• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      青海不同林分土壤微生物群落結(jié)構(gòu)(PLFA)*

      2017-04-27 06:44:16字洪標(biāo)向澤宇王根緒阿的魯驥王長庭
      林業(yè)科學(xué) 2017年3期
      關(guān)鍵詞:土壤有機(jī)碳微生物群落林型

      字洪標(biāo) 向澤宇 王根緒 阿的魯驥 王長庭

      (1.西南民族大學(xué)生命科學(xué)與技術(shù)學(xué)院 成都 610041; 2.中國科學(xué)院水利部成都山地災(zāi)害與環(huán)境研究所 成都 610041)

      ?

      青海不同林分土壤微生物群落結(jié)構(gòu)(PLFA)*

      字洪標(biāo)1向澤宇1王根緒2阿的魯驥1王長庭1

      (1.西南民族大學(xué)生命科學(xué)與技術(shù)學(xué)院 成都 610041; 2.中國科學(xué)院水利部成都山地災(zāi)害與環(huán)境研究所 成都 610041)

      【目的】研究青海省7種林分類型土壤微生物群落組成的變化規(guī)律,從微生物的角度為該區(qū)森林土壤資源的科學(xué)管理與評價以及林分結(jié)構(gòu)調(diào)整和生態(tài)系統(tǒng)更新、恢復(fù)與重建提供科學(xué)依據(jù)?!痉椒ā坷贸R?guī)實驗室分析和磷脂脂肪酸(phospholipid fatty acids, PLFAs)分析法對青海省云杉、白樺、落葉松和山楊組成的7種不同林分類型(大通青海云杉天然林A、大通白樺次生林B、湟中白樺青海云杉天然混交林C、樂都落葉松白樺天然混交林D、民和山楊人工林E、循化山楊白樺次生林F、尖扎青海云杉天然林G)表層土壤(0~20 cm)的土壤理化特征和微生物量及微生物群落結(jié)構(gòu)的組成進(jìn)行分析,并探索土壤微生物各菌群與土壤理化特性間的相關(guān)性?!窘Y(jié)果】研究區(qū)不同林分類型土壤中共檢測到17種PLFA 生物標(biāo)記,且PLFA生物標(biāo)記的種類不盡相同,在A和B林分種類最多,而G林分種類最少; 7種林分類型土壤中含量最高的PLFA生物標(biāo)記是16:0,最豐富的脂肪酸種類是飽和脂肪酸; 土壤微生物PLFA總量表現(xiàn)為B林分最高,G最低; 細(xì)菌PLFA含量總體表現(xiàn)為闊葉林最高、針闊混交林其次,針葉林最低,真菌的PLFA含量明顯表現(xiàn)為闊葉林 > 混交林 > 針葉林,且細(xì)菌的分布量顯著大于真菌; 7種林分類型土壤微生物多樣性指數(shù)Simpson指數(shù)和Shannon-Wiener指數(shù)在F和G林分中顯著小于其他類型,而McIntosh指數(shù)表現(xiàn)為A,B和D顯著大于其他處理; 主成分分析表明廣義細(xì)菌和革蘭氏陽性菌是土壤微生物群落類群的主要成分; 冗余分析表明pH值、土壤含水量和細(xì)根生物量對土壤微生物群落的影響最大,其次為土壤有機(jī)碳含量、土壤密度和凋落物現(xiàn)存量?!窘Y(jié)論】不同林分類型土壤微生物群落特征及其影響因子存在顯著差異,在管理和利用森林生態(tài)系統(tǒng)時應(yīng)考慮土壤微生物群落的變化特征,以便制定出合理的森林管理利用措施。關(guān)鍵詞: 磷脂脂肪酸(PLFAs); 微生物群落; 林型; 土壤有機(jī)碳; 青海

      土壤微生物是森林生態(tài)系統(tǒng)的重要組成部分,其參與土壤有機(jī)質(zhì)的分解、礦質(zhì)營養(yǎng)的吸收釋放、物質(zhì)循環(huán)和成土過程,并將有機(jī)物轉(zhuǎn)化為植物可利用養(yǎng)分,被認(rèn)為是土壤養(yǎng)分轉(zhuǎn)化和循環(huán)以及有機(jī)碳代謝的主要驅(qū)動力(Baldocketal., 2000; Rutiglianoetal., 2004; 牛小云等, 2015; 翟輝等, 2016)。土壤微生物對外界條件如植被、土壤、氣候等的變化十分敏感,即使在相同立地條件下,不同林分組成的群落中土壤微生物量也具有較大差異,同一種植物土壤微生物群落組成隨植物年齡以及發(fā)育階段而改變(Shillametal., 2008; Adairetal., 2013; Yangetal., 2014; 牛小云等, 2015)。因此,研究森林生態(tài)系統(tǒng)中土壤微生物群落的變化規(guī)律對于認(rèn)識生態(tài)系統(tǒng)過程和功能具有重要意義 (Zhongetal., 2010)。

      植物與微生物之間是相互聯(lián)系的,作為生產(chǎn)者的植物為土壤微生物提供碳源,而土壤微生物參與分解90%以上的枯落物以及動物殘體,將有機(jī)物轉(zhuǎn)化為植物可利用養(yǎng)分,直接為植物生長提供必需的物質(zhì)養(yǎng)分 (Walletal., 1999; 易秀等, 2011)。植被物種間的差異為土壤環(huán)境和生物群落的特異性創(chuàng)造條件(De Deynetal., 2008),因為植物物種的變化可以改變植物殘體的有機(jī)組成和產(chǎn)量,從而改變異養(yǎng)微生物群落的組成和功能(Zaketal., 2003; Hobbieetal., 2007)。植物凋落物是聯(lián)系地上和地下的橋梁,其化學(xué)組分的多樣性與土壤微生物多樣性存在正相關(guān)關(guān)系(Meieretal., 2008)。而在森林生態(tài)系統(tǒng)中優(yōu)勢種植物凋落物的可利用性和組成在很大程度上影響了土壤有機(jī)質(zhì)(Anejaetal., 2006),而土壤中異養(yǎng)微生物群落的結(jié)構(gòu)和功能主要和土壤有機(jī)質(zhì)的質(zhì)量有關(guān)(Tscherkoetal., 2005; Merilaetal., 2010)。然而,大部分土壤微生物不易培養(yǎng),研究其群落組成十分困難。但隨著微生物研究手段深入,發(fā)現(xiàn)磷脂脂肪酸 (PLFAs) 分析方法能較完整地檢測到樣品中微生物群落變化,且受微生物生理影響不大(Saetreetal., 2000),同時提供了土壤微生物生物量 (Joergensenetal., 2006) 及其群落結(jié)構(gòu)信息 (Frosteg?rdetal., 1993a),而被廣泛用于微生物群落組成的測定(王淼等, 2014; 吳則焰等, 2014; 楊君瓏等, 2015)。

