劉建新, 王金成, 劉秀麗
(隴東學(xué)院生命科學(xué)與技術(shù)學(xué)院,甘肅省高校隴東生物資源保護(hù)與利用省級(jí)重點(diǎn)實(shí)驗(yàn)室, 甘肅 慶陽(yáng) 745000)
?
外源NO對(duì)鑭脅迫下燕麥幼苗活性氧代謝和礦質(zhì)元素含量的影響
劉建新*, 王金成, 劉秀麗
(隴東學(xué)院生命科學(xué)與技術(shù)學(xué)院,甘肅省高校隴東生物資源保護(hù)與利用省級(jí)重點(diǎn)實(shí)驗(yàn)室, 甘肅 慶陽(yáng) 745000)
為探討外源NO對(duì)稀土元素鑭(La)脅迫下燕麥幼苗生理響應(yīng)的調(diào)節(jié)作用,采用水培方法,研究了NO供體硝普鈉(SNP)對(duì)20 mmol/L La3+脅迫下幼苗生長(zhǎng)、活性氧代謝和礦質(zhì)元素吸收的影響。結(jié)果表明,La3+脅迫下燕麥幼苗根長(zhǎng)、株高和植株干重明顯下降,根系和葉片活性氧(O2·-和H2O2)水平及丙二醛(MDA)含量顯著提高,超氧化物歧化酶(SOD)、過(guò)氧化氫酶(CAT)、過(guò)氧化物酶(POD)活性降低,抗壞血酸過(guò)氧化物酶(APX)活性及抗壞血酸(AsA)和谷胱甘肽(GSH)含量提高;施加100 μmol/L SNP能顯著緩解La3+脅迫對(duì)燕麥幼苗生長(zhǎng)的抑制作用,降低La3+脅迫下燕麥幼苗根系和葉片O2·-、H2O2、MDA、AsA和GSH含量,提高SOD、CAT、POD和APX活性。La3+脅迫提高了燕麥幼苗根系和葉片La和銅(Cu)的富集量,抑制了鉀(K)、鈣(Ca)、鎂(Mg)、鐵(Fe)、鋅(Zn)、錳(Mn)的吸收;施加100 μmol/L SNP可顯著抑制燕麥從根系向葉片La的轉(zhuǎn)運(yùn),緩解La3+脅迫對(duì)K、Ca、Mg、Fe吸收的抑制及對(duì)Cu吸收的促進(jìn)效應(yīng),使根系中Zn、Mn含量下降,葉片Zn、Mn含量增加。由此表明,外源NO能夠通過(guò)提高抗氧化酶活性及影響La的轉(zhuǎn)運(yùn)和礦質(zhì)元素吸收,緩解La3+脅迫對(duì)燕麥幼苗的氧化傷害和生長(zhǎng)抑制。
一氧化氮;鑭脅迫;燕麥;活性氧代謝;礦質(zhì)元素
中國(guó)稀土資源豐富,稀土作為微肥施用廣泛應(yīng)用,20世紀(jì)末施用面積已達(dá)667萬(wàn)hm2[1]。大量研究證明,合理施用稀土不僅能夠增強(qiáng)植物的抵抗力[2],還能改善作物品質(zhì)和提高產(chǎn)量[3]。然而,隨著稀土微肥的大量使用,屬于重金屬的稀土元素在環(huán)境中積累產(chǎn)生的生態(tài)毒害效應(yīng)已備受關(guān)注。鑭(La)是17種稀土元素中性質(zhì)最活潑的一種,研究減緩稀土元素La負(fù)面效應(yīng)的措施,對(duì)合理施用稀土微肥具有重要意義。
一氧化氮(nitric oxide,NO)是植物中的一種第二信使,在調(diào)節(jié)植物重金屬脅迫抗性方面具有重要作用[4],但NO緩解重金屬毒害的機(jī)理仍不明了。有研究認(rèn)為,NO是通過(guò)增強(qiáng)植物抗氧化能力和抵抗重金屬吸收緩解了重金屬脅迫傷害。如NO通過(guò)提高抗氧化防護(hù)增強(qiáng)了番茄(Lycopersiconesculentum)對(duì)銅、鎘脅迫的耐性[5];逆轉(zhuǎn)了錳脅迫下水稻(Oryzasativa)抗氧化物質(zhì)含量的下降和抗氧化酶活性的升高,減輕了H2O2積累對(duì)膜脂的過(guò)氧化損傷[6];通過(guò)誘導(dǎo)根部IRTI基因的表達(dá),增加了擬南芥(Arabidopsisthaliana)根系對(duì)鎘的截留,從而減少了地上部鎘積累的毒害[7]等。但另有研究認(rèn)為,NO對(duì)重金屬脅迫的緩解并不是通過(guò)抑制植物對(duì)重金屬的吸收而發(fā)揮作用,如外源NO供體硝普鈉處理能夠緩解鉛脅迫對(duì)擬南芥的毒害,但不能減少擬南芥對(duì)鉛的積累[8];外源NO供體亞硝基谷胱甘肽能夠增強(qiáng)龍葵(Solanumnigrum)對(duì)鎘脅迫的抗性,卻促進(jìn)龍葵根系對(duì)鎘的吸收[9]。這些研究表明NO可能存在多種調(diào)控機(jī)制參與不同植物對(duì)重金屬脅迫響應(yīng)的調(diào)節(jié)。
