朱立國+司夢銀+左元慧+崔立峰
摘要:
利用簡單的兩步合成法制備得到新穎的中孔Ag微米盤(HMDs)/ZnO納米棒(NRs)異質(zhì)結(jié),主要包括上晶種和異質(zhì)外延生長.通過簡單的合成參數(shù)調(diào)控,可以制備不同納米直徑、不同長度、不同形狀的ZnO NRs,進(jìn)而制成不同形貌的Ag/ZnO異質(zhì)結(jié).結(jié)構(gòu)新穎的Ag/ZnO異質(zhì)結(jié)由一維(1D)半導(dǎo)體和二維(2D)納米結(jié)構(gòu)元構(gòu)成,Ag/ZnO異質(zhì)結(jié)具有高比表面積和開放的空間結(jié)構(gòu),在光電領(lǐng)域具有很重要的應(yīng)用潛力.在光催化測試中,Ag/ZnO異質(zhì)結(jié)表現(xiàn)出優(yōu)越的催化活性,主要歸因于結(jié)構(gòu)獨特的Ag/ZnO異質(zhì)結(jié)的協(xié)同效應(yīng).
關(guān)鍵詞:
中孔Ag微米盤; ZnO 納米棒; 異質(zhì)結(jié); 電子傳輸; 光催化劑
中圖分類號: TB 383-文獻(xiàn)標(biāo)志碼: A
Synthesis and Photocatalytic Research of Ag Holed
Microdisks/ZnO Nanorod Arrays Heterostructures
ZHU Liguo1, SI Mengyin2, ZUO Yuanhui2, CUI Lifeng2
(1.School of Materials Science and Engineering, University of Shanghai for Science and
Technology, Shanghai 200093, China; 2.School of Environment and Architecture,
University of Shanghai for Science and Technology, Shanghai 200093, China)
Abstract:
Novel heterostructures of Ag holed microdisks(HMDs)/ZnO nanorods(NRs) have been prepared via a two-step aqueous strategy including ZnO seed loading and subsequent heteroepitaxial growth of ZnO NRs on Ag HMDs.By simply adjusting synthetic parameters,ZnO NRs with variable NR diameters,lengths and shapes on Ag HMDs have been realized,which endow Ag/ZnO heterostructures with versatile morphologies.The novel Ag/ZnO heterostructures consisting of integrated 1D semiconductor/2D metal nanostructured blocks with high specific surface area(SSA) and opened spatial architectures may promise important applications related to photoelectric fields.In photocatalytic measurements,the typical Ag/ZnO heterostructure exhibits superior catalytic activity.Synergistic effect of the Ag/ZnO heterostructures contributes to the high catalytic performance.
Keywords:
Ag HMDs; ZnO NRs; heterostructures; electron transport; photocatalysis
納米異質(zhì)材料因其新穎的結(jié)構(gòu)及優(yōu)良的性能,成為熱門研究領(lǐng)域[1-10].其中,半導(dǎo)體 金屬異質(zhì)結(jié)因其獨特的光學(xué)、電學(xué)、磁學(xué)及催化學(xué)等性能成為重要的一類,并有著廣泛的應(yīng)用[3-7,11-12].貴金屬Ag具有高電導(dǎo)性和良好的抗腐蝕性[13-16],寬禁帶半導(dǎo)體ZnO具有良好的壓電效應(yīng)、光吸收及催化性能[17-22],因此,ZnO和Ag的異質(zhì)納米結(jié)構(gòu)受到越來越多的關(guān)注[4,11,23-28].Ag/ZnO異質(zhì)結(jié)在很多領(lǐng)域都表現(xiàn)出了巨大的應(yīng)用潛力,如光催化[23-26]、光電轉(zhuǎn)化[27]、微電子學(xué)[28]及表面增強(qiáng)拉曼散射[29]等.一般認(rèn)為,半導(dǎo)體和金屬界面處電荷的有效分離與轉(zhuǎn)移是提高其應(yīng)用性能的基本原理,是合理設(shè)計和制備半導(dǎo)體 金屬異質(zhì)結(jié)的基本準(zhǔn)則[24,30].目前,已有關(guān)于不同結(jié)構(gòu)、尺寸的Ag/ZnO納米結(jié)構(gòu)的報道,如Ag納米顆粒(NPs)/ZnO NPs[25-26],Ag NPs/ZnO 納米棒(NRs)[4,11,23],ZnO NRs/Ag納米線(NWs)[29]及Ag NPs/ZnO空球陣列結(jié)構(gòu)[24]等.然而,上述異質(zhì)結(jié)通常只是簡單地將Ag NPs沉積或修飾到ZnO NPs或ZnO NRs上,且主要由兩個分離的組成相構(gòu)成[4,11,23,25-26,29].分離相會形成大量帶有缺陷和電子陷阱的晶體界面,不僅不利于載流子的傳輸,還會影響異質(zhì)結(jié)所構(gòu)建的器件的整體性能.
