• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      The regularity of Navier-Stokes equations in five-dimensional space

      2017-05-18 11:59:59
      關(guān)鍵詞:中國工程物理研究院馬西維空間

      (Graduate School of China Academy of Engineering Physics, Beijing 100088, China)

      The regularity of Navier-Stokes equations in five-dimensional space

      MAXixia

      (Graduate School of China Academy of Engineering Physics, Beijing 100088, China)

      five dimensional space; Navier-Stokes; compact theorem; H?lder continuous

      This paper is concerned with the partial regularity of weak solutions of incompressible Navier-Stokes equations in five dimensional space with unit viscosity and zero external force:

      (1)

      forx∈Ω?R5,t<0, and

      (2)

      The concepts of weak solutions of (1)-(2), and their regularity were already introduced in the fundamental paper of J.Leray. Pioneering works of J. Leray showed the existence of a functionuandpsuch that

      (iii)usatisfies the Navier-Stokes equations in the distribution sense.

      In the series of papers [1-2,4-5], when the spatial dimensiondis 3, Scheffer introduced the notions of suitable weak solutions and the generalized energy inequality. He also established various partial regularity results of such weak solutions. Scheffer’s results were further generalized and strengthened in the paper of Caffareli, Kohn and Nirenberg[2], ford=3.

      Ford=4,V.Scheffer[6]provedthatthereexistsaweaksolutionuinR4×RsuchthatuiscontinuousoutsidealocallyclosedsetofR4×Rwhose3-DHausdorffmeasureisfinite.Ford=5,6,Struwe[2],DuandDong[3]obtainedthecorrespondingresultsinthesteadyNavier-Stokesequations.TianandXin[7]showedthepartialregularityforsmoothsolutionsandanyspatialdimensioninthesteadyNavier-Stokesequations.

      1 The Compactness theorem

      Definition 1 Let Ω be a open set in R5. We say that a pair (u,p)isasuitableweaksolutiontotheNavier-StokesequationsonthesetΩ×(-T1,0)ifitsatisfiestheconditions:

      (i)

      u∈L2,∞(Ω×(-T1,0))∩L2(-T1,0;H1(Ω)),

      (3)

      (ii)uandpsatisfytheNavier-Stokesequationsinthedistributionsense;

      (iii)uandpsatisfythelocalenergyinequality

      (4)

      Theorem 1[5]LetX0,XandX1bethreeBanachspacesandXi(i=0,1)isreflectivesuchthat

      X0?X?X1

      theinjectionofXintoX1beingcontinuous;andtheinjectionofX0intoXiscompact.LetTbeafixednumber,andletα0,α1betwofinitenumberssuchthatαi≥1,i=0,1.

      Weconsiderthespace

      AndthespaceΥisprovidedwiththenorm

      ThentheinjectionofΥintoLα(0,T;X)iscompact.

      Lemma 1 Let (u,p)isaweaksolutionoftheCauchyproblemsoftheNavier-StokesequationsinΩwithu∈L2,∞(Ω×(-T1,0))∩L2(-T1,0;H1(Ω)).Inaddition,

      u∈L4,∞(Ω×(-T1,0))

      (5)

      Proof First by using Holder inequality and Young inequality,

      (6)

      In fact, by interpolation inequality,

      Andthenweknow

      (7)

      inanyopensetΩ?R5fora.e.t∈(-T,0).

      By the elliptic regularity theory,

      Theorem 2 Let (un,pn)isasequenceofweaksolutions(1)-(2)inΩ×(-T,0)satisfying:

      (c) (un,pn)satisfy(4),whereE,E1somepositiveconstants.

      Supposethat(u,p)isaweaklimitof(un,pn),then(u,p)isalsoasuitableweaksolutionof(1)-(2).

      Proof In fact, we can choose a subsequence

      (8)

      (?tun,φ)=-(un·▽un,φ)-(▽un,▽φ)≤

      Hence

      In the following we prove in two steps.

      asδ→0,o(1)→0

      And

      ο(1)asn→0,ο(1)→0

      Accordingtotheweakcontinuousint,

      asδ→0,ο(1)→0isindependentofn.