燕麥(Avenanuda)是燕麥屬喜陰涼、耐貧瘠的一種小雜糧作物,對(duì)控制血糖、血壓和血脂升高有獨(dú)特功效[10]。我國(guó)燕麥主要分布在內(nèi)蒙古、山西、河北和甘肅等省區(qū),年種植面積約55萬(wàn)hm2。目前關(guān)于NO緩解重金屬脅迫的研究多以主要糧食作物或藥用植物為主,以小雜糧作物為對(duì)象的研究并不多見(jiàn),未見(jiàn)NO對(duì)燕麥La脅迫響應(yīng)調(diào)節(jié)的研究報(bào)道。本試驗(yàn)研究外源NO供體硝普鈉(sodium nitroprusside,SNP)對(duì)La脅迫下燕麥幼苗生長(zhǎng)、活性氧代謝和礦質(zhì)元素積累的影響,探討NO提高La脅迫抗性的作用及其生理機(jī)制,旨在為應(yīng)用NO減輕稀土對(duì)燕麥傷害提供參考。
1.1 供試材料
試驗(yàn)于2015年5-10月在甘肅省高校隴東生物資源保護(hù)與利用省級(jí)重點(diǎn)實(shí)驗(yàn)室和生物科技園日光溫室進(jìn)行。供試燕麥品種‘定莜6號(hào)’種子由甘肅省定西市旱作農(nóng)業(yè)科研推廣中心提供。Hoagland營(yíng)養(yǎng)液組成為Ca(NO3)2·4H2O、NH4NO3、KNO3、KH2PO4、MgSO4、微量元素,所用試劑均為分析純。氯化鑭(LaCl3·2.5H2O)提供La3+。NO供體SNP([Na2Fe(CN)5]NO),用蒸餾水配成400 μmol/L母液,5 ℃避光保存,用時(shí)按所需濃度稀釋。
1.2 氯化鑭和硝普鈉實(shí)驗(yàn)濃度的篩選
選大小均一的飽滿燕麥種子,用0.5% NaClO消毒后播種在瓷盤珍珠巖中于培養(yǎng)箱25 ℃暗培養(yǎng),待種子露白后挑選100個(gè)發(fā)芽一致的種子轉(zhuǎn)移至培養(yǎng)皿(直徑12 cm)珍珠巖中在25 ℃光周期14 h/10 h(光照/黑暗)和光照強(qiáng)度150 μmol/(m2·s)條件下澆水培養(yǎng),待幼苗2葉1心時(shí)澆灌濃度分別為0,2.5,5,10,20,30,40,50 mmol/L氯化鑭(LaCl3·2.5H2O)溶液,澆灌量每個(gè)培養(yǎng)皿每天15 mL,重復(fù)3次。培養(yǎng)12 d后從培養(yǎng)皿中取出幼苗,洗凈珍珠巖并吸干表面水分后用電子天平稱量植株鮮重,計(jì)算幼苗單株鮮重(總鮮重/株數(shù)),結(jié)合培養(yǎng)期間幼苗外觀變化特征選出氯化鑭脅迫濃度。在選出的氯化鑭溶液(20 mmol/L)中分別添加0,10,25,50,100,150,200,250,300 μmol/L SNP溶液用同樣的方法在同樣條件下進(jìn)行培養(yǎng),培養(yǎng)12 d后根據(jù)幼苗生長(zhǎng)速率選出進(jìn)一步實(shí)驗(yàn)的SNP濃度(100 μmol/L)。幼苗生長(zhǎng)速率(GR)的計(jì)算:GR=(W2-W1)/(T2-T1)。式中:W1表示處理第0 天30株幼苗的干重;W2表示處理第12 天 30株幼苗的干重;T2和T1分別表示2次測(cè)定的時(shí)間(d)。
1.3 試驗(yàn)設(shè)計(jì)
燕麥種子播種在塑料盆(口徑200 mm,高140 mm)珍珠巖中,播量每盆約150粒,澆水后置溫室培養(yǎng),溫度21~36 ℃,濕度60%~82%,光照度530~770 μmol/(m2·s),幼苗長(zhǎng)至2片葉子時(shí)選100株生長(zhǎng)一致的植株洗凈根部珍珠巖轉(zhuǎn)入4 L水培箱中用1/2 Hoagland溶液培養(yǎng),培養(yǎng)7 d后換成完全營(yíng)養(yǎng)液培養(yǎng),此后每2 d更換一次營(yíng)養(yǎng)液,當(dāng)幼苗具3片葉子時(shí)根據(jù)篩選的LaCl3·2.5H2O和SNP濃度進(jìn)行脅迫緩解試驗(yàn),營(yíng)養(yǎng)液培養(yǎng)和處理期間用電動(dòng)氣泵連續(xù)24 h 通氣。試驗(yàn)設(shè)4個(gè)處理:1)對(duì)照(CK),Hoagland完全營(yíng)養(yǎng)液;2)La,含20 mmol/L LaCl3·2.5H2O的Hoagland營(yíng)養(yǎng)液;3)La+SNP,含20 mmol/L LaCl3·2.5H2O和100 μmol/L SNP的Hoagland營(yíng)養(yǎng)液;4)SNP,含100 μmol/L SNP的Hoagland營(yíng)養(yǎng)液。每個(gè)處理重復(fù)4次,隨機(jī)排列。處理期間每天更換處理液,并調(diào)節(jié)pH至6.0±0.32。處理12 d后分別剪取植株根系和倒數(shù)第2~3片功能葉用液氮速凍后-80 ℃保存,測(cè)定相關(guān)生理指標(biāo)。