試驗旨合成制備一種更加有效的異質(zhì)結(jié)材料,即兩面長有ZnO NRs的中孔Ag HMDs的Ag HMDs/ZnO NRs異質(zhì)結(jié).新穎的Ag HMDs/ZnO NRs異質(zhì)結(jié)具有獨特的結(jié)構(gòu)優(yōu)勢:高比表面積,兩面生長的ZnO NRs陣列提供兩倍比表面積,為催化反應(yīng)提供充足的活性位點;高效的電荷分離和轉(zhuǎn)移,兩面長有ZnO NRs陣列的Ag HMDs結(jié)構(gòu)能夠使兩個組成相充分接觸,為載流子提供立體傳輸?shù)母咚偻ǖ?;ZnO NRs和Ag HMDs分別作為1D和2D路徑,實現(xiàn)電子快速轉(zhuǎn)移,利于光生電荷的分離;促進(jìn)擴(kuò)散動力學(xué),Ag HMDs結(jié)構(gòu)有利于反應(yīng)物小分子的動態(tài)擴(kuò)散,特殊的立體構(gòu)型大大提高催化劑與目標(biāo)物接觸和反應(yīng)的機(jī)會.
1 試驗材料與方法
1.1 試驗試劑與儀器
試驗過程中所有用水均為二次蒸餾水.
電導(dǎo)率范圍:10~0.1 μ s.
電阻率范圍:1~18 MΩ.
試驗所用試劑見表1.試驗所用儀器見表2
1.2 制備方法
1.2.1 金屬Ag HMDs的制備
Ag HMDs的制備方法以文獻(xiàn)[31]為基礎(chǔ).首先將0.1 g DexS-40(相對分子質(zhì)量40 000)加入5 mL甲酰胺和4.8 mL水的混合液中,超聲、震蕩,使DexS-40完全溶解,體系混合均勻;接著將0.1 mL的0.2 mol/L VC溶液加入上述混合液中,充分震蕩,得到均勻體系;然后將0.1 mL的AgNO3溶液(0.2 mol/L)快速加入體系中,攪拌;最后得到反應(yīng)濃度為2 mmol/L的混合液.反應(yīng)體系靜置于室溫下老化24 h,最終得到灰色沉淀,離心分離并收集產(chǎn)品,超聲清洗數(shù)次備用.
1.2.2 ZnO晶種溶膠-凝膠溶液的制備
于60 ℃充分?jǐn)嚢柘?,將一定質(zhì)量的無水乙酸鋅溶于125 mL無水乙醇中,配制成0.01 mol/L的乙酸鋅乙醇溶液;再將65 mL的0.03 mol/L的KOH無水乙醇溶液逐滴加入到上述溶液中,并于60 ℃持續(xù)攪拌2 h,最終制備得到ZnO晶種溶膠 凝膠溶液.
1.2.3 Ag/ZnO異質(zhì)結(jié)的制備
首先,將制得的Ag HMDs浸于0.1 g/L的PVP(相對分子質(zhì)量12 000)水溶液中,靜置4 h后用無水乙醇清洗,除去多余的PVP分子;然后,將PVP水溶液處理過的Ag HMDs分散到制備好的ZnO晶種乙醇溶液中,浸泡4 h后分離,無水乙醇清洗.吸附有ZnO晶種的Ag HMDs旋涂于ITO(2 cm×2 cm)基底上,基底置于烘箱干燥1 h,除去無水乙醇,同時增強(qiáng)Ag HMDs在基底上的黏附力.最后,將基底置于20 mL硝酸鋅(0.01 mol/L)和HMT(0.01 mol/L)的水溶液中,于85 ℃下孵化8 h,取出基底,清洗并干燥,最終制得Ag HMDs/ZnO NRs異質(zhì)結(jié).
1.3 樣品表征
樣品形貌利用SEM、HR-TEM進(jìn)行表征.晶體結(jié)構(gòu)由XRD進(jìn)行表征.紫外 可見光譜通過Varian Cary 500紫外 可見分光光度計測試表征.