      青海地處青藏高原,森林多分布在2 000~4 000 m的高海拔地區(qū),以寒溫帶針葉林為主,生態(tài)地位極其重要。青海省森林資源地帶性分布明顯,但不均勻,森林類型多但生產(chǎn)力低(盧航等, 2013)。目前,對青海森林生態(tài)系統(tǒng)結(jié)構(gòu)和功能的研究相對較少,特別是土壤微生物群落組成、多樣性對森林類型變化的響應(yīng)方面。本研究以青海云杉(Piceacrassifolia)、白樺(Betulaplatyphylla)、落葉松(Larixgmelinii)和山楊(Populusdavidiana)組成的7種林型,即大通青海云杉天然林、大通白樺次生林、湟中白樺青海云杉天然混交林、樂都落葉松白樺天然混交林、民和山楊人工林、循化山楊白樺次生混交林和尖扎青海云杉天然林,為研究對象,采用PLFAs方法研究不同森林類型土壤微生物生物量和微生物群落結(jié)構(gòu)組成的變化,旨在探討林型對土壤微生物生物量和組成的影響,了解不同林型土壤微生物群落組成變化規(guī)律,為該區(qū)森林土壤資源的科學(xué)管理與評價以及林分結(jié)構(gòu)調(diào)整和森林生態(tài)系統(tǒng)的更新、恢復(fù)與重建提供參考。

      1 研究區(qū)概況

      青海省位于青藏高原東北部(89°35′—103°4′ E, 31°39′—39°19′ N),東西長約1 200 km,南北寬約800 km,青海省土地總面積7 215.24萬hm2。其中林地面積634.00萬hm2,占8.79%; 森林面積329.56萬hm2,占林地面積51.98%,森林覆蓋率4.57%。燕山運動奠定地形復(fù)雜多樣,高山、丘陵、河谷、盆地交錯分布,平均海拔3 000 m以上,屬典型高原大陸性氣候。年均氣溫-3.7~6.0 ℃,年日照2 340~3 550 h,年降水量16.7~776.1 mm(大部分400 mm以下),年蒸發(fā)量1 118.4~3 536.2 mm(董旭, 2009)。

      2 研究方法

      2.1 試驗設(shè)計、凋落物收集、土樣和細(xì)根采集

      在青海省大通縣、湟中縣、樂都縣、民和縣、循化縣和尖扎縣分別選取大通青海云杉天然林(A)、大通白樺次生林(B)、湟中白樺青海云杉天然混交林(C)、樂都落葉松白樺天然混交林(D)、民和山楊人工林(E)、循化山楊白樺次生混交林(F)和尖扎青海云杉天然林(G)7種林分類型,各林分類型概況見表1,林齡、平均胸徑和平均樹高見表2。在每種林型下,隨機(jī)設(shè)置3塊間距大于100 m的 50 m × 20 m樣地。于2011年7—8月在每塊樣地內(nèi)收集3個1 m × 1 m樣方的凋落物,用來測定凋落物現(xiàn)存量。在每塊樣地內(nèi)用土鉆法(直徑5 cm)隨機(jī)采集表層土壤(0~20 cm)樣品各9個,每塊樣地的9個土樣充分混合均勻,裝入無菌袋中用冰盒帶回實驗室,并過2 mm篩后挑取土壤中的殘留根系、石塊及其他雜質(zhì)后,將土壤分成2部分: 一部分土樣風(fēng)干后用于土壤理化性質(zhì)的測定; 另一部分土樣保存于-80 ℃超低溫冰箱內(nèi),用于磷脂脂肪酸(phospholipid fatty acids,PLFAs)測定。細(xì)根生物量采用土鉆法,在每塊樣地隨機(jī)取30個土鉆,每10個土鉆混合為1個樣品,清水沖洗得到根系樣品。

      表1 研究區(qū)概況

      表2 各林分類型的林齡、平均胸徑和平均樹高

      2.2 土壤理化性質(zhì)、細(xì)根生物量和凋落物現(xiàn)存量的測定

      土壤有機(jī)碳含量測定采用重鉻酸鉀加熱法; 土壤含水量測定采用烘干法; pH 值測定采用電位法(水∶土=2.5∶1); 土壤密度測定采用環(huán)刀法; 細(xì)根生物量采用土鉆法; 凋落物現(xiàn)存量采用收獲法; 細(xì)根生物量和凋落物現(xiàn)存量測定方法為在65 ℃烘干稱恒質(zhì)量(中國科學(xué)院南京土壤研究所, 1983; 王長庭等, 2010; 李立平等, 2004)。

      2.3 磷脂脂肪酸的測定

      PLFA的測定方法采用改進(jìn)的Bligh-Dyer方法(Blighetal., 1959),以酯化C19: 0為內(nèi)標(biāo),用Agilent 7890A/5975C氣相色譜質(zhì)譜聯(lián)用儀對提取出來的脂肪酸進(jìn)行分析。磷脂脂肪酸(PLFA)的命名采用Frosteg?rd方法命名(Frosteg?rdetal., 1993a)。根據(jù)已有的研究結(jié)果,指示特定微生物的PLFA標(biāo)記物如表3。土壤微生物含量的標(biāo)定與計算參照劉波等(2010)所介紹的方法。

      表 3 微生物類型的生物標(biāo)記

      用所測得的PLFA數(shù)據(jù)計算多樣性指數(shù)(孫海新等, 2004),Shannon-Wiener指數(shù)(H)計算公式為:

      式中:Pi=Ni/N,Ni為第i種磷脂脂肪酸含量,N為該實驗中所有磷脂脂肪酸含量總和;S為同一樣品中檢測出的脂肪酸甲酯的種數(shù)。

      Simpson指數(shù)(D)計算公式為:

      Margalef物種豐富度指數(shù)(M)計算公式為:

      M=(S-1)/lnN。

      2.4 數(shù)據(jù)分析

      試驗數(shù)據(jù)均在SPSS 16.0和Canoco for windows 4.5軟件中進(jìn)行統(tǒng)計分析,統(tǒng)計圖形在Origin 8.0中繪制。采用單因素方差(one-way ANOVA)分析林分類型對土壤理化性質(zhì)、微生物生物量和微生物群落多樣性的影響; 采用Canoco 4.5中的線性冗余分析(redundancy analysis,RDA)來解釋土壤環(huán)境因子與微生物特性間的關(guān)系,分析前數(shù)據(jù)進(jìn)行l(wèi)g(X+1)轉(zhuǎn)換,使用Monte Carlo置換進(jìn)行顯著性檢驗(P< 0.05); 采用Pearson相關(guān)分析檢測土壤微生物群落特征與微生物多樣性指數(shù)的關(guān)系。

      3 結(jié)果與分析

      3.1 土壤理化性質(zhì)、細(xì)根生物量和凋落物現(xiàn)存量

      由表4可知,土壤有機(jī)碳含量表現(xiàn)為A > G > C > F > B > D > E,其中A最大為116.4 g·kg-1,E最小僅為37.24 g·kg-1,且表現(xiàn)出天然針葉林>闊葉、闊葉混交次生林>針闊混交天然林>人工林。土壤pH值表現(xiàn)為F和G為堿性,其他類型為酸性。土壤密度表現(xiàn)為D > E > B > A > C > F > G,其中最大D達(dá)到1.63 g·kg-1,最小G僅為0.53 g·cm-3。土壤含水量差異顯著,表現(xiàn)為B > A > C > G > D > E > F。細(xì)根生物量表現(xiàn)出A和C最大,B和D最小。凋落物現(xiàn)存量表現(xiàn)為D > B > C > G > F > A > E,最大D達(dá)到879.75 g· m-2,最小E僅為203.23 g· m-2。

      表4 不同林分土壤理化性質(zhì)、細(xì)根生物量和凋落物現(xiàn)存量①

      ①同行相同字母表示差異不顯著(P> 0.05),不同字母表示差異顯著(P< 0.05)。下同。The same letters in the same row indicate no significant difference (P>0.05),and different letters indicate significant difference (P< 0.05).The same below.

      3.2 土壤微生物群落PLFA圖譜和主成分分析

      本研究中不同林型土樣共檢測出17種磷脂脂肪酸(PLFAs),碳鏈長度為C13~C18,包含各種飽和脂肪酸、不飽和脂肪酸、甲基化分支脂肪酸和環(huán)丙烷脂肪酸生物標(biāo)記。在A和G中PLFAs的主要類型是代表革蘭氏陽性菌的a14:0、代表革蘭氏陰性菌的16:1ω9c和代表廣義細(xì)菌的16:0,這3種類型之和分別占A和G林分PLFAs總量的69.07%和70.40%。在B和C中PLFAs的主要類群是代表革蘭氏陽性菌的i14:0、代表革蘭氏陰性菌的16:1ω9c和廣義細(xì)菌的16:0,這3種類型之和分別占B和C林分PLFAs總量的67.93%和69.08%。D中PLFAs的主要類群是代表革蘭氏陽性菌的i14:0,代表廣義細(xì)菌的15:0和16:0,這3種類型之和占PLFAs總量的64.92%。E中的主要類群是代表廣義細(xì)菌的15:0和16:0,這2種類型之和占PLFAs總量的51.95%。F中PLFAs的主要類群是代表革蘭氏陰性菌的16:1ω9c,代表廣義細(xì)菌的15:0和16:0,這3種類型之和占PLFAs總量的74.84%。在所有檢測的土壤樣品中,16:0的檢測值均為最大,其含量為8.68~30.13 nmol·g-1; 碳飽和脂肪酸是土樣中含量最豐富的脂肪酸種類的,其相對含量為69.60%~85.89%(表5)。結(jié)果表明,不同林分類型其土壤微生物群落存在差異,但是林分組成相似的群落其土壤微生物優(yōu)勢類群也基本相同。此外,16:0是青海森林主要土壤微生物類群,最主要的脂肪酸種類是飽和脂肪酸。

      對7種不同林分類型土壤微生物群落PLFAs進(jìn)行主成分分析,結(jié)果表明: 第1主成分(PC1)的貢獻(xiàn)率為56.3%,主成分2(PC2)的貢獻(xiàn)率為21.0%,累積貢獻(xiàn)率為77.3%(圖 1),表明前2個主成分是解釋土壤微生物群落變異的主要貢獻(xiàn)者。PCA圖中代表不同林分類型的土壤微生物群落PLFAs分布于不同區(qū)域,表明微生物群落組成在不同林分類型存在差異。其中,B和C平行樣本分布區(qū)域有所混雜,說明這2個林分類型土壤微生物群落差異較小。其余5個林分類型各自分布在不同區(qū)域,說明它們之間微生物差異較大。17種磷脂脂肪酸中與PC1顯著相關(guān)的有11種,其中代表廣義細(xì)菌的有15:0,16:0和17:0,代表革蘭氏陽性菌的有i13:0,i14:0,i15:0和i16:0,代表革蘭氏陰性菌的有16:1ω9c和cy16:0,代表真菌的有18:1ω9t和18:2ω9,12t; 與PC2顯著相關(guān)的有4種,其中代表廣義細(xì)菌的有14:0,代表革蘭氏陽性菌的有a14:0和a16:0,代表革蘭氏陰性菌的有18:1ω11t。主成分分析表明廣義細(xì)菌和革蘭氏陽性菌是土壤微生物群落類群的主要成分。

      3.3 土壤微生物各菌群PLFA含量變化

      由表6可知,不同林型土壤微生物各菌群PLFA含量和微生物總量均有差異。B的微生物總量和細(xì)菌含量均最高,分別為為112.07和100.67 nmol·g-1,G最低,分別為22.42和21.09 nmol·g-1。不同林型土樣的微生物總量表現(xiàn)為B>C,E>A>D>F,G,革蘭氏陽性菌含量表現(xiàn)為B>C>A>E,D>G>F,革蘭氏陰性菌含量表現(xiàn)為B>C,A>E>F,D,G; 真菌含量則表現(xiàn)為B>C>E>D,F(xiàn),A,G。