1.4 測(cè)定指標(biāo)與方法
1.4.1 植株生長(zhǎng)狀況的測(cè)定 處理12 d后取出植株,用蒸餾水沖洗干凈后用直尺測(cè)量幼苗主根長(zhǎng)度和植株高度,并將根系和地上部分開(kāi),在(105±1) ℃烘箱殺青20 min,80 ℃烘干至恒重,電子天平稱量干重。
1.4.2 超氧陰離子(O2·-)、過(guò)氧化氫(H2O2)和丙二醛(MDA)含量的測(cè)定 分別稱取0.500 g 根系和葉片樣品,用5 mL pH 7.0的50 mmol/L磷酸緩沖液冰浴研磨,12000 r/min 4 ℃離心30 min,上清液為待測(cè)提取液。然后按Sui等[11]的方法測(cè)定O2·-含量,采用Moloi等[12]的方法測(cè)定H2O2含量,按Predieri等[13]的方法測(cè)定MDA含量。結(jié)果計(jì)算以單位材料鮮重為基礎(chǔ)。
1.4.3 抗氧化酶活性和抗氧化物質(zhì)含量的測(cè)定 分別稱取0.500 g 根系和葉片用5 mL 50 mmol/L磷酸緩沖液(pH 7.0)冰浴研磨,15000 r/min冷凍離心15 min,取上清液按陳建勛等[14]的方法測(cè)定超氧化物歧化酶(SOD)、過(guò)氧化氫酶(CAT)、過(guò)氧化物酶(POD)和抗壞血酸過(guò)氧化物酶(APX)活性。分別稱取0.200 g根系和葉片依次用2.0 mL 5%三氯乙酸和15%偏磷酸研磨,勻漿液18000 r/min離心20 min,上清液定容至2.0 mL。分別采用Ellman[15]和Arakawa等[16]的方法測(cè)定谷胱甘肽(GSH)和抗壞血酸(AsA)含量。以單位材料鮮重為基礎(chǔ)計(jì)算結(jié)果。
1.4.4 植株礦質(zhì)元素含量的測(cè)定 分別稱取根系和葉片烘干磨細(xì)過(guò)0.18 mm篩孔樣品各0.250 g,置微波消化系統(tǒng)中加10 mL HNO3-HClO4(8∶1)消化,定容至50 mL,采用DRE型電感耦合等離子體原子發(fā)射光譜儀(美國(guó)Lee man公司)測(cè)定La、鉀(K)、鈣(Ca)、鎂(Mg)、鐵(Fe)、銅(Cu)、鋅(Zn)、錳(Mn)含量。以單位材料干重為基礎(chǔ)計(jì)算結(jié)果。
1.5 數(shù)據(jù)分析
數(shù)據(jù)以平均值±標(biāo)準(zhǔn)差表示,用SPSS 20.0軟件方差分析,Duncan法多重比較(顯著水平P<0.05)。
2.1 氯化鑭和SNP實(shí)驗(yàn)濃度的篩選
由圖1可見(jiàn),20 mmol/L氯化鑭(LaCl3·2.5H2O)處理與對(duì)照(0 mmol/L LaCl3·2.5H2O)相比,燕麥幼苗鮮重顯著下降,但幼苗仍保持正常綠色;當(dāng)氯化鑭濃度≥30 mmol/L時(shí),植株枯黃甚至死亡,鮮重急劇下降。因此,氯化鑭脅迫濃度選擇燕麥幼苗受到脅迫但能承受的最高濃度20 mmol/L。在20 mmol/L氯化鑭脅迫下添加50~200 μmol/L SNP均能顯著提高燕麥幼苗的生長(zhǎng)速率,其中100 μmol/L SNP處理提高的幅度最大,所以進(jìn)一步實(shí)驗(yàn)的SNP濃度選用100 μmol/L。
圖1 不同濃度氯化鑭脅迫下燕麥幼苗單株鮮重和不同濃度硝普鈉對(duì)20 mmol/L氯化鑭脅迫下燕麥幼苗生長(zhǎng)速率的影響Fig.1 Single plant fresh weight of oat seedlings under different concentration of LaCl3·2.5H2O stress and effect of different concentration of sodium nitroprusside (SNP) on growth rate of oat seedling under 20 mmol/L LaCl3·2.5H2O stress 不同字母表示處理間差異顯著(P<0.05). Different letters are significantly different at P<0.05.