1.4 光電化學(xué)性能測試
將附有Ag HMDs/ZnO NRs異質(zhì)結(jié)的ITO基底(2 cm×2 cm)置于10 mL的5 mg/L的RhB水溶液中,并置于暗處1 h,達(dá)到吸附 脫附平衡.然后,將體系放置于300 W高壓汞燈照射條件下,每間隔一定時間取樣,利用紫外 可見分光光度儀(Varian Cary 500)檢測溶液中RhB的殘留濃度.
2 結(jié)果與討論
2.1 Ag HMDs/ZnO NRs異質(zhì)結(jié)的生長機(jī)制
通過2步法制備Ag HMDs/ZnO NRs異質(zhì)結(jié):第1步,上ZnO晶種,首先利用PVP對Ag HMDs表面進(jìn)行處理,改善其對ZnO晶種的吸附能力.將PVP修飾過的Ag HMDs沉浸于ZnO晶種溶膠 凝膠溶液中4 h,使ZnO晶種充分吸附到Ag HMDs表面,且疏密適中;第2步,ZnO晶種異質(zhì)外延生長制備ZnO NRs陣列,將覆有ZnO晶種的Ag HMDs懸置于等物質(zhì)的量濃度的生長液中,于85 ℃下孵化數(shù)小時,制備得到Ag HMDs/ZnO NRs異質(zhì)結(jié),如圖1所示.
2.2 Ag HMDs的表征結(jié)果
圖2是利用水溶液法制備得到的Ag HMDs的XRD圖譜和SEM圖片.從圖2(a)和(b)中可以看出,Ag HMDs分散性好,盤厚約50 nm(圖2(c)),軸徑比為80.圖2(d)中XRD圖譜的峰位置與具有fcc結(jié)構(gòu)的金屬Ag相符,表明產(chǎn)物為單晶Ag;XRD圖譜中(111)峰具有很高的強(qiáng)度,說明盤狀A(yù)g晶體的基面是(111)面.對于盤狀的Ag晶體,如納米盤,這是一個常見的現(xiàn)象,對于fcc結(jié)構(gòu)金屬晶體,(111)面是堆積密度最大的晶面,所以表面能最低,因此也最穩(wěn)定.
圖3為Ag HMDs的TEM和電子衍射花樣照片.從圖3(a)中可以觀察到,盤的直徑約4 μ m,孔徑約50~2 000 nm,與單個Ag HMDs對應(yīng)的電子衍射花樣(圖3(b))呈六方對稱,亮衍射點和暗衍射點的距離分別為1.44×10-9 m和2.50×10-9 m,這分別與fcc結(jié)構(gòu)的Ag(220)和1/3(422)晶面數(shù)據(jù)相對應(yīng).
Ag HMDs是在甲酰胺 水混合溶液體系中,DexS-40誘導(dǎo)下生長制備得到.DexS-40作為有效調(diào)控劑,能夠促進(jìn)Ag HMDs的生成,而Ag HMDs中孔的形成則是因為在最初生成時具有很高的成核和生長速率,Dextran溶解過程不穩(wěn)定所導(dǎo)致的晶體缺陷.
2.3 Ag HMDs/ZnO NRs異質(zhì)結(jié)的表征結(jié)果
圖4為Ag HMDs/ZnO NRs異質(zhì)結(jié)的SEM照片和XRD圖譜.從圖4(a)低倍SEM圖中可觀察到大面積Ag/ZnO異質(zhì)結(jié),尺寸約4~6 μ m,很難發(fā)現(xiàn)異質(zhì)結(jié)中的Ag HMDs,這是由于密集的ZnO NRs覆蓋了其表面.圖4(b)是Ag/ZnO異質(zhì)結(jié)的XRD圖譜,兩個明顯的衍射峰分別對應(yīng)于fcc結(jié)構(gòu)的Ag單晶和hcp結(jié)構(gòu)的纖鋅礦ZnO,進(jìn)一步證明異質(zhì)結(jié)是由Ag和ZnO兩種物質(zhì)組成.圖4(c)中,圈選區(qū)內(nèi)是單個Ag HMDs/ZnO NRs異質(zhì)結(jié).通過觀察可知,異質(zhì)材料呈現(xiàn)對稱結(jié)構(gòu),Ag HMDs(虛線標(biāo)示)作為對稱面,兩側(cè)被ZnO NRs陣列覆蓋.ZnO NRs直徑約80 nm,長度約1.0~1.2 μ m(圖4(d)).