      表5 不同林型土壤微生物的PLFA含量

      項目ItemABCDEFGPLFA總量TotalcontentofPLFAs/(nmol·g-1)59 84±7 37a112 07±8 58b78 72±7 69c47 75±3 24d76 94±1 09c28 19±2 05e22 42±2 15e革蘭氏陽性菌含量Contentofgrampositivebacteria/(nmol·g-1)17 90±2 17a38 83±2 87b26 93±1 81c9 46±0 67d11 79±1 54d1 03±0 19e4 26±0 26f革蘭氏陰性菌含量Contentofgramnegativebacteria/(nmol·g-1)11 95±2 67a22 68±2 00b13 17±2 24a4 26±1 11c7 61±1 63d4 32±0 31c3 61±0 53c細(xì)菌含量Contentofbacteria/(nmol·g-1)58 33±7 33a100 67±7 38b72 42±6 59c45 28±3 33d72 68±0 37c26 37±2 26e21 09±1 96e真菌含量Contentoffungi/(nmol·g-1)1 51±0 05a11 39±1 36b6 30±1 10c2 47±0 49a4 25±0 87d1 82±0 27a1 33±0 21a

      不同林型土壤微生物群落中不同菌群PLFAs比值不同,各菌群的比值可反映微生物不同菌群相對含量和種群相對豐度的變化(圖 2)。其中細(xì)菌與真菌的比值表現(xiàn)為A>D>E>G>F>C>B,B的細(xì)菌與真菌脂肪酸比值最低,為8.87,A的細(xì)菌與真菌脂肪酸比值則最高,為38.51; 飽和脂肪酸與不飽和脂肪酸的比值表現(xiàn)為D>E>F>G>A>C>B,其中在D最高,B最低; 革蘭氏陽性菌與革蘭氏陰性菌的比值則表現(xiàn)為D>C>B>E>A>G>F,且F顯著小于其他林分類型。

      3.4 土壤微生物多樣性

      用Simpson多樣性指數(shù)、Shannon-Wiener多樣性指數(shù)和Margalef物種豐富度指數(shù)綜合描述不同林分土壤微生物群落特征,進(jìn)一步揭示土壤微生物的多樣性,結(jié)果見圖 3。從圖3可以看出多樣性在F和G顯著小于其他林分(P< 0.05); A和B物種豐富度指數(shù)與D均無顯著差異(P> 0.05),但C,E,G< F < B

      由表7可知,Simpson指數(shù)和Shannon-Winner多樣性指數(shù)與磷脂脂肪酸總量、細(xì)菌PLFA含量、真菌PLFA含量、革蘭氏陽性菌PLFA含量、革蘭氏陰性菌PLFA含量以及革蘭氏陽性菌PLFA含量與革蘭氏陰性菌PLFA含量比值、飽和脂肪酸PLFA含量、不飽和脂肪酸PLFA含量顯著正相關(guān),而Margalef物種豐富度指數(shù)與細(xì)菌PLFA含量/真菌PLFA含量顯著正相關(guān)。

      3.5 土壤微生物與土壤理化性質(zhì)、細(xì)根生物量和凋落物現(xiàn)存量的關(guān)系

      由土壤微生物群落特征與環(huán)境變量的RDA分析(圖 4, 表 8)可知,6個環(huán)境變量共解釋了土壤微生物群落特征變異的87.7%,基于所有典范特征值的Monte Carlo置換檢驗表明微生物群落特征與環(huán)境變量之間顯著相關(guān)(P=0.002)。RDA排序結(jié)果表明環(huán)境因子變量很好地解釋了土壤微生物群落特征的變異,RDA前2軸(74.2%和7.3%)解釋的變異量比后2軸(4.1%和2.1%)多,說明前2軸是解釋土壤微生物群落特征組成變異的主要貢獻(xiàn)者。與RDA第一排序軸顯著相關(guān)的是pH值(P< 0.001)、含水量(P< 0.001)和細(xì)根生物量(P< 0.05),pH值(P< 0.05)還與RDA第二軸顯著相關(guān),與RDA第三軸顯著相關(guān)的是有機(jī)碳含量(P< 0.001)、密度(P< 0.001)、含水量(P< 0.05)和凋落物現(xiàn)存量(P< 0.05); 說明RDA 1軸主要代表了pH值、含水量和細(xì)根生物量,RDA 3軸主要代表了有機(jī)碳含量、密度和凋落物現(xiàn)存量。

      圖2 不同林分土壤微生物不同菌群PLFAs比值Fig.2 Ratios of the different microbial groups PLFAs content in different stand types相同字母表示差異不顯著(P > 0.05),不同字母表示差異顯著(P < 0.05)。下同。The same letters indicate no significant difference (P > 0.05), and different letters indicate significant difference (P < 0.05).The same below.

      圖 3 不同林分土壤微生物群落多樣性Fig.3 Diversity of microbial communities in soils under different forest types

      4 討論

      研究土壤中PLFAs 總濃度變化、特征脂肪酸的組分差異,可深人了解微生物群落結(jié)構(gòu)的變化。因為PLFAs含量提供了土壤中的微生物量信息(Frosteg?rdetal., 1991),特征脂肪酸的組分則可表征微生物群落結(jié)構(gòu)(Frosteg?rdetal., 1993b)。本研究中,由云杉、白樺、落葉松和山楊4種常見樹種組成的7種不同林分的土壤微生物群落結(jié)構(gòu)和組分含量存在顯著差異。一方面是不同林分類型的土壤有機(jī)碳的積累和儲存是不同的(丁訪軍等, 2012; 向澤宇等, 2014),從而造成養(yǎng)分含量差異,而土壤微生物群落的代謝活性以及組成在很大程度上是由生物地球化學(xué)循環(huán)、土壤有機(jī)物的代謝過程以及土壤的肥力和質(zhì)量等因素所決定(胡雷等, 2015)。另一方面,土壤微生物的群落特征受到植物物種、植物根系及根系分泌物等因素的影響(Zaketal., 2003),而本研究正是在不同林分條件下進(jìn)行研究,林分組成存在差異,進(jìn)而造成微生物群落結(jié)構(gòu)差異。此外,不同的土壤環(huán)境條件和林分特征(植被屬性)反應(yīng)不同功能群的土壤微生物,并以特定的方式影響土壤微生物群落的組成。樹木還能影響林下植被群落的組成,林下植被群落也可以和土壤微生物相互作用,從而間接影響土壤微生物(Prescottetal., 2013)。

      表7 微生物群落特征指標(biāo)和多樣性指數(shù)相關(guān)性①

      ①*: ɑ=0.05; **: ɑ=0.01; *** : ɑ=0.001。下同The same below.