2.2 外源NO對(duì)La脅迫下燕麥幼苗根長(zhǎng)、株高和干重的影響
由表1可知,與CK相比,La脅迫下燕麥幼苗根長(zhǎng)、株高及根系和地上部干重分別下降了34.8%,28.3%,32.1%和31.0%;La+SNP處理的根長(zhǎng)和株高分別比單獨(dú)La處理增加了31.3%和23.4%,根系干重和地上部干重分別增加了26.7%和13.8%;SNP單獨(dú)處理的根長(zhǎng)和根系干重與CK無(wú)顯著差異,但株高和地上部干重分別提高了7.4%和12.8%。
表1 鑭脅迫下外源NO對(duì)燕麥幼苗根長(zhǎng)、株高和干重的影響Table 1 Effect of exogenous NO on roots length, plant height and dry weight of oat seedling under La stress
注:同列不同字母表示差異顯著(P<0.05),下同。
Note:The different letters in the same column indicate significant differences atP<0.05, the same below.
2.3 外源NO對(duì)La脅迫下燕麥幼苗O2·-、H2O2和MDA含量的影響
由表2可見(jiàn),與CK相比,La脅迫下燕麥幼苗根系和葉片中O2·-、H2O2和MDA含量顯著提高;La+SNP處理與La處理相比,O2·-、H2O2和MDA含量在根系中分別下降了43.8%,40.6%和31.4%,葉片中分別下降了24.8%,25.3%和31.0%;SNP單獨(dú)處理的根系和葉片中O2·-和H2O2含量比CK分別下降32.3%,15.0%和28.0%,40.8%,根系中MDA含量與CK差異不明顯,葉片中MDA含量比CK顯著下降了38.9%。
2.4 外源NO對(duì)La脅迫下燕麥幼苗抗氧化系統(tǒng)的影響
從圖2可見(jiàn),與CK相比,La脅迫明顯降低了燕麥幼苗根系和葉片SOD、CAT和POD活性,卻顯著提高了APX活性;La+SNP處理的燕麥根系和葉片中SOD、CAT、POD和APX活性在根系中分別比La單獨(dú)處理顯著提高了22.1%,124.6%,38.4%和26.0%,葉片中分別提高了31.3%,32.3%,67.4%和21.3%;SNP單獨(dú)處理下根系和葉片SOD、APX活性、根系CAT及葉片POD活性與CK無(wú)明顯差異,而葉片CAT活性下降了11.0%,根系POD活性則提高了11.8%。
表2 鑭脅迫下外源NO對(duì)燕麥幼苗O2·-,H2O2和丙二醛含量的影響Table 2 Effect of exogenous NO on contents of O2·-, H2O2 and MDA in oat seedling under La stress
圖2 外源NO對(duì)鑭脅迫下燕麥幼苗根系和葉片抗氧化酶活性和抗氧化物質(zhì)含量的影響Fig.2 Effect of exogenous NO on antioxidant enzyme activities and antioxidants content in oat seedling under La stress 不同字母表示同一器官不同處理間差異顯著(P<0.05),圖3同。Different letters are significantly different at P<0.05 within the same organ,the same as Fig.3.