2.4 生長時間對Ag/ZnO異質(zhì)結(jié)的影響
試驗中發(fā)現(xiàn),ZnO NRs的直徑和長度具有顯著的時間效應(yīng).見圖6(a),生長時間2 h,Ag/ZnO異質(zhì)結(jié)中生ZnO NRs陣列長度相對較短.高倍率觀察下,ZnO NRs(圖6(b))直徑約30 nm,長600~800 nm,比標(biāo)準(zhǔn)產(chǎn)物(圖4)細(xì)且短,可以明顯觀察到異質(zhì)結(jié)中的Ag HMDs,見圖6(b)中箭頭標(biāo)出處.因為ZnO NRs直徑相對較小,覆蓋也較稀疏,因此隨著反應(yīng)時間增長至24 h,可以獲得致密的叢狀A(yù)g/ZnO異質(zhì)結(jié),見圖6(c)和(d).ZnO NRs明顯變粗變長,平均直徑約150 nm,長度約1.8 μ m.
結(jié)果表明,ZnO NRs的直徑、長度及覆蓋面積都隨著生長時間的增加而增大.另外,生長24 h制備的大部分ZnO NRs都出現(xiàn)尖的端面,與短時間生長得到的不同.
2.5 生長液濃度對Ag/ZnO異質(zhì)結(jié)的影響
生長液的濃度對Ag HMDs/ZnO NRs異質(zhì)結(jié)的形貌、尺寸也有重要影響.當(dāng)生長液濃度為2 mmol/L時, 生成的ZnO NRs較短,端面凹陷(圖7(a),箭頭處).ZnO NRs的直徑和長度不均勻,尺寸范圍分別為 50~200 nm和100~200 nm.當(dāng)生長液濃度增加至5 mmol/L時,ZnO NRs明顯變長變細(xì),直徑20~150 nm,長度150~300 nm (圖7(b)),且大部分ZnO NRs擁有管狀端頂(圖7(b),箭頭處).當(dāng)生長液濃度進(jìn)一步增加至8和10 mmol/L時,則生成更長的ZnO NRs(400~800 nm),且端面處平整結(jié)實.上述結(jié)果表明,生長液濃度低,Ag HMDs表面更易生成端面凹形或管狀的短ZnO NRs;而生長液濃度高時更容易生成尺寸較長的ZnO NRs.
2.6 光電化學(xué)性能的結(jié)果與討論
標(biāo)準(zhǔn)Ag HMDs/ZnO NRs異質(zhì)結(jié)是生長液濃度為10 mmol/L,于85 ℃下反應(yīng)8 h制備得到的產(chǎn)物.通過有機(jī)污染物RhB在高壓汞燈(300 W)輻射下的降解反應(yīng)來研究該異質(zhì)結(jié)的光催化性能.異質(zhì)催化劑沉積于2 cm×2 cm ITO基底上,樣品質(zhì)量約0.002 8 g.
圖8(a)是標(biāo)準(zhǔn)樣Ag HMDs/ZnO NRs作為光催化劑,不同降解時間RhB溶液的Uv-vis吸收光譜.水溶液中RhB的吸收峰強(qiáng)度隨著輻射時間的增加而逐漸降低,3 h后回歸基線,表明Ag HMDs/ZnO NRs異質(zhì)催化劑在3 h內(nèi)可將水溶液中RhB降解完全.
相同生長條件下,制備得到其他參比樣品,如純相Ag HMDs、分散的ZnO NRs和有序的ZnO NRs陣列,在相同催化條件下,與標(biāo)準(zhǔn)樣Ag HMDs/ZnO NRs異質(zhì)結(jié)的催化性能進(jìn)行比較.圖8(b)是上述材料的光催化性能測試結(jié)果對比.所有降解過程基本滿足準(zhǔn)一級動力學(xué)方程.
ln C C0 =-kt
式中:C0、C和k分別是RhB的初始濃度、不同降解時間t的RhB實際濃度和降解常數(shù).不同納米結(jié)構(gòu)Ag HMDs/ZnO NRs、分散ZnO NRs、有序ZnO NRs陣列,Ag HMDs和空白(無催化劑)的k值分別是0.020 8,0.014 4,0.013 7,0.003 0和0.002 6 min-1.結(jié)果表明,Ag HMDs/ZnO NRs異質(zhì)結(jié)的光催化效率是純相ZnO NRs催化劑的1.5倍左右.