      Hence,

      FinallybyTheorem1,

      un→u

      (9)

      convergesstronglyinL2(Ω×(-T,0)). Also,u∈L4,∞(Ω×(-T,0)),byinterpolationinequality,

      Hencefrom(9),

      un→u

      (10)

      convergesstronglyinL3(Ω×(-T,0)). Since (u,p)istheweaklimitof(un,pn), for any smoothφ>0compactlysupportedinΩ×(-T,0), we have that

      From Lemma 1 and (10), the theorem is proved.

      2 The Regularity theorem

      Using the compactness theorem in the last section, we show the partial regularity of the weak solutions of (1)-(2). Here we give a result which characterizes H?lder continuous functions by the growth of their local integrals.

      Theorem 3 Supposeu∈L2(Ω)satisfies

      (11)

      foranyBr(x)?Ωandα∈(0,1),where

      thenu∈Cα(Ω).

      Proof DenoteR0=dist(Ω′,?Ω),Ω′?Ω. For anyx0∈Ω′and0

      andintegratingwithrespecttoxinBr1(x0)

      from(11),

      (12)

      andthereforeforh

      with

      forany0

      for anyx∈Ω′ andR≤R0. Henceuis bounded in Ω′withtheestimate

      Then we have

      The first two terms on the right sides are estimated in (11). For the last term we write

      and integrating with respect toζoverB2R(x)∩B2R(y),whichcontainsBR(x),yields

      Therefore,wehave

      Inthefollowingweassume(u,p)isasuitableweaksolutionofNavier-StokesequationsinΩ×(-T1,0).

      Lemma 2 Suppose (u,p)isasuitableweaksolutionof(1)-(2),ifthereexiststwopositiveconstantε0suchthat

      (13)

      and

      u∈L4,∞(Ω×(-T,0))

      (14)

      then

      (15)

      for-θ2≤t≤0.DenoteQθ=Bθ×(-θ2,0).

      Proof Suppose that Lemma 2 is false, then there is a subsequence of weak solutions (ui,pi)with

      (16)

      whereQ1=B1×(-1,0),andsuchthat(15)isnotvalidfor(ui,pi).Let

      then

      (17)

      ▽vi)

      (18)

      inQ1. By Fatou Lemma,

      Sinceun→uisstrongconvergeinL3(Q), we have

      (19)

      for all sufficiently enoughi.

      (20)

      Here

      (21)

      and

      Denote

      thenbyCalderon-Zygmundestimateand(20),

      (22)

      Hencefrom(20),(22),(23),weget

      (24)

      Itisobviousfrom(24)that

      (25)

      Combining (19) and (25), we obtain a contraction and the lemma is proved.

      Theorem 4 Under the assumptions of Lemma 2, then for any numberk,▽k-1uisH?ldercontinuousinsubsetK??Ω×(-T,0)andthefollowingboundisvalid:

      wherec0isaconstantonlydependingonk.

      Proof Let (u,p)beasuitableweaksolutionsuchthat

      Let

      Asimplecomputationyieldsthatis(u1,p1)asuitableweaksolutionof

      ▽u1+▽p1=0

      Moreover,Lemma2impliesthat

      WerepeatthesameargumentsasLemma2 ,itisconcludedthat

      isboundedbyanabsoluteconstant.

      Thecasek>1istreatedwiththehelpoftheregularitytheoryfortheStokesequationsandbootstraparguments.

      Reference:

      [1] ESCAURIAZA L, SEREGIN G, SVERáK V.OnL3,∞-solutions to the navier-stokes equations and backward uniqueness [J]. Retrieved from the University of Minnesota Digital Conservancy, 2002. http://hdl.handle.net/11299/3858.

      [2] STRUWE M. On partial regularity results for the Navier-Stokes equations [J]. Comm Pure Appl Math, 1988,41(4):437-458.

      [3] DONG H, DU D. Partial regularity of Solutions to four-dimmensional Navier-Stokes equations at the first blow-up time [J].Comm Math Phys, 2007, 273(3): 785-801.

