1999). Inheritance Analysis of the Characters Related with Fiber by Using Mixed Major Gene and Polygene Model [J].CottonScience, 11(2):73-78. (in Chinese)
[17] 范術(shù)麗,喻樹(shù)迅,原日紅,等.短季棉早熟性的遺傳效應(yīng)及其與環(huán)境互作研究[J].西北植物學(xué)報(bào),2006,26(11):2 270-2 275.
FAN Shu-li, YU Shu-xun, YUAN Ri-hong, et al. (2006). Genetic effects and environmental interactions of early maturity in short-season cotton [J].ActaBotanicaBoreali-OccidentaliaSinica, 26(11): 2,270-2,275. (in Chinese)
[18] 詹有俊,楊濤,孫建船,等.特早熟陸地棉的遺傳效應(yīng)及雜種優(yōu)勢(shì)分析[J].農(nóng)業(yè)現(xiàn)代化研究,2012,33(4):943-947.
Zhan You-jun, Yang Tao, Sun Jian-chuan, et al. Analysis of Genetic Effect and Heterosis of Special-early MatureGossypiumhirsutumL. [J].Researchofagriculturalmodernization, 2012,33(4):943-947. (in Chinese)
[19] 詹有俊,楊濤,孫建船,等.特早熟陸地棉熟性產(chǎn)量品質(zhì)的遺傳相關(guān)分析[J].農(nóng)業(yè)現(xiàn)代化研究,2013,34(1):118-121.Zhan You-jun, Yang Tao, Sun Jian-chuan, et al. (2013). Genetic Correlation Analysis of Early Maturity Yield and Quality in Special-early MatureGossypiumhirsutumL. [J].Researchofagriculturalmodernization, 34(1):118-121. (in Chinese)
[20] Godoy, A. S., & Palomo, G. A. (1999). Genetic analysis of earliness in upland cotton (Gossypiumhirsutuml.). ii. yield and lint percentage.Euphytica, 105(2):161-166.
[21] 吳吉祥,朱軍,季道藩,等.陸地棉產(chǎn)量性狀的遺傳效應(yīng)及其與環(huán)境互作的分析[J].遺傳,1995,17(5):1-4.
WU Ji-xiang, ZHU Jun, JI Dao-fan, et al. (1995). Analysis of Genetic Effect × Environment Interactions for Yield Traits in Upland Cotton [J].Hereditas, 17(5):1-4. (in Chinese)
[22] 周有耀.棉花早熟性與纖維品質(zhì)性狀關(guān)系的研究[J].中國(guó)棉花,1990,17(5):13-15.
ZHOU You-yao. (1990). Study on the relationship between cotton maturity and fiber quality traits [J].ChinaCotton, 17(5):13-15. (in Chinese)
[23] 宋美珍,喻樹(shù)迅,范術(shù)麗,等.短季棉主要農(nóng)藝性狀的遺傳分析[J].棉花學(xué)報(bào),2005,17(2):94-98.
SONG Mei-zhen, YU Shu-xun, FAN Shu-li, et al. (2005). Genetic analysis of main agronomic traits in short-season upland cotton (Gossypium hirsutum L.) [J].CottonScience, 17(2): 94-98. (in Chinese)
[24] 艾尼江,朱新霞,管榮展,等.棉花生育期的主位點(diǎn)組遺傳分析[J].中國(guó)農(nóng)業(yè)科學(xué),2010,43(20):4 140-4 148.
AI Ni-jiang, ZHU Xin-xia, GUAN Rong-zhan, et al. (2010). Genetic Analysis of Major Locus Group Constitutions of Growth Stages in Upland Cotton [J].ScientiaAgriculturaSinica, 43(20):4,140-4,148. (in Chinese)
Supported by:The National Key Technology R&D Program "The project of drought resistant, saline-alkaline tolerant cotton cultivar screening and breeding " (2014BAD03B01)
Genetic Analysis of Growth Traits in Short Season Cotton
TIAN feng1, 2,F(xiàn)AN Shu-li2,WEI Heng-ling2,WANG Han-tao2,ZHAO Shu-qi2,3,PANG Chao-you2,HU Shou-lin1,YU Shu-xun2
(1.CollegeofPlantScience,TarimUniversity,AlarXinjiang843300,China; 2.InstituteofCottonResearchofCAAS/StateKeyLaboratoryofCottonBiology,AnyangHenan455000,China;3.HuanggangAcademyofAgriculturalSciences,HuanggangHubei438000,China)
【Objective】 To study the genetic law of short-season cotton growth period.【Method】Our study utilized four upland cotton cultivars to construct two crosses and analyzed three traits (Flowering time FT, Flowering and boll-setting period FBP, Whole growing period WGP) of growth period using the joint segregation analysis method of mixed major gene plus polygene inheritance model.【Result】The results from phenotypic analysis showed that: the other phenotypic traits were in favor of the early-maturing parent and the partial early-maturing parent, except for the combination of F1in the blooming stage and F2sowing-flowering stage. The genetic analysis results showed that: the same traits of the combination I and II were in accordance with the same genetic model, and were controlled by two pairs of major genes.【Conclusion】It can be seen from the heritability of major genes and polygenes, the three phenotypic traits were mainly controlled by the major genes and the minor genes, the heritability of the three phenotypic traits is high, and the additive effect is large. This study could provide a theoretical basis for QTL mapping and molecular marker assisted breeding of cotton early maturing traits.
short season cultivars; growth stages; major gene plus polygene inheritance; genetic analysis
2016-11-07
國(guó)家科技支撐計(jì)劃“抗旱、耐鹽堿棉花品種篩選及新品種培育”(2014BAD03B01)
田鋒(1990-),男,新疆阿克蘇人,碩士研究生,研究方向?yàn)槊藁ㄟz傳育種,(E-mail)tian_feng12@sina.com
龐朝友(1979-),男,河北邢臺(tái)人,副研究員,研究方向?yàn)槊藁ㄟz傳育種,(E-mail)chypang@163.com 胡守林(1968-),男,新疆阿克蘇人,教授,研究方向?yàn)槊藁ㄓN,(E-mail)179390139@qq.com
S562.1;S503.2
A
1001-4330(2017)02-0197-09