      圖 4 土壤微生物群落特征與環(huán)境變量間的RDA分析Fig.4 RDA analysis of between the soil microbial properties and the environmental variablesOC: 土壤有機(jī)碳含量Soil organic carbon content;SM: 土壤含水量Soil moisture content;Soil density:土壤密度; Root: 細(xì)根生物量Fine root biomass; Litter: 凋落物現(xiàn)存量Litter standing crop; M: Margalef指數(shù)Margalef index; D: Simpson指數(shù)Simpson index; H: Shannon-Wiener指數(shù)Shannon-Wiener index; PLFA: PLFA總量Total content of PLFAs; G+: 革蘭氏陽性菌含量Content of gram positive bacteria; G-: 革蘭氏陰性菌含量Content of gram negative bacteria; G+/G-: 革蘭氏陽性菌與陰性菌含量比值Ratio of content of gram positive bacteria to gram negative bacteria; BACT: 細(xì)菌含量Content of bacterial; FUNG: 真菌含量Content of fungi; BACT/FUNG: 細(xì)菌含量與真菌含量比值Ratio of content of bacteria to fungi; SFA: 飽和脂肪酸含量Content of saturated fatty acid; UFA: 不飽和脂肪酸含量Content of unsaturated fatty acid; SFA/UFA: 飽和脂肪酸與不飽和脂肪酸含量比值Ratio of content of saturated fatty acid to unsaturated fatty acid.

      表8 環(huán)境變量與RDA排序軸的相關(guān)系數(shù)、特征值及變異解釋

      植物與土壤微生物之間的相互依存關(guān)系,植物通過其凋落物、根系分泌物為土壤微生物提供營養(yǎng),導(dǎo)致植物和微生物之間的協(xié)同進(jìn)化,促進(jìn)土壤微生物的多樣性。例如,闊葉和針葉植被的生化組成、植被物種間的差異,植物多樣性的改變能夠引起植物生物量、凋落物量及其有機(jī)組分的變化,會影響微生物群落組成和功能(蔣婧等, 2010; De Deynetal., 2008)。本研究也發(fā)現(xiàn),針葉林(如A和G)的真菌生物量最低,闊葉林(如B,C和E)細(xì)菌生物量最高,說明了針葉林和闊葉林間土壤微生物群落組成存在差異。造成原因可能是有些植物凋落物中含有抑制細(xì)菌活動的酚、醛等成分,從而間接地影響凋落物的分解率(Gordon, 1998)。另外,富含低分子酚類化合物的凋落物,進(jìn)入土壤后控制著真菌占優(yōu)勢的微生物對氮的固持,加劇了低養(yǎng)分的狀況(Wilsonetal., 1992); 而富含碳水化合物和糖類的凋落物,促進(jìn)了細(xì)菌占優(yōu)勢的食物網(wǎng),提高了生境的養(yǎng)分狀況會促進(jìn)細(xì)菌的生長(Wardle, 1999; Bardgettetal., 2005)。因此,林型(針葉林、闊葉林和針闊混交林)不同,植物組成不同進(jìn)而引起凋落物及其分解速率的變化,造成回歸土壤中養(yǎng)分的質(zhì)量和數(shù)量產(chǎn)生差異,從而影響了微生物群落的組成和多樣性。

      有研究表明: 細(xì)根對水分和養(yǎng)分有很強的吸收作用(Rosenvaldetal., 2011),植物本身的化學(xué)組成和特征制約著枯落物的分解和礦化過程,從而影響著植物的養(yǎng)分歸還(郭雪蓮等, 2007)。不同土地利用類型/不同林分類型間的土壤細(xì)菌群落組成和多樣性有顯著差異; 而且細(xì)菌群落結(jié)構(gòu)在很大程度上受樹種和土壤 pH值影響(Heikoetal., 2011),水分含量波動可以改變土壤微生物群落結(jié)構(gòu)(Drenovskyetal., 2004)。本研究中,7 種林分下土壤 pH 值、含水量、密度、養(yǎng)分含量和細(xì)根生物量等的組成和空間分布均有顯著差異。如土壤有機(jī)質(zhì)和全氮含量表現(xiàn)為 A,G>C>F>B>D>E(向澤宇等, 2014),表明不同林木生長對有機(jī)碳和全氮含量的影響表現(xiàn)為青海云杉>白樺>山楊>落葉松。不同林分類型間土壤碳含量各異,北美云杉(Piceasitchensis)林和西部鐵杉(Tsugaheterophylla)林的土壤碳含量最高,而美國黃松(Pinusponderosa)林土壤碳含量最低(Osbertetal., 2004)。不同林分對土壤堿解氮含量的影響也表現(xiàn)為青海云杉>白樺>山楊>落葉松,林分類型影響森林地表氮素的轉(zhuǎn)化(向澤宇等, 2014)。不同林分對細(xì)根生物量的影響表現(xiàn)為A,C>E,F(xiàn),G>B,D,但密度、pH 值影響沒有表現(xiàn)出明顯的規(guī)律性??傊? 種不同林木生長對土壤養(yǎng)分積累與分布的影響表現(xiàn)為青海云杉>白樺>山楊>落葉松。闊葉林和針葉林對土壤質(zhì)量的影響不同(Saetre, 1999),而且云杉作為青海特有的優(yōu)勢樹種對土壤養(yǎng)分的改良及土壤生態(tài)的維持具有重要意義(劉曉敏, 2012)。

      5 結(jié)論

      本研究利用PLFA法分析青海7種林分類型土壤微生物結(jié)構(gòu)特征變化規(guī)律,發(fā)現(xiàn)土壤微生物PLFA含量表現(xiàn)為闊葉林 > 混交林 > 針葉林,且林分類型越接近其土壤微生物群落組成也越相近; 不同林分類型其土壤微生物群落結(jié)構(gòu)多樣性存在顯著差異。

      PLFA法分類水平較低,且無法精確到微生物種的水平,從而限制了對更多土壤微生物群落信息的認(rèn)識。因此,在今后的研究中應(yīng)該結(jié)合其他檢測方法(如高通量測序技術(shù))開展土壤微生物群落多樣性研究。

      陳振翔, 于 鑫, 夏明芳, 等. 2005. 磷脂脂肪酸分析方法在微生物生態(tài)學(xué)中的應(yīng)用. 生態(tài)學(xué)雜志, 24(7): 828-832.