與CK相比,La處理的燕麥幼苗AsA和GSH含量在根系中分別提高了46.7%和42.3%,葉片中分別提高了51.4%和275.0%;La+SNP處理的AsA和GSH含量在根系中分別比La單獨(dú)處理下降了32.5%和8.1%,葉片中分別下降了26.7%和75.6%;SNP單獨(dú)處理的根系和葉片中AsA含量比CK分別提高了21.6%和39.1%,根系中GSH含量變化不大,但葉片中GSH含量下降了50.0%。
2.5 外源NO對(duì)La脅迫下燕麥幼苗La含量的影響
由圖3可見(jiàn),與CK相比,La脅迫下燕麥根系和葉片La含量顯著提高,分別提高了20.4倍和55.6倍;增添SNP對(duì)La脅迫下燕麥根系La含量沒(méi)有明顯影響,卻顯著降低了葉片La含量,下降了44.3%;SNP單獨(dú)處理的燕麥根系和葉片La含量與CK無(wú)顯著差異。
2.6 外源NO對(duì)La脅迫下燕麥幼苗礦質(zhì)元素含量的影響
從圖4可知,La脅迫顯著降低了燕麥幼苗根系和葉片K、Ca、Mg、Fe、Zn、Mn含量,卻提高了Cu含量。La脅迫下添加SNP后燕麥根系和葉片K、Ca、Mg等大量元素明顯增加,根系中分別比La單獨(dú)處理提高了24.8%,57.3%和20.6%,葉片中分別提高了38.6%,81.5%和94.3%;根系和葉片微量元素Fe分別比La單獨(dú)處理提高了88.8%和62.8%,根系中Cu、Zn含量卻下降了42.0%和31.3%,葉片Cu含量下降了27.4%,Zn含量則提高了29.0%,根系中Mn含量下降了20.1%,葉片Mn含量卻提高了92.1%。SNP單獨(dú)處理與CK相比顯著提高了根系Ca含量,卻降低了葉片K含量,對(duì)根系K、葉片Ca和根系、葉片Mg等大量元素含量無(wú)明顯影響;對(duì)根系Fe、Zn、Mn等微量元素含量無(wú)顯著影響,卻提高了根系Cu含量;對(duì)葉片Cu、Mn含量無(wú)明顯影響,卻顯著降低了Fe、Zn含量。
圖4 外源NO對(duì)鑭脅迫下燕麥幼苗礦質(zhì)元素含量的影響Fig.4 Effect of exogenous NO on the mineral element contents in oat seedlings under La stress 不同字母表示同一元素含量在不同處理間差異顯著(P<0.05)。Different letters are significantly different at P<0.05 within the same mineral element.
生長(zhǎng)受抑是植物遭受重金屬脅迫的普遍反應(yīng),NO信號(hào)能夠緩解重金屬脅迫對(duì)植物生長(zhǎng)的抑制[4]。Wang等[17]研究發(fā)現(xiàn),100 μmol/L SNP有效減輕了100 μmol/L CdCl2脅迫對(duì)黑麥草(Loliumperenne)生長(zhǎng)的抑制程度。本試驗(yàn)表明,100 μmol/L SNP可使20 mmol/L稀土重金屬La3+脅迫下燕麥幼苗根長(zhǎng)和株高分別提高31.3%和23.4%,植株干重增加18.4%(表1)。這可能與外源NO能夠促進(jìn)重金屬脅迫下內(nèi)源NO的合成[18],NO通過(guò)質(zhì)外體作用于細(xì)胞壁使之松弛并提高膜的流動(dòng)性和離子選擇性[19]有關(guān),從而使La3+脅迫下燕麥生長(zhǎng)受抑得到緩解。
活性氧積累誘導(dǎo)的膜脂過(guò)氧化是重金屬脅迫下植物產(chǎn)生傷害的重要原因[4]。王建等[20]研究證實(shí),外源NO能夠緩解Cu脅迫對(duì)番茄的氧化傷害。然而NO減緩重金屬毒害的抗氧化機(jī)制目前仍認(rèn)識(shí)不一。一種觀點(diǎn)認(rèn)為外源NO通過(guò)提高抗氧化系統(tǒng)活性,增強(qiáng)了其活性氧清除的能力,從而緩解了重金屬誘導(dǎo)的氧化傷害[17,19];另一種觀點(diǎn)則認(rèn)為外源NO的抗氧化作用并非是提高抗氧化系統(tǒng)活性而是通過(guò)直接清除活性氧來(lái)實(shí)現(xiàn)的,如Singh等[21]的研究表明,外源NO能夠降低鎘誘導(dǎo)的小麥(Triticumaestivum)根部H2O2和MDA積累,但阻止了鎘脅迫下SOD、CAT、GPX和GR等酶活性的升高;Hsu等[22]發(fā)現(xiàn),外源NO能夠逆轉(zhuǎn)鎘誘導(dǎo)水稻AsA、GSH含量下降以及SOD、CAT、APX、GPX和GR活性升高,從而抑制H2O2積累。本研究中,外源NO供體SNP顯著降低了La3+脅迫下燕麥幼苗O2·-和H2O2等活性氧的積累,并降低了膜脂過(guò)氧化產(chǎn)物MDA的含量(表2),有效增強(qiáng)了幼苗根系和葉片的SOD、POD和APX活性,降低了AsA和GSH含量,且根系A(chǔ)sA含量降幅大于葉片,但葉片GSH含量的降幅大于根系(圖2)。表明外源NO是通過(guò)增強(qiáng)抗氧化酶活性和調(diào)節(jié)抗氧化物質(zhì)含量,減緩La3+脅迫誘導(dǎo)的活性氧積累對(duì)燕麥幼苗造成的膜脂氧化傷害。這與Panda等[23]的外源NO提高水稻SOD、CAT、POD和GR活性并抑制鎘誘導(dǎo)AsA和GSH含量升高,從而增強(qiáng)水稻鎘脅迫抗性的研究結(jié)果類似。外源NO能夠提高重金屬脅迫下植物抗氧化酶活性的原因可能與其增強(qiáng)編碼SOD、CAT、POD和APX基因mRNA的表達(dá)量有關(guān)[24]。而NO降低La3+脅迫下燕麥幼苗AsA和GSH含量可能是因?yàn)锳PX活性提高后增加了AsA-GSH循環(huán)中AsA和GSH消耗所致[25]。
