吳海江,楊飛英,徐紅梅,顏煥元,王小明,鄒利華,曾娣平
(1.邵陽學(xué)院 機(jī)械與能源工程系,湖南 邵陽,422000;2.湖南科技大學(xué) 機(jī)電工程學(xué)院,湖南 湘潭,411201)
鎂合金表面電沉積硅烷膜的工藝優(yōu)化
吳海江1,楊飛英1,徐紅梅2,顏煥元2,王小明1,鄒利華1,曾娣平1
(1.邵陽學(xué)院 機(jī)械與能源工程系,湖南 邵陽,422000;2.湖南科技大學(xué) 機(jī)電工程學(xué)院,湖南 湘潭,411201)
為進(jìn)一步提升常規(guī)浸涂硅烷膜的防護(hù)效果,采用電化學(xué)輔助技術(shù)在AZ91D鎂合金表面沉積了γ-氨丙基三乙氧基硅烷膜,通過正交試驗(yàn)優(yōu)化了沉積電位和沉積時(shí)間等電沉積的工藝參數(shù),借助點(diǎn)滴試驗(yàn)和E-t曲線評(píng)估了硅烷膜的耐蝕性能。結(jié)果表明:沉積電位對(duì)AZ91D鎂合金表面陰極輔助沉積硅烷膜耐蝕性的影響最為顯著,最優(yōu)電沉積工藝參數(shù)為沉積電位-1.0 V、沉積時(shí)間15 min;隨著沉積電位的負(fù)移和沉積時(shí)間的延長,硅烷膜的耐蝕能力均呈現(xiàn)先上升后下降的變化規(guī)律,電沉積硅烷膜對(duì)AZ91D鎂合金基體的防護(hù)能力明顯優(yōu)于常規(guī)浸涂硅烷膜。
硅烷膜;電沉積;AZ91D鎂合金;正交試驗(yàn);耐蝕性
鎂合金具有許多吸引人的特性,諸如高強(qiáng)度、低密度、高尺寸穩(wěn)定性、易切削、優(yōu)良的生物相容性和電磁屏蔽特性,且來源豐富,在汽車工業(yè)、生物醫(yī)學(xué)產(chǎn)業(yè)、通訊電子業(yè)、國防工業(yè)和航空航天工業(yè)等領(lǐng)域受到越來越多的重視[1-3]。然而鎂合金的電位較負(fù)、化學(xué)活性高,表面生成的疏松、多孔的氧化膜不能給予基體有效的防護(hù),這造成了鎂合金發(fā)揮發(fā)展的桎梏[3-5]。一直以來鎂合金的防護(hù)處理普遍采用鉻酸鹽鈍化,它工藝簡單、價(jià)格低廉,但其處理工藝中含有高毒性的六價(jià)鉻[6,7]。隨著人們環(huán)保意識(shí)的逐漸增強(qiáng),如歐盟頒布RoHS 2.0指令,對(duì)金屬防腐蝕涂層中六價(jià)鉻的使用提出了嚴(yán)苛的的限制。因此,研發(fā)環(huán)境友好型鎂合金表面無鉻防護(hù)工藝已箭在弦上。
硅烷化處理是近年來出現(xiàn)的有望替代鉻酸鹽鈍化的金屬表面綠色環(huán)保型防護(hù)工藝。硅烷偶聯(lián)劑通過縮合可以在金屬基體表面交聯(lián)形成復(fù)雜的三維網(wǎng)狀結(jié)構(gòu)硅烷膜而為基體提供保護(hù)。研究者們在碳鋼[8,9]、不銹鋼[10,11]、鍍鋅鋼[12-15]、鋁合金[16-19]基體上取得了令人鼓舞的成果。由于近年來鎂合金的應(yīng)用熱度,對(duì)鎂合金基體的硅烷化處理研究正方興未艾[20-23]。金屬表面硅烷化工藝的成膜效果取決于硅烷偶聯(lián)劑的水解、溶液中硅醇之間的縮合失效和基體表面硅醇之間的縮合成膜形成的動(dòng)態(tài)平衡[24]。然而,借助傳統(tǒng)浸涂法制備的硅烷膜厚度較薄且不均勻,亦無法很好地解決水解與縮聚之間的矛盾[25]。Mandler研究組[26,27]率先將電化學(xué)輔助沉積技術(shù)用于制備金屬表面硅烷膜,結(jié)果顯示在一個(gè)特定的陰極電位下陰極輔助沉積制備的硅烷膜耐蝕能力顯著優(yōu)于傳統(tǒng)浸涂法制備的硅烷膜。