      (Chen Z X, Yu X, Xia M F,etal. 2005. Application of phospholipid fatty acid (PLFA) analysis in microbial ecology. Chinese Journal of Ecology, 24(7):828-832. [in Chinese])

      丁訪軍, 潘忠松, 周鳳嬌,等. 2012. 黔中喀斯特地區(qū)3種林型土壤有機(jī)碳含量及垂直分布特征. 水土保持學(xué)報, 26(1):161-164.

      (Ding F J, Pan Z S, Zhou F J,etal. 2012. Organic carbon contents and vertical distribution characteristics of the soil in three forest types of the karst regions in central Guizhou Province. Journal of Soil & Water Conservation, 26(1):161-614. [in Chinese])

      董 旭. 2009. 青海省森林資源評價. 安徽農(nóng)業(yè)科學(xué), 37(12):5727-5728.

      (Dong X. 2009. Evaluation of forest Resources in Qinghai Province. Journal of Anhui Agricultural Sciences, 37(12):5727-5728. [in Chinese])

      郭雪蓮, 呂憲國, 郗 敏. 2007. 植物在濕地養(yǎng)分循環(huán)中的作用. 生態(tài)學(xué)雜志, 26(10): 1628-1633.

      (Guo X L, Lü X G, Qie M. 2007. Roles of plant in nutrient cycling in wetland. Chinese Journal of Ecology, 26(10):1628-1633. [in Chinese])

      胡 雷, 阿的魯驥, 字洪標(biāo),等. 2015. 高原鼢鼠擾動及恢復(fù)年限對高寒草甸土壤養(yǎng)分和微生物功能多樣性的影響. 應(yīng)用生態(tài)學(xué)報, 26(9):2794-2802.

      (Hu L, Ade L J, Zi H B,etal. 2015. Effects of plateau zokor disturbance and restoration years on soil nutrients and microbial functional diversity in alpine meadow. Chinese Journal of Applied Ecology, 26(9):2794-2802. [in Chinese])

      蔣 婧,宋明華. 2010. 植物與土壤微生物在調(diào)控生態(tài)系統(tǒng)養(yǎng)分循環(huán)中的作用. 植物生態(tài)學(xué)報, 34 (8): 979-988.

      (Jiang J, Song M H. 2010. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling. Chinese Journal of Plant Ecology, 34 (8): 979-988. [in Chinese])

      李立平, 張佳寶, 朱安寧, 等. 2004. 土壤養(yǎng)分有效性測定及其方法. 土壤通報, 35(1): 84-90.

      (Li L P, Zhang J B, Zhu A N,etal. 2004. Soil nutrition availability and testing methods. Chinese Journal of Soil Science, 35(1):84-90. [in Chinese])

      劉 波, 胡桂萍, 鄭雪芳,等. 2010. 利用磷脂脂肪酸(PLFAs)生物標(biāo)記法分析水稻根際土壤微生物多樣性. 中國水稻科學(xué), 24(3):278-288.

      (Liu B, Hu G P, Zheng X F,etal. 2010. Analysis on microbial diversity in the rhizosphere of rice by phospholipid fatty acids biomarkers. Chinese Journal of Rice Science, 24(3):278-288. [in Chinese])

      劉曉敏. 2012. 祁連山青海云杉林土壤理化性質(zhì)的空間變異性研究. 蘭州: 甘肅農(nóng)業(yè)大學(xué)碩士學(xué)位論文.

      (Liu X M. 2012. Spatial variation of soil physical and chemical properties inPiceacrassifoliaforest of Qilian Mountain. Lanzhou:MS thesis of Gansu Agricultural University. [in Chinese])

      盧 航, 劉 康, 吳金鴻. 2013. 青海省近20年森林植被碳儲量變化及其現(xiàn)狀分析. 長江流域與資源, 22(10): 1333-1338.

      (Lu H, Liu K, Wu J H. 2013. Change of carbon storage in forest vegetation and current situation analysis of Qinghai Pronvince in reccent 20 years. Resources & Environment in the Yangtze Basin, 22(10):1333-1338. [in Chinese])

      牛小云, 孫曉梅, 陳東升, 等. 2015. 遼東山區(qū)不同林齡日本落葉松人工林土壤微生物、養(yǎng)分及酶活性. 應(yīng)用生態(tài)學(xué)報, 26(9):2663-2672.

      (Niu X Y, Sun X M, Chen D S,etal. 2015.Soil microorganisms, nutrients and enzyme activity ofLarixkaempferiplantation under different ages in mountainous region of eastern Liaoning Province, China. Chinese Journal of Applied Ecology, 26(9):2663-2672. [in Chinese])

      王長庭, 龍瑞軍, 王根緒, 等. 2010. 高寒草甸群落地表植被特征與土壤理化性狀、土壤微生物之間的相關(guān)性研究. 草業(yè)學(xué)報, 19(6): 25-34.

      (Wang C T, Long R J, Wang G X,etal. 2010. Relationship between plant communities, characters, soil physical and chemical properties, and soil microbiology in alpine meadows. Acta Prataculturae Sinica, 19(6): 25-34. [in Chinese])

      王 淼, 曲來葉, 馬克明, 等. 2014. 罕山土壤微生物群落組成對植被類型的響應(yīng). 生態(tài)學(xué)報, 34(22): 6640-6654.

      (Wang M, Qu L Y, Ma K M,etal. 2014. Response of soil microbial community composition to vegetation types. Acta Ecologica Sinica, 34(22):6640-6654. [in Chinese])

      吳則焰, 林文雄, 陳志芳, 等. 2014. 武夷山不同海拔植被帶土壤微生物 PLFA 分析. 林業(yè)科學(xué), 50(7): 105-112.

      (Wu Z Y, Lin W X, Chen Z F,etal. 2014. Phospholipid fatty acid analysis of soil microbes at different elevation of Wuyi mountains. Scientia Silvae Sinicae, 50(7):105-112. [in Chinese])

      向澤宇, 張 莉, 張全發(fā), 等. 2014. 青海不同林分類型土壤養(yǎng)分與微生物功能多樣性. 林業(yè)科學(xué), 50(4): 22-31.

      (Xiang Z Y, Zhang L, Zhang Q F,etal. 2014. Soil nutrients and microbial functional diversity of different stand types in Qinghai Province. Scientia Silvae Sinicae, 50(4):22-31. [in Chinese])

      楊君瓏, 付曉莉, 馬澤清, 等. 2015. 中亞熱帶5種類型森林土壤微生物群落特征. 環(huán)境科學(xué)研究, 28(5): 720-727.