重金屬離子積累和礦質(zhì)營(yíng)養(yǎng)失衡是重金屬脅迫下植物受害的重要因素。Wang等[17]研究報(bào)道,100 μmol/L CdCl2脅迫顯著提高了黑麥草(Loliumperenne)幼苗根系和地上部Cd2+的積累,50~200 μmol/L SNP明顯降低了Cd從黑麥草根系向地上部的轉(zhuǎn)運(yùn),并有效緩解了Cd脅迫對(duì)K, Ca, Mg,F(xiàn)e, Cu, Zn吸收的抑制。本研究表明,100 μmol/L SNP并不能抑制20 mmol/L La3+脅迫下燕麥根系對(duì)La3+的吸收,卻能有效抑制La3+由根系向葉片的運(yùn)輸(圖3)。這與肖強(qiáng)等[26]以水稻為材料的研究結(jié)果一致。其原因可能與NO能夠調(diào)節(jié)植物細(xì)胞壁成分代謝有關(guān)[27],進(jìn)而促進(jìn)了根部細(xì)胞壁對(duì)La3+的束縛,降低了向葉片的運(yùn)輸。外源NO使La脅迫下燕麥根系和葉片K、Ca、Mg含量提高,且葉片增幅大于根系,F(xiàn)e含量也明顯增加,但根系的增幅大于葉片,而Cu含量在根系和葉片均下降,Zn、Mn含量在根系中下降,葉片中顯著增加(圖4)。表明NO參與La脅迫下燕麥對(duì)礦質(zhì)元素的吸收積累。其可能的機(jī)制是NO與礦質(zhì)元素結(jié)合形成亞硝基復(fù)合物后影響了礦質(zhì)元素的吸收[28],或者是NO通過(guò)提高質(zhì)膜H+-ATP酶和5′-AMP酶活性后加速了ATP水解而產(chǎn)生大量H+并泵出胞質(zhì),從而提高了礦質(zhì)離子的次級(jí)跨膜轉(zhuǎn)運(yùn)速率[29]。然而,NO調(diào)控重金屬脅迫下植物礦質(zhì)元素吸收轉(zhuǎn)運(yùn)的機(jī)制可能在不同植物中存在差異,且比較復(fù)雜[4],尚需進(jìn)一步深入探究。
20 mmol/L La3+脅迫誘導(dǎo)燕麥活性氧代謝紊亂并引發(fā)膜脂過(guò)氧化,干擾礦質(zhì)元素吸收和積累,植株生長(zhǎng)受到抑制。100 μmol/L NO供體SNP緩解了La3+脅迫對(duì)燕麥的氧化傷害和生長(zhǎng)抑制,其可能機(jī)理有:1)通過(guò)提高SOD、CAT、POD、APX等抗氧化酶活性,降低了La3+脅迫誘導(dǎo)的活性氧積累。2)通過(guò)降低La3+從根系向葉片的轉(zhuǎn)運(yùn),增加了K、Ca、Mg、Fe的吸收,降低了Cu的積累,并調(diào)節(jié)Zn、Mn在根部和葉片的合理分布。
References:
[1] Gong D H, Wang Z Z, Ji X. Effects of lanthanum on growth and physiological characteristics of spirulina under lead stress. Journal of the Chinese Rare Earth Society, 2015, 33(4): 487-493. 鞏東輝, 王志忠, 季祥. 重金屬鉛脅迫下鑭對(duì)螺旋藻生長(zhǎng)及生理特性的影響. 中國(guó)稀土學(xué)報(bào), 2015, 33(4): 487-493.
[2] Gao Y S, Xu X L, Wu J Q,etal. Physiological regulation of exogenous europium on salt tolerance in cyperus esculentus seedlings. Journal of the Chinese Rare Earth Society, 2012, 30(5): 605-611. 高永生, 徐曉麗, 吳俊清, 等. 外源銪對(duì)油莎豆幼苗耐鹽性的生理調(diào)控作用. 中國(guó)稀土學(xué)報(bào), 2012, 30(5): 605-611.
[3] Yu H B, Wang J S, Liu Z,etal. Effect of rare earths of agriculture, wide-narrow row spacing cultivation on components of yield and quality in fresh eating maize. Journal of the Chinese Rare Earth Society, 2013, 31(1): 102-107. 余海兵, 王金順, 劉正, 等. 農(nóng)用稀土施用量、寬窄行配置對(duì)鮮食糯玉米產(chǎn)量構(gòu)成因素及品質(zhì)的影響. 中國(guó)稀土學(xué)報(bào), 2013, 31(1): 102-107.