van Ooij研究組[28]和國內(nèi)曹楚南院士帶領(lǐng)的研究組[29,30]也證實(shí)了電化學(xué)輔助沉積技術(shù)有助于提高硅烷膜的厚度、致密度和對(duì)基體的覆蓋率,這讓研究者們看到了解決上述問題的希望。隨著對(duì)防護(hù)性硅烷膜的性能要求越來越高,而電化學(xué)輔助沉積技術(shù)作為一種顯著區(qū)分于傳統(tǒng)浸涂法的新穎硅烷化工藝,能夠克服傳統(tǒng)浸涂法的制備缺陷,具有良好的應(yīng)用前景。截至目前,國內(nèi)外關(guān)于利用陰極輔助技術(shù)在鎂合金表面電沉積硅烷膜的研究還較少報(bào)道。
本文選擇KH-550硅烷偶聯(lián)劑作為成膜主要成分,并以工業(yè)中應(yīng)用廣泛的AZ91D鎂合金為基體材料,通過正交試驗(yàn)法優(yōu)化了其表面硅烷成膜的電沉積工藝參數(shù),采用點(diǎn)滴試驗(yàn)和E-t曲線評(píng)價(jià)了所制備硅烷膜的耐蝕性能。
1.1 工作電極的制備
基體材料選擇AZ91D鎂合金,具體化學(xué)成分如表1所示。用數(shù)控線切割機(jī)將其切割成10mm×10mm×5mm大小尺寸,接著在高度方向上焊接1根銅導(dǎo)線,用環(huán)氧樹脂密封表面,但暴露面積為10mm×10mm的一面以待成膜。然后試樣成膜表面用400~1500#水磨砂紙逐級(jí)打磨并拋光,去離子水沖洗后置于丙酮溶液中進(jìn)行5min的超聲波清洗,接著去離子水洗后在60g/L NaOH+10g/L Na3PO4堿液中70℃下堿洗10min,最后經(jīng)去離子水洗凈后立即用熱吹風(fēng)機(jī)吹干,放入干燥器皿中保存?zhèn)溆谩?/p>
表1 AZ91D鎂合金的化學(xué)成分(wt%)
1.2 硅烷膜的制備
按無水乙醇/去離子水/KH-550硅烷=80/15/5(體積比)配制硅烷溶液,調(diào)節(jié)pH值為9,在室溫下水解2 h后使用。對(duì)于常規(guī)浸涂方式來說,將制備好的工作電極浸入水解完畢的硅烷溶液中90 s,緩慢提拉出液面,用壓縮空氣吹掉試樣表面殘留的溶液,自然干燥。
電沉積技術(shù)制備硅烷膜采用三電極體系,選擇上海辰華儀器公司生產(chǎn)的CHI660E電化學(xué)工作站作為恒電位電源,以飽和甘汞電極(SCE)作參比電極,大鉑片電極作輔助電極、為陽極,鎂合金試樣作工作電極、為陰極,分別接電化學(xué)工作站的正極與負(fù)極。將制備好的鎂合金工作電極浸入水解完畢的硅烷溶液中,施加一個(gè)陰極電沉積恒電位,沉積處理一定時(shí)間,取出并用壓縮空氣吹掉樣品上殘存液體,自然干燥。電化學(xué)輔助沉積制備硅烷膜時(shí),沉積電位E和沉積時(shí)間t是極其重要的兩個(gè)影響因素,為了厘清它們對(duì)AZ91D鎂合金表面電沉積硅烷膜制備的影響作用規(guī)律,分別選擇-0.8V、-1.0V、-1.2V和5min、15min、30min等3個(gè)水平,并綜合考慮兩個(gè)因素的交互作用影響,依據(jù)正交表L9(34)安排優(yōu)化試驗(yàn),以耐點(diǎn)滴腐蝕時(shí)間的長短衡量試樣的耐蝕性能,見表2。
表2 L9(34)正交試驗(yàn)設(shè)計(jì)因素水平表
1.3 耐蝕性測試