      (Yang J L, Fu X L, Ma Z Q,etal. 2015. Characteristics of soil microbial community in five forest types in mid-subtropical China. Research of Environmental Sciences, 28(5): 720-727. [in Chinese])

      易 秀, 谷曉靜, 侯燕卿, 等. 2011. 陜西省涇惠渠灌區(qū)土壤肥力質(zhì)量綜合評價. 干旱區(qū)資源與環(huán)境, 25(2): 132-137.

      (Yi X, Gu X J, Hou Y Q,etal. 2011. Comprehensive assessment on soil fertility quality in Jinghuiqu irrigation district of Shaanxi Province. Journal of Arid Land Resources & Environment, 25(2): 132-137. [in Chinese])

      于 樹, 汪景寬, 李雙異. 2008. 應(yīng)用PLFA方法分析長期不同施肥處理對玉米地土壤微生物群落結(jié)構(gòu)的影響. 生態(tài)學(xué)報, 28(9): 4221-4227.

      (Yu S, Wang J K, Li S Y. 2008. Effect of long-term fertilization on soil microbial community structure in corn field with the method of PLFA. Acta Ecologica Sinica, 28(9): 4221-4227. [in Chinese])

      翟 輝, 張 海, 張 超, 等. 2016. 黃土峁?fàn)钋鹆陞^(qū)不同類型林分土壤微生物功能多樣性. 林業(yè)科學(xué), 52(12): 84-91.

      (Zhai H, Zhang H, Zhang C,etal. Soil microbial functional diversity in different types of stands in the hilly-gully regions of Loess Plateau. Scientia Silvae Sinicae, 52(12): 84-91. [in Chinese])

      中國科學(xué)院南京土壤研究所. 1983. 土壤理化分析. 上海: 上??茖W(xué)技術(shù)出版社.

      (Nanjing Institute of Soil Science, Chinese Academy of Sciences. 1983. Analysis of soil physical-chemical feature. Shanghai: Shanghai Science and Technology Press. [in Chinese])

      Adair K L, Steve W, Gavin L. 2013. Soil phosphorus depletion and shifts in plant communities change bacterial community structure in a long-term grassland management trial. Environmental Microbiology Reports, 5(3):404-413.

      Aneja M K, Sharma S, Fleischmann F,etal. 2006. Microbial colonization of beech and spruce litter-influence of decomposition site and plant litter species on the diversity of microbial community. Microbial Ecology, 52(1): 127-135.

      Baldock J A. 2000. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochemistry, 31(7/8):697-710.

      Bardgett R D, Bowman W D, Kaufmann R,etal. 2005. A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20(11):634-41.

      Bligh E G, Dyer W J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8): 911-917.

      De Deyn G B, Cornelissen J H C, Bardgett R D. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecological Letters, 11(5): 516-531.

      Drenovsky R E, Vo D, Graham K J,etal. 2004. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microbial Ecology, 48(3): 424-430.

      Frosteg?rd ?, B??th E, Tunlid A. 1993a. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty-acid analysis. Soil Biology & Biochemistry, 25(6): 723-730.

      Frosteg?rd A, Tunlid A, Baath E. 1993b. Phospholipid fatty-acid composition, biomass, and activity of microbial communities from 2 soil types experimentally exposed to different heavy-metals. Applied and Environmental Microbiology, 59(11): 3605-3617.

      Frosteg?rd J, Haegerstrand A, Gidlund M,etal. 1991. Biologically modified LDL increases the adhesive properties of endothelial cells. Atherosclerosis, 90(2/3): 119-126.

      Gordon D R. 1998. Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida. Ecological Applications, 8(4): 975-989.

      Heiko N, Andrea T, Antje W,etal. 2011. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One, 6(2):e17000.

      Hobbie S E, Ogdahl M, Chorover J,etal. 2007. Tree species effects on soil organic matter dynamics: the role of soil cation composition. Ecosystems, 10(6): 999-1018.

      Joergensen R G, Emmerling C. 2006. Methods for evaluating human impact on soil microorganisms based on their activity, biomass,and diversity in agricultural soils. Journal of Plant Nutrition and Soil Science, 169(3): 295-309.

      Joergensen R G, Potthoff M. 2005. Microbial reaction in activity, biomass and community structure after long-term continuous mixing of a grassland soil. Soil Biology & Biochemistry, 37(7): 1249-1258.

      Kimura M, Asakawa S. 2006. Comparison of community structures of microbiota at main habitats in rice field ecosystems based on phospholipid fatty acid analysis. Biology and Fertility of Soils, 43(1): 20-29.

      Meier C L, Bowman W D. 2008. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proceedings of the National Academy of Sciences of the United States of America, 105(50): 19780-19785.

      Merila P, Malmivaara-Lamsa M, Spetz P,etal. 2010. Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest. Applied Soil Ecology, 46(2): 259-267.

      Ohansen A, Olsson S. 2005. Using phospholipid fatty acid technique to study short term effects of the biological control agentPseudomonasfluorescensDR54 on the microbial microbiota in barley rhizosphere. Microbiology Ecology, 49(2): 272-281.

      Osbert J S, John C, Beverly E L,etal. 2004. Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest, USA. Global Change Biology, 10(9):1470-1481.

      Prescott C E, Grayston S J. 2013. Tree species influence on microbial communities in litter and soil: current knowledge and research needs. Forest Ecology and Management, 309(4): 19-27.

      Rosenvald K, Kuznetsova T, Ostonen I,etal. 2011. Rhizosphere effect and fine-root morphological adaptations in a chronosequence of silver birch stands on reclaimed oil shale post-mining areas. Ecological Engineering, 37(7): 1027-1034.

      Rutigliano F A, Ascoli R D, Virzo De Santo A. 2004. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biology & Biochemistry, 36(11): 1719-1729.

      Saetre P, B??th E. 2000. Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand. Soil Biology & Biochemistry, 32(7): 909-917.

      Saetre P. 1999. Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand. Ecography, 22(2): 183-192.

      Shillam L, Hopkins D W, Badalucco L,etal. 2008. Structural diversity and enzyme activity of volcanic soils at different stages of development and response to experimental disturbance. Soil Biology & Biochemistry, 40(9):2182-2185.

      Tscherko D, Hammesfahr U, Zeltner G,etal. 2005. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic and Applied Ecology, 6(4): 367-383.