在光降解RhB過程中純相Ag HMDs幾乎沒有效果,所以Ag HMDs/ZnO NRs的高光催化活性歸因于Ag/ZnO異質(zhì)結(jié).該結(jié)構(gòu)利于Ag-ZnO界面處光生電荷的生成、分離及轉(zhuǎn)移,有效減少光生電子 空穴對的復(fù)合[24,30,36-37].紫外光輻射下,兩側(cè)ZnO NRs陣列產(chǎn)生的光生電子快速注入到Ag HMDs,而空穴仍然留在ZnO NRs中(圖9(a)).在這個過程中,ZnO NRs陣列和Ag HMDs為電子快速轉(zhuǎn)移提供有效路徑,同時為有效氧化還原反應(yīng)的發(fā)生提供空間活性位點(圖9(b)).
兩面ZnO NRs陣列具有開放的結(jié)構(gòu),能夠提供更多的活性位點,這將利于RhB分子的充分吸收和降解;同時,Ag HMDs中的孔利于分子的擴(kuò)散,有助于催化動力學(xué).
3 結(jié) 論
通過ZnO晶種異質(zhì)外延生長方法制得結(jié)構(gòu)新穎的Ag HMDs/ZnO NRs高級異質(zhì)結(jié).同時,可以通過改變反應(yīng)的條件,如生長濃度和生長時間等來調(diào)控異質(zhì)結(jié)的形貌與尺寸,如ZnO NRs的直徑、長度等.此外,在降解有機(jī)污染物RhB的光催化試驗中,Ag HMDs/ZnO NRs異質(zhì)結(jié)呈現(xiàn)優(yōu)于其他類似異質(zhì)和純相催化劑(如Ag NWs/ZnO NRs、純相ZnO NRs等)的光催化活性.其光催化效率的顯著提高得益于Ag HMDs/ZnO NRs特殊的結(jié)構(gòu),如雙面生長的ZnO NRs(具有高比表面積,為催化反應(yīng)提供充足的活性點),1D/2D的結(jié)構(gòu)單元(為載流子提供立體傳輸?shù)母咚偻ǖ溃?,Ag HMDs(有利于反應(yīng)物小分子的動態(tài)擴(kuò)散),集成的異質(zhì)結(jié)(有利于光生電荷的有效產(chǎn)生和快速分離)和特殊的立體構(gòu)型(大大提高催化劑與催化目標(biāo)物接觸和反應(yīng)的機(jī)會).結(jié)構(gòu)新穎的Ag/ZnO異質(zhì)結(jié)在很多領(lǐng)域都有廣泛應(yīng)用前景,如太陽能電池、鋰電池、傳感器及光催化等.在光降解RhB方面表現(xiàn)出優(yōu)異的光催化活性,主要得益于其獨特結(jié)構(gòu)的協(xié)同效應(yīng).
參考文獻(xiàn):
[1] MOKARI T,ROTHENBERG E,POPOV I,et al.Selective growth of metal tips onto semiconductor quantum rods and tetrapods[J].Science,2004,304(5678):1787-1790.
[2] MOKARI T,SZTRUM C G,SALANT A,et al.Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods[J].Nature Materials,2005,4(11):855-863.
[3] HABAS S E,YANG P D,MOKARI T J.Selective growth of metal and binary metal tips on CdS nanorods[J].Journal of the American Chemical Society,2008,130(11):3294-3295.
[4] FAN F R,DING Y,LIU D Y,et al.Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal:ZnO nanorods on Ag nanocrystals[J].Journal of the American Chemical Society,2009,131(34):12036-12037.
[5] SUN K,JING Y,PARK N,et al.Solution synthesis of large-scale,high-sensitivity ZnO/Si hierarchical nanohetero structure photodetectors[J].Journal of the American Chemical Society,2010,132(44):15465-15467.
[6] WU L,QUAN B G,LIU Y L,et al.One-pot synthesis of liquid Hg/Solid β -HgS metal-semiconductor heterostructures with unique electrical properties[J].ACS Nano,2011,5(3):2224-2230.
[7] YANG J,YING J Y.Nanocomposites of Ag2S and noble metals[J].Angewandte Chemie International Edition,2011,50(20):4637-4643.
[8] SHI L,XU Y M,HARK S,et al.Optical and electrical performance of SnO2 capped ZnO nanowire arrays[J].Nano Letters,2007