(1)點(diǎn)滴試驗(yàn) 按照HB5061-77試驗(yàn)標(biāo)準(zhǔn),點(diǎn)滴腐蝕溶液成分為0.05g KMnO4+1mL HNO3+100mL H2O,試驗(yàn)時(shí)用滴管將其滴至樣品表面,隨即記錄點(diǎn)滴腐蝕溶液從紅色逐漸變?yōu)闊o色的時(shí)間,以變色時(shí)長來評(píng)估樣品耐蝕性能高低。測試時(shí)注意每個(gè)測試點(diǎn)保持一定的距離,避免相互干擾,每一個(gè)樣品取5次測試結(jié)果的平均值。
(2)E-t曲線測試 采用上海辰華儀器公司產(chǎn)CHI660E電化學(xué)分析系統(tǒng),以飽和甘汞電極(SCE)為參比電極、鉑電極為對(duì)電極、電沉積硅烷膜試樣為工作電極組成三電極體系,配制質(zhì)量分?jǐn)?shù)為5%的NaCl鹽水溶液作為腐蝕溶液,測量時(shí)的溫度為室溫,不作除氣處理,監(jiān)測試樣的開路電位隨鹽水浸泡時(shí)間的變化。
2.1 工藝參數(shù)優(yōu)化
根據(jù)正交試驗(yàn)安排,對(duì)不同電化學(xué)輔助沉積工藝條件下制備的AZ91D鎂合金表面硅烷膜試樣進(jìn)行耐點(diǎn)滴腐蝕試驗(yàn)測試,相應(yīng)的數(shù)據(jù)分析結(jié)果見表3。對(duì)于正交試驗(yàn)來說,其優(yōu)點(diǎn)是可以憑借盡可能少的試驗(yàn)工作量評(píng)估各個(gè)因素對(duì)于試驗(yàn)結(jié)果的影響主次,若一個(gè)因素對(duì)實(shí)驗(yàn)結(jié)果有重要影響,則對(duì)于該因素來說,不同水平之間的試驗(yàn)結(jié)果就會(huì)呈現(xiàn)出很大差異,換句話說,相應(yīng)的極差數(shù)值也就越大。根據(jù)表3中的極差分析結(jié)果可知,各因素對(duì)電沉積制備的硅烷膜耐蝕能力影響的主次順序排列為:RA>RB>RA×B,顯然電化學(xué)沉積電位的影響最為顯著,沉積時(shí)間的影響較小,兩因素的交互作用影響最小。最優(yōu)電沉積工藝參數(shù)為:A2B2,即沉積電位為-1.0V、沉積時(shí)間為15min。
表3 正交試驗(yàn)數(shù)據(jù)分析表
在表3正交試驗(yàn)結(jié)果分析的基礎(chǔ)上,固定沉積電位為-1.0V而改變沉積時(shí)間與固定沉積時(shí)間為15min而改變沉積電位,進(jìn)行電沉積硅烷膜制備工藝參數(shù)單因素影響試驗(yàn),圖1所示為沉積電位和沉積時(shí)間對(duì)所制備硅烷膜試樣耐點(diǎn)滴腐蝕試驗(yàn)結(jié)果。從圖1(a)和(b)可以看出,隨著沉積電位的負(fù)移和沉積時(shí)間的延長,硅烷膜的耐點(diǎn)滴腐蝕時(shí)間均呈現(xiàn)先增加而后減少的變化規(guī)律;最終確定:當(dāng)沉積電位為-1.0V、沉積時(shí)間為15min時(shí),硅烷膜對(duì)鎂合金具有最佳的耐腐蝕防護(hù)能力。
圖1 沉積電位(a)和沉積時(shí)間(b)與硅烷膜耐點(diǎn)滴腐蝕時(shí)間的關(guān)系Fig.1 Effect of deposition potential (a)and deposition time (b)on dropping time of silane film on AZ91D magnesium alloy
2.2 E-t曲線