      Vestal J R, White D C. 1989. Lipid analysis in microbial ecology: quantitative approaches to the study of microbial communities. Bioscience, 39(8): 535-541.

      Wall D H, Moore J C. 1999. Interactions underground: soil biodiversity, mutualism, and ecosystem process. BioScience, 49(2): 109-117.

      Wardle D A, Yeates G W, Nicholson K S,etal. 1999. Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period. Soil Biology & Biochemistry, 31(12): 1707-1720.

      White P S. 1979. Pattern, process and natural disturbance in vegetation. The Botanical Review, 45(3): 229-299.

      Wilson J B, Agnew A D Q. 1992. Positive-feedback switches in plant communities. Advances in Ecological Research, 23(6): 263-336.

      Yang Q, Lei A P, Li F L,etal. 2014. Structure and function of soil microbial community in artificially plantedSonneratiaapetalaandS.caseolarisforests at different stand ages in Shenzhen Bay, China. Marine Pollution Bulletin, 85(2):754.

      Zak D R, Holmes W E, White D C,etal. 2003. Plant diversity, soil microbial communities, and ecosystem function: are there any links?. Ecology, 84(8): 2042-2050.

      Zelles L, Bai Q Y, Rackwits R,etal. 1995. Determination of phospholipid and lipopolysaccharide-derived fatty acids as an estimated of microbial biomass and community structure in soils. Biology and Fertility of Soils, 19(2/3): 115-123.

      Zhong W H, Gu T, Wang W,etal. 2010. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant and Soil, 326(1): 511-522.

      (責(zé)任編輯 于靜嫻)

      Profile of Soil Microbial Community under Different Stand Types in Qinghai Province

      Zi Hongbiao1Xiang Zeyu1Wang Genxu2Ade Luji1Wang Changting1

      (1.CollegeofLifeScienceandTechnology,SouthwestUniversityforNationalitiesChengdu610041; 2.InstituteofMountainHazardsandEnvironment,CASChengdu610041)

      【Objective】Seven natural stand types were investigated to understand the soil microbial community. The main forest species werePiceacrassifolia,Betulaplatyphylla,Larixgmelinii,Populusdavidiana. The purpose of this study was to improve management and evaluation strategies of the forest by adjusting the structure and restoring the degraded forest.【Method】The 7 stand types were DatongPiceacrassifolia(A), DatongBetulaplatyphylla(B), HuangzhongPiceacrassifolia+Betulaplatyphylla(C), LeduLarixgmelinii+Betulaplatyphylla(D), MinhePopulusdavidiana(E), XunhuaPopulusdavidiana+Betulaplatyphylla(F) ,and JianzhaPiceacrassifolia(G) in Qinghai Province. The soil physical-chemical properties and soil microbial community composition were investigated by conventional laboratory analysis and phospholipid fatty acids (PLFAs) analysis. Changes of individual PLFA signatures and correlations between soil properties and soil microbial group of PLFA indicators were analyzed by principal components analysis (PCA) and redundancy analysis (RDA), respectively. 【Result】A total of 17 different PLFAs with different types of biomarkers were detected in the soil samples among different stand types. The stand types A and B exhibited a larger number PLFAs compared with other stand types. The lowest number of PLFAs was found in stand type G. The PLFAs biomarker was variable in different stand soils. The highest content was 16:0. The highest richness of PLFAs was saturated fatty acid. The highest total content of PLFAs biomarkers was found in stand B, and the lowest in stand G. The contents of bacteria and fungus PLFAs displayed the following order: broad-leaved stand>mixed broadleaf-conifer stand>conifer stand. The Simpson index, Shannon-Wiener index of stands F and G were significantly lower than those of the other stand types. McIntosh index were holistically higher in stand types A, B and D than in the other types. Principal Component Analysis (PCA) showed that generalized bacteria and Gram positive bacteria were the main soil microbial group. Redundancy analysis (RDA) indicated that the effects of pH, soil moisture and fine root biomass on soil microbial community were higher than those of soil organic carbon, bulk density and litter standing crop. 【Conclusion】Soil microbial community composition and impact factors were significantly different among different stand types. Therefore, the management and utilization of forest ecosystem should consider the change of soil microbial community characteristics, in order to improve forest management practices.

      phospholipid fatty acids (PLFAs); microbial community;stand type;soil organic carbon; Qinghai Province

      10.11707/j.1001-7488.20170303

      2015-10-03;

      2017-01-19。

      中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項“應(yīng)對氣候變化的碳收支認(rèn)證及相關(guān)問題”(XDA05050207); 國家自然科學(xué)基金項目 (31370542); 中央高?;究蒲袠I(yè)務(wù)費優(yōu)秀科研團(tuán)隊及重大孵化項目 (2014NZYTD01)。

      S 718.8

      A

      1001-7488(2017)03-0021-12

      ﹡王長庭為通訊作者。

      猜你喜歡
      土壤有機(jī)碳微生物群落林型
      不同林分類型葉片穩(wěn)定碳、氮同位素的變化特征
      山東半島昆崳山地區(qū)主要森林類型可燃物垂直分布及影響因子
      不同紅樹林群落結(jié)構(gòu)與植被碳分布
      微生物群落變化與妊娠結(jié)局關(guān)系的研究進(jìn)展
      寬甸地區(qū)不同林型枯落物及土壤蓄水功能研究
      土壤調(diào)理劑對植煙土壤微生物群落的影響
      草地生態(tài)系統(tǒng)土壤有機(jī)碳儲量的估算方法綜述
      草地生態(tài)系統(tǒng)土壤有機(jī)碳儲量的估算方法綜述
      基于坡面徑流輸沙模型的湘中紅壤丘陵區(qū)土壤有機(jī)碳流失模擬研究
      內(nèi)蒙古典型草原土壤有機(jī)碳與土壤理化性質(zhì)的關(guān)系
      宁都县| 鲁山县| 肃北| 绿春县| 赫章县| 宁蒗| 兴义市| 班戈县| 定州市| 通山县| 界首市| 兴海县| 台北市| 吴川市| 盐亭县| 阜康市| 云安县| 阳原县| 河北省| 甘德县| 鲁甸县| 定南县| 张掖市| 平泉县| 得荣县| 汤原县| 灵山县| 长岭县| 清原| 东乡族自治县| 内丘县| 工布江达县| 顺义区| 乡宁县| 通道| 松江区| 莱阳市| 沈阳市| 洮南市| 克拉玛依市| 水城县|