[4] Xia H W, Shi G X, Huang M,etal. Advances on effects of nitric oxide on resistances of plants to heavy metal stress. Acta Ecologica Sinica, 2015, 35(10): 3139-3147. 夏海威, 施國(guó)新, 黃敏, 等. 一氧化氮對(duì)植物重金屬脅迫抗性的影響研究進(jìn)展. 生態(tài)學(xué)報(bào), 2015, 35(10): 3139-3147.
[5] Cui X M, Wu X B, Li X Y,etal. Responses of growth, functional enzyme activity in biomembrane of tomato seedlings to excessive copper, cadmium and the alleviating effect of exogenous nitric oxide. Journal of Plant Nutrition and Fertilizer, 2011, 17(2): 349-357. 崔秀敏, 吳小賓, 李曉云, 等. 銅、鎘毒害對(duì)番茄生長(zhǎng)和膜功能蛋白酶活性的影響及外源NO的緩解效應(yīng). 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2011, 17(2): 349-357.
[6] Srivastava S, Dubey R S. Nitric oxide alleviates manganese toxicity by preventing oxidative stress in excised rice leaves. Acta Physiologiae Plantarum, 2012, 34(2): 819-825.
[7] He Y K, Tang R H, Yi H,etal. Nitric oxide represses theArabidopsisfloral transition. Science, 2004, 305(5692): 1968-1971.
[8] Phang I C, Leung D W M, Taylor H H,etal. The protective effect of sodium nitroprusside (SNP) treatment onArabidopsisthalianaseedlings exposed to toxic level of Pb is not linked to avoidance of Pb uptake. Ecotoxicology and Environmental Safety, 2011, 74(5): 1310-1315.
[9] Xu J, Wang W J, Sun J H,etal. Involvement of auxin and nitric oxide in plant Cd-stress responses. Plant and Soil, 2011, 346(1/2): 107-119.
[10] Drzikova B, Dongowski G, Gebhardt E. Dietary fibre-rich oat-based products affect serum lipids, microbiota, formation of short-chain fatty acids and steroids in rats. British Journal of Nutrition, 2005, 94(6): 1012-1025.
[11] Sui N, Liu X, Wang N,etal. Response of xanthophylls cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene. Photosynthetica, 2007, 45(3): 447-454.
[12] Moloi M J, Westhuizen A J. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. Journal of Plant Physiology, 2006, 163(11): 1118-1125.
[13] Predieri S, Norman H A, Krizek D T,etal. Influence of UV-B radiation on membrane lipid composition and ethylene of evolution in ‘Doyenne d’Hiver’ pear shoots grown in vitro under different photosynthetic photo fluxes. Environmental and Experimental Botany, 1995, 35(35): 151-160.
[14] Chen J X, Wang X F. Plant Physiology Experimental Guidance[M]. Guangzhou: South China University of Technology Press, 2006. 陳建勛, 王曉峰. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 第二版. 廣州: 華南理工大學(xué)出版社, 2006.
[15] Ellman G L. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 1959, 82(1): 70-77.
[16] Arakawa N, Tsutsumi K, Sanceda N G,etal. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-1, 10-phenanthroline. Agricultural Biology and Chemistry, 1981, 45(5): 1289-1290.
[17] Wang Q H, Liang X, Dong Y J,etal. Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regulation, 2012, 69(1): 11-20.
[18] Verma K, Mehta S K, Shekhawat G S. Nitric oxide (NO) counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species (ROS) inBrassicajuncea: cross-talk between ROS, NO and antioxidant responses. Biometals, 2013, 26(2): 255-269.
[19] Leshem Y Y, Hamarat E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence ofPisumsativumLinn. forage. Journal of Plant Physiology, 1996, 148(3/4): 258-263.
[20] Wang J, Yu S X, Zhang M,etal. Exogenous NO mediated GSH-PCs synthesis pathway in tomato under copper stress. Chinese Journal of Applied Ecology, 2014, 25(9): 2629-2636. 王建, 于世欣, 張敏, 等. 外源NO介導(dǎo)Cu脅迫下番茄GSH-PCs合成途徑. 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(9): 2629-2636.
[21] Singh H P, Batish D R, Kaur G,etal. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environmental and Experimental Botany, 2008, 63(1/3): 158-167.
[22] Hsu Y T, Kao C H. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regulation, 2004, 42(3): 227-238.
[23] Panda P, Nath S, Chanu T T,etal. Cadmium stress-induced oxidative stress and role of nitric oxide in rice (OryzasativaL.). Acta Physiologiae Plantarum, 2011, 33(15): 1737-1747.
