袁 琴, 俞芳婷, 王淼坤
(湖州師范學(xué)院 理學(xué)院, 浙江 湖州 313000)
第二類完全橢圓積分的平均值不等式
袁 琴, 俞芳婷, 王淼坤
(湖州師范學(xué)院 理學(xué)院, 浙江 湖州 313000)
研究一個與第二類完全橢圓積分相關(guān)的平均值,證得它關(guān)于調(diào)和平均、反調(diào)和平均的算術(shù)凸組合與幾何凸組合的兩個最佳雙邊不等式,進(jìn)而得到第二類完全橢圓積分在某種形式下的兩個最優(yōu)不等式.
調(diào)和平均; 反調(diào)和平均; 完全橢圓積分; 不等式
MSC 2010:33E05; 26E60
對t∈[0,1],第一類完全橢圓積分K(t)和第二類完全橢圓積分E(t)分別定義如下[1]:
(1)
(2)
自上世紀(jì)90年代以來,完全橢圓積分被廣泛研究,并應(yīng)用于擬共形映射偏差定理的估計.關(guān)于完全橢圓積分的基本性質(zhì)及其應(yīng)用見文獻(xiàn)[1-6].
(3)
定理1 當(dāng)a,b>0且a≠b時,不等式
(4)
成立當(dāng)且僅當(dāng)α≤α0=4/π2及β≥β0=7/16.
定理2 當(dāng)a,b>0且a≠b時,不等式
(5)
若在定理1和定理2中令a=1,b=t′2,便得第二類完全橢圓積分的不等式.這里及下面均記:
(0,1)).
成立當(dāng)且僅當(dāng)α≤α0=4/π2及β≥β0=7/16.
定理1的證明 通過不等式變形,定理1可改寫為:當(dāng)a,b>0且a≠b時,
(6)
當(dāng)且僅當(dāng)α≤4/π2及β≥7/16.
則b∈(0,1)且
(7)
令p∈(0,1),則
(8)
記
(9)
計算得:
(10)
(11)
再令
(12)
則
(13)
(14)
令
(15)
則
(16)
下面分兩種情況進(jìn)行討論:
最后證明α0和β0是使得雙邊不等式(4)成立的最佳參數(shù).
定理2的證明 通過對不等式兩邊同時取對數(shù)變形后,定理2可改寫為:當(dāng)a,b>0且a≠b時,
(17)
(18)
令
(19)
則
(20)
(21)
其中:
λ(4t2+12)(2E-t′2K)(1-t4)+4(1-λ)(2E-t′2K)(1+t2)(t4+6t2+1);
(22)
(23)
下面分兩種情形進(jìn)行討論:
(24)
[1]ANDERSON G D,VAMANAMURTHY M K,VUORINEN M.Conformal Invariants,Inequalities,and Quasiconformal Maps[M].New York:John Wiley & Sons,1997.
[2]ABRAMOWITZ M,STEGUN I A.Handbook of Mathematical Functions,with Formulas,Graphs,and Mathematical Tables[M].New York:Dover Publications,1965.
[3]ANDERSON G D,VAMANAMURTHY M K,VUORINEN M.Functional inequalities for complete elliptic integrals and their ratios[J].SIAM J Math Anal,1990,21(2):536-549.
[4]ALZER H,QIU S L.Monotonicity theorems and inequalities for the complete elliptic integrals[J].J Comput Appl Math,2004,172(2):289-312.
[5]ANDERSON G D,QIU S L,VAMANAMURTHY M K.Elliptic integral inequalities,with applications[J].Constr Approx,1998,14(2):195-207.
[6]ALZER H,RICHARDS K C.A note on a function involving complete elliptic integrals:monotonicity,convexity,inequalities[J].Anal Math,2015,41(3):133-139.
[7]WANG M K,QIU S L,CHU Y M,et al.Generalized Hersch-Pfluger distortion function and complete elliptic integrals[J].J Math Anal Appl,2012,385(1):221-229.
[8]TOADER G H.Some mean values related to the arithmetic-geometric mean[J].J Math Anal Appl,1998,218(2):358-368.
[9]BULLEN P S,MITRINOVIC D S,VASIC P M.Means and Their Inequalities[M].Dordrecht:D Reidel Publishing Co,1988.
[10]NEUMAN E.On some means derived from the Schwab-Borchardt mean[J].J Math Inequal,2014,8(1):171-183.
[12]WANG M K,QIU Y F,CHU Y M.Sharp bounds for Seiffert means in terms of Lehmer means[J].J Math Inequal,2010,4(4):581-586.
MSC 2010:33E05; 26E60
[責(zé)任編輯 高俊娥]
Inequalities for the Complete Elliptic Integrals of the Second Kind in Terms of Means
YUAN Qin, YU Fangting, WANG Miaokun
(School of Science, Huzhou University, Huzhou 313000, China)
A mean value related to the complete elliptic integrals of the second kind is investigated, and some optimal double inequalities in terms of harmonic mean and contra-harmonic mean are proved. These results lead to two best possible inequalities for the complete elliptic integrals of the second kind in some form.
harmonic mean; contra-harmonic mean; complete elliptic integrals; inequality
2016-12-23
浙江省教育廳科研計劃項目(Y201635325);湖州師范學(xué)院“大學(xué)生創(chuàng)新訓(xùn)練計劃”項目(2016-100).
王淼坤,博士,講師,研究方向:特殊函數(shù)、擬共形映射.E-mail:wangmiaokun@zjhu.edu.cn
O172
A
1009-1734(2017)02-0012-05