將裸鎂合金、浸涂硅烷膜、最優(yōu)工藝電沉積硅烷膜樣品浸入在5%NaCl鹽水溶液中168h,監(jiān)測樣品的開路電位隨浸泡時(shí)間的變化規(guī)律,如圖2所示。從圖2能夠看出,浸泡在5%NaCl溶液中后,隨著浸泡時(shí)間的增加,裸鎂合金、浸涂硅烷膜、電沉積硅烷膜樣品的開路電位分別穩(wěn)定在大約-1.67V、-1.51V和-1.39V。一般來說,防護(hù)膜層的開路電位越高,說明膜層在腐蝕介質(zhì)中越穩(wěn)定,反映了膜層的致密性越高,越能更好地阻止侵蝕性介質(zhì)對(duì)金屬基體的入侵[31-32]。據(jù)此三種樣品的耐蝕能力排序?yàn)椋弘姵练e硅烷膜>浸涂硅烷膜>裸鎂合金。由于硅烷膜對(duì)鎂合金基體主要憑借物理阻隔作用來提升其耐蝕能力,這充分證明電沉積硅烷膜在致密性、膜厚等方面顯著優(yōu)于常規(guī)浸涂硅烷膜,它能夠有效地阻滯侵蝕性粒子對(duì)鎂合金基體的侵入。
圖2 裸鎂合金、浸涂硅烷膜、電沉積硅烷膜試樣在5% NaCl水溶液中的開路電位與浸泡時(shí)間的關(guān)系Fig.2 Relationship between open circuit potential and immersion time in 5% NaCl solution for bare AZ91D magnesium alloy,conventional silane film and electrodeposited silane film samples
2.3 討論
根據(jù)當(dāng)前公認(rèn)最早應(yīng)用電化學(xué)輔助沉積技術(shù)制備防護(hù)性硅烷膜的Mandler研究組提出的“堿催化”理論[26],在陰極極化電壓的作用下,造成金屬工作電極表面附近微區(qū)O2、H2O按反應(yīng)式O2+2H2O+4e→4OH-(1)或2H2O+2e→H2+2OH-(2)發(fā)生還原反應(yīng)而生成OH-,誘發(fā)了“堿化”效應(yīng),導(dǎo)致金屬表面局部pH值升高,從而促進(jìn)硅羥基分子在金屬基體表面的吸附、縮聚成膜,但溶液整體的酸堿度并不會(huì)受到明顯的影響,換句話說,溶液的整體仍然維持相當(dāng)?shù)姆€(wěn)定性。這在某種程度上解決了硅烷成膜與溶液絮凝之間的矛盾[33]。
對(duì)于AZ91D鎂合金電沉積硅烷膜的制備來說,施加一個(gè)陰極恒電位后,OH-主要是由O2的還原產(chǎn)生,即按照反應(yīng)式(1)進(jìn)行。隨著沉積電位的負(fù)移,鎂合金表面局部微區(qū)產(chǎn)生的OH-濃度不斷增加,越來越有利于Si-OH在鎂合金基體表面的吸附、脫水縮合,形成致密的硅烷膜,提升對(duì)鎂合金基體的防護(hù)。當(dāng)沉積電位為-1.0V時(shí),所得硅烷膜的耐蝕性能最佳。但沉積電位非常負(fù)時(shí),鎂合金基體表面局部微區(qū)會(huì)按照反應(yīng)式(2),水分解產(chǎn)生越來越多的H2,在硅烷成膜的過程中,大量的H2會(huì)從膜層逸出,使得硅烷膜具有疏松多孔結(jié)構(gòu),膜層的致密性逐漸下降,為侵蝕性粒子到達(dá)基體提供了通道,硅烷膜對(duì)鎂合金的防護(hù)能力也就逐漸減弱。考慮沉積時(shí)間的影響,如果沉積時(shí)間太短,硅羥基與鎂合金基體及其自身脫水縮聚來不及充分進(jìn)行,所得硅烷膜層較薄且不致密;但過長的沉積時(shí)間可能因縮聚產(chǎn)物在鎂合金表面的吸附而惡化成膜能力[34]。當(dāng)沉積時(shí)間為15min時(shí),最有利于硅烷膜的防腐蝕效果。
(1)沉積電位對(duì)AZ91D鎂合金表面電沉積硅烷膜的耐蝕性能影響比沉積時(shí)間顯著;隨著沉積電位的負(fù)移和沉積時(shí)間的延長,硅烷膜的耐蝕性能均呈現(xiàn)先上升后下降的變化規(guī)律;當(dāng)沉積電位-1.0V、沉積時(shí)間15min時(shí),硅烷膜的耐蝕性能最佳。