[24] Wang L N, Yang F J, Wang X F,etal. Effects of exogenous nitric oxide on growth and transcriptional expression of antioxidant enzyme mRNA in tomato seedlings under copper stress. Acta Horticulturae Sinica, 2010, 37(1): 47-52. 王麗娜, 楊鳳娟, 王秀峰, 等. 外源NO對(duì)銅脅迫下番茄幼苗生長(zhǎng)及其抗氧化酶編碼基因mRNA轉(zhuǎn)錄水平的影響. 園藝學(xué)報(bào), 2010, 37(1): 47-52.
[25] Jin Y H, Tao D L, Hao Z Q,etal. Environmental stresses and redox status of ascorbate. Acta Botanica Sinica, 2003, 45(7): 795-801.
[26] Xiao Q, Ru Q M, Wu F H,etal. Nitric oxide alleviation for oxidative stress caused by lanthanum in rice leaves. Journal of the Chinese Rare Earth Society, 2007, 25(6): 745-750. 肖強(qiáng), 茹巧美, 吳飛華, 等. 一氧化氮對(duì)水稻葉片中由鑭引起的氧化脅迫的緩解作用. 中國(guó)稀土學(xué)報(bào), 2007, 25(6): 745-750.
[27] Correa-Aragunde N, Lombardo C, Lamattina L. Nitric oxide: an active nitrogen molecule that modulates cellulose synthesis in tomato roots. New Phytologist, 2008, 179(2): 386-396.
[28] Graziano M, Beligni M V, Lamattina L. Nitric oxide improves internal iron availability in plants. Plant Physiology, 2002, 130(4): 1852-1859.
[29] Cui X M, Zhang Y K, Wu X B,etal. The investigation of the alleviated effect of copper toxicity by exogenous nitric oxide in tomato plants. Plant Soil and Environment, 2010, 56(6): 274-281.
Effect of exogenous nitric oxide on active oxygen metabolism and mineral contents in oat seedlings under lanthanum stress
LIU Jian-Xin*, WANG Jin-Cheng, LIU Xiu-Li
CollegeofLifeSciencesandTechnology,LongdongUniversity,UniversityProvincialKeyLaboratoryforProtectionandUtilizationofLongdongBio-resourcesinGansuProvince,Qingyang745000,China
The pollution of agricultural systems by rare earth elements has become one of the most serious environmental deterioration problems worldwide. The signaling molecule nitric oxide (NO) is involved in the plant response to heavy metals. The aim of this study was to investigate the regulating effect of exogenous NO on the physiological response of oat seedlings to lanthanum (La) stress. We conducted a hydroponic experiment in which the exogenous NO donor sodium nitroprusside (SNP) was applied to oat seedlings under a 20 mmol/L La3+treatment and plant growth, active oxygen metabolism, and the absorption of minerals were investigated. The root length, plant height, and dry weight of oat seedlings were significantly lower in La3+-stressed seedlings than in control seedlings. Compared with control plants, those treated with La3+showed significantly increased active oxygen (O2·-and H2O2) and malondialdehyde (MDA) contents in roots and leaves, decreased activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and increased ascorbate peroxidase (APX) activity and ascorbic acid (AsA) and glutathione (GSH) contents. Addition of 100 μmol/L SNP to oat seedlings under La3+stress significantly alleviated the La3+-inhibition of growth. Compared with La3+-treated seedlings, those treated with La3++ SNP showed reduced contents of O2·-, H2O2, MDA, AsA, and GSH in roots and leaves, and increased activities of SOD, CAT, POD, and APX. Seedlings under La3+stress showed increased La and copper (Cu) accumulation in the roots and leaves, but decreased absorption of potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and manganese (Mn). Compared with La3+-treated seedlings, those treated with La3++ SNP showed significantly lower La translocation from roots to leaves, increased absorption of K, Ca, Mg, Fe, increased Cu uptake, lower Zn and Mn contents in roots, and higher Zn and Mn contents in leaves. Consequently, exogenous NO could alleviate the oxidative damage and growth inhibition of oat seedlings under La3+stress by increasing the activities of antioxidant enzymes and altering La translocation and mineral absorption.
nitric oxide; lanthanum stress; oat (Avenanuda); active oxygen metabolism; mineral elements
10.11686/cyxb2016241
http://cyxb.lzu.edu.cn
2016-06-13;改回日期:2016-09-29
甘肅省慶陽(yáng)市科技計(jì)劃項(xiàng)目(KZ2014-19)資助。
劉建新(1964-),男,甘肅通渭人,教授,本科。E-mail: liujx1964@163.com*通信作者Corresponding author. E-mail: liujx1964@163.com
劉建新, 王金成, 劉秀麗. 外源NO對(duì)鑭脅迫下燕麥幼苗活性氧代謝和礦質(zhì)元素含量的影響. 草業(yè)學(xué)報(bào), 2017, 26(5): 135-143.
LIU Jian-Xin, WANG Jin-Cheng, LIU Xiu-Li. Effect of exogenous nitric oxide on active oxygen metabolism and mineral contents in oat seedlings under lanthanum stress. Acta Prataculturae Sinica, 2017, 26(5): 135-143.