      [4] CAFFARELLI L, KOHN V, NIRENBERG L. Partial regularity of suitable weak solutions of the Navier-Stokes equations [J]. Comm Pure Appl Math, 1982, 35(6): 771-831.

      [5] LIN F. A new proof of the Caffarelli-Kohn-Nirenberg theorem [J]. Comm Pure Appl Math, 1998, 51(3): 241-257.

      [6] SCHEFFER V. Partial regularity of solutions to the Navier-Stokes equations[J]. Pacific Journal of Mathematics, 1976, 66(2):535-552.

      [7] TIAN G, XIN Z. Gradient estimation on Navier-Stokes equations [J]. Comm Anal Geom, 1999, 7(2): 221-257.

      [8] KATO T. StrongLp-solutions of the Navier-Stokes equations in Rm with applications to weak solutions [J]. Math Zeit, 1984, 187: 471-480.

      [9] SEREGIN G. Differentiability properties of weak solutions to the Navier-Stokes equations [J]. Algebra and Analysis, 2002, 14: 193-237.

      [12] SERRIN J. On the interior regularity of weak solutions of the Navier-Stokes equations [J]. Archive for Rational Mechanics and Analysis, 1962, 9(1):187-195.

      [13] 張雙虎,馮兆永,楊凱波. 修正Camassa-Holm方程的Cauchy問題[J]. 中山大學(xué)學(xué)報(自然科學(xué)版), 2014, 53(4): 8-12. ZHANG S H, FENG Z Y, YANG K B. The Cauchy problem for the modified Camassa-Holm equations [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(4): 8-12.

      [14] 趙繼紅,馮兆永. 具有臨界增長邊界條件的p-Laplace方程解的存在性[J]. 中山大學(xué)學(xué)報(自然科學(xué)版), 2010, 49(1):1-4. ZHAO J H, FENG Z Y. Existence of weak solutions for thep-Laplace equation with critical growth in boundary conditions [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(1):1-4.

      [15] 關(guān)春霞,馮兆永. 弱耗散的Degasperis-Procesi方程弱解的存在性[J]. 中山大學(xué)學(xué)報(自然科學(xué)版), 2014, 53(2): 49-54. GUAN C X, FENG Z Y. The existence of global entropy weak solutions for a weakly dissipative Degasperis-Procesi equation [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(2): 49-54.

      五維空間Navier-Stokes方程的正則性*

      2016-09-19 基金項目:國家自然科學(xué)基金 (11671045)

      馬西霞(1990年生),女;研究方向:流體方程 ;E-mail:kfmaxixia@163.com

      馬西霞

      (中國工程物理研究院研究生院,北京 100088)

      五維空間;Navier-stokes方程;緊性定理;H?lder連續(xù)

      O175.26;O175.29

      A

      0529-6579(2017)01-0096-06

      10.13471/j.cnki.acta.snus.2017.01.016

      猜你喜歡
      中國工程物理研究院馬西維空間
      基于目標(biāo)航跡的引導(dǎo)誤差校正方法研究
      中國工程物理研究院
      軍工文化(2023年3期)2023-04-28 08:39:41
      CeAuGa3的力學(xué)性質(zhì)及磁性的第一性原理計算
      Update on Fengyun Meteorological Satellite Program and Development*
      基于四傳感器的弱信號源定位方法
      傳感器世界(2019年9期)2019-03-17 18:52:46
      從零維到十維的空間之旅
      十維空間的來訪者
      像蒙娜麗莎一樣
      故事會(2012年7期)2012-03-28 12:56:06
      Flood Response
      Beijing Review(2010年17期)2010-03-15 07:19:24
      泊头市| 武宁县| 康定县| 同江市| 达尔| 醴陵市| 兴仁县| 汝阳县| 灯塔市| 左贡县| 商水县| 姜堰市| 滨州市| 寻甸| 武汉市| 酉阳| 宁德市| 大同市| 华阴市| 合水县| 永泰县| 蓬溪县| 双江| 集贤县| 咸宁市| 观塘区| 蛟河市| 永仁县| 阳泉市| 河津市| 闽清县| 黔东| 大兴区| 视频| 东乡| 海宁市| 青阳县| 晋江市| 龙游县| 长治县| 阜宁县|