(2)電沉積硅烷膜在5%NaCl溶液中的穩(wěn)定電位約為-1.39V,高于常規(guī)浸涂硅烷膜,表明電沉積硅烷膜在致密性、膜厚等方面優(yōu)于常規(guī)浸涂硅烷膜,它能更有效地阻擋侵蝕性粒子對(duì)AZ91D鎂合金基體的侵入。
[1]IKHE A B, KALE A B, JEONG J, et al. Perfluorinated polysiloxane hybridized with graphene oxide for corrosion inhibition of AZ31 magnesium alloy[J]. Corrosion Science, 2016, 109: 238-245.
[2]CUI L Y, GAO S D, LI P P, et al. Corrosion resistance of a self-healing micro-arc oxidation/ polymethyltrimethoxysilane composite coating on magnesium alloy AZ31[J]. Corrosion Science, 2017, 118: 84-95.
[3]NEZAMDOUST S, SEIFZADEHR D. Application of Ce-V/sol-gel composite coating for corrosion protection of AM60B magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(2): 352-362.
[4]徐宏妍, 第五江濤, 劉霞, 等. ZK60鎂合金在鹵化鈉溶液中的腐蝕行為研究[J]. 中國腐蝕與防護(hù)學(xué)報(bào), 2015, 35(3): 245-250.
[5]FELIU S, LLORENTE I. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability[J]. Applied Surface Science, 2015, 347: 736-746.
[6]ZURIAGA-AGUSTI E, GALIANA-ALEIXANDRE M V, BES-PIA A, et al. Pollution reduction in an eco-friendly chrome-free tanning and evaluation of the biodegradation by composting of the tanned leather wastes[J]. Journal of Cleaner Production, 2015, 87: 874-881.
[7]劉妍, 楊富巍, 張昭, 等. 鎂合金表面處理技術(shù)的研究進(jìn)展[J]. 腐蝕科學(xué)與防護(hù)技術(shù), 2013, 25(6): 518-524.
[8]RAMEZANZADEH B, RAEISI E, MAHDAVIAN M. Studying various mixtures of 3-aminopropyltriethoxysilane (APS) and tetraethylorthosilicate (TEOS) silanes on the corrosion resistance of mild steel and adhesion properties of epoxy coating[J]. International Journal of Adhesion and Adhesives, 2015, 63: 166-176.
[9]VAN SCHAFTINGHEN T, LE PEN C, TERRYN H, et al. Investigation of the barrier properties of silanes on cold rolled steel[J]. Electrochimica Acta, 2004, 49(17-18): 2997-3004.
[10]HANETHO S M, KAUS I, BOUZGA A, et al. Synthesis and characterization of hybrid aminopropyl silane-based coatings on stainless steel substrates[J]. Surface and Coatings Technology, 2014, 238: 1-8.
[11]CHEN S G, CAI Y C, ZHUANG C, et al. Electrochemical behavior and corrosion protection performance of bis-[triethoxysilylpropyl] tetrasulfide silane films modified with TiO2sol on 304 stainless steel[J]. Applied Surface Science, 2015, 331: 315-326.
[12]SERE P R, BANERA M, EGLI W A, et al. Effect on temporary protection and adhesion promoter of silane nanofilms applied on electro-galvanized steel[J]. International Journal of Adhesion and Adhesives, 2016, 65: 88-95.
[13]BEXELL U, GREHK T M. A corrosion study of hot-dip galvanized steel sheet pre-treated with γ-mercaptopropyltrimethoxysilane[J]. Surface and Coatings Technology, 2007, 201(8): 4734-4742.
[14]BERA S, ROUT T K, UDAYABHANU G, et al. Water-based & eco-friendly epoxy-silane hybrid coating for enhanced corrosion protection & adhesion on galvanized steel[J]. Progress in Organic Coatings, 2016, 101: 24-44.
[15]ZHU D Q, VAN OOIJ W J. Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl] tetrasulfide and bis-[trimethoxysilylpropyl] amine[J]. Electrochimica acta, 2004, 49(7): 1113-1125.
[16]SETH A, VAN OOIJ W J, PUOMI P, et al. Novel, one-step, chromate-free coatings containing anticorrosion pigments for metals—An overview and mechanistic study[J]. Progress in Organic Coatings, 2007, 58(2-3): 136-145.
[17]BATAN A, MINE N, DOUHARD B, et al. Evidence of covalent bond formation at the silane-metal interface during plasma polymerization of bis-1,2-(triethoxysilyl)ethane (BTSE) on aluminium[J]. Chemical Physics Letters, 2010, 493(1-3): 107-112.
[18]BERA S, ROUT T K, UDAYABHANU G, et al. Comparative study of corrosion protection of sol-gel coatings with different organic functionality on Al-2024 substrate[J]. Progress in Organic Coatings, 2015, 88: 293-303.
[19]石陽陽, 程廣貴, 張忠強(qiáng), 等. 鋁合金表面抗腐蝕薄膜的制備及性能研究[J]. 稀有金屬材料與工程, 2016, 45(4): 952-956.
[20]GONG F B, SHEN J, GAO R H, et al. Enhanced corrosion resistance of magnesium alloy by a silane-based solution treatment after an in-situ formation of the Mg(OH)2layer[J]. Applied Surface Science, 2016, 365: 268-274.
[21]ZUCCHI F, FRIGNANI A, GRASSI V, et al. Organo-silane coatings for AZ31 magnesium alloy corrosion protection[J]. Materials Chemistry and Physics, 2008, 110(2-3): 263-268.
[22]張津, 吳超云, 黃福祥, 等. AZ31B鎂合金表面硅烷處理研究[J]. 中國腐蝕與防護(hù)學(xué)報(bào), 2008, 28(3): 146-150.
[23]ZHU R L, ZHANG J, GAO W. Effect of silane on galvanic corrosion between EW75 magnesium alloy and TC4 alloy[J]. Rare Metal Materials and Engineering, 2015, 44(8): 1838-1844.
[24]胡吉明, 楊亞琴, 張鑒清, 等. 電沉積防護(hù)性硅烷薄膜的研究現(xiàn)狀與展望[J]. 中國腐蝕與防護(hù)學(xué)報(bào), 2011, 31(1): 1-9.
[25]金晶, 李旋, 儲(chǔ)成林, 等. 電化學(xué)輔助沉積KH-570硅烷對(duì)AZ31B鎂合金耐蝕性能的影響[J]. 航空材料學(xué)報(bào), 2016, 36(4): 16-23.
[26]SHACHAM R, AVNIR D, MANDLER D. Electrodeposition of methylated sol-gel films on conducting surfaces[J]. Advanced Materials, 1999, 11(5): 384-388.
[27]SHEFFER M, GROYSMAN A, MANDLER D. Electrodeposition of sol-gel films on Al for corrosion protection[J]. Corrosion Science, 2003, 45(12): 2893-2904.
[28]GANDHI J S, VAN OOIJ W J. Improved corrosion protection of aluminum alloys by electrodeposited silanes[J]. Journal of Materials Engineering and Performance, 2004, 13(4): 475-480.
[29]JIANG LL, WU L K, HU J M, et al. Electrodeposition of protective organosilane films from a thin layer of precursor solution[J]. Corrosion Science, 2012, 60(3): 309-313.
[30]HU J M, LIU L, ZHANG J Q, et al. Electrodeposition of silane films on aluminum alloys for corrosion protection[J]. Progress in Organic Coatings, 2007, 58(4): 265-271.
[31]LEE Y L, CHU Y R, LI W C, et al. Effect of permanganate concentration on the formation and properties of phosphate/permanganate conversion coating on AZ31 magnesium alloy[J]. Corrosion Science, 2013, 70: 74-81.
[32]吳海江,楊飛英,彭成章,等.鎂合金表面碳納米管/硅烷復(fù)合膜的耐蝕性能[J].邵陽學(xué)院學(xué)報(bào)(自然科學(xué)版),2016,13(3):69-75.
[33]張衛(wèi)民, 胡吉明. 硅烷膜的陰極電化學(xué)輔助沉積及其防護(hù)性能[J]. 金屬學(xué)報(bào), 2006, 42(3): 295-298.
[34]ABEL M L, WATTS J F, DIGBY R P. The adsorption of alkoxysilanes on oxidised aluminium substrates [J]. International Journal of Adhesion and Adhesives, 1998, 18(3): 179-192.
Process optimization of electrodeposited silane films on AZ91D magnesium alloy
WU Haijiang1,YANG Feiying1,XU Hongmei2,YAN Huanyuan2,WANG Xiaoming1,ZOU Lihua1,ZENG Diping1
(1.Department of Mechanical and Energy Engineering,Shaoyang University,Shaoyang 422000,China;2.College of Mechanical and Electrical Engineering,Hunan University of Science and Technology,Xiangtan 411201,China)
In order to further improve the protective effect of the conventional silane films on AZ91D magnesium alloy,which was treated in γ-aminopropyltriethoxysilane solution by electrochemical-assisted deposition.The electrodeposition parameters such as deposition potential and deposition time were optimized by orthogonal experiments.The results showed that the deposition potential had the most significant influence on the corrosion resistance of the electrodeposited silane films on AZ91D magnesium alloy.The electrodeposited silane films had the optimum corrosion resistance under the conditions of deposition potential -1.0 V and deposition time 15 min.The corrosion resistance of the electrodeposited silane films increased first and then decreased with the negative shift of deposition potential and the increase of deposition potential and deposition time.The electrodeposited silane films had better protective ability than that under the conventional silane films for AZ91D magnesium alloy.
silane film; electrochemical-assisted deposition; AZ91D magnesium alloy; orthogonal experiments; corrosion resistance
1672-7010(2017)02-0054-07
2017-01-18
湖南省自然科學(xué)基金資助項(xiàng)目(2015JJ2064);湖南省教育廳科研項(xiàng)目(15B213);邵陽市科技計(jì)劃項(xiàng)目(2016FJ07)
吳海江(1975-),男,安徽淮南人,副教授,博士,從事金屬材料腐蝕與防護(hù)研究,E-mail:haijiang_wu@126.com
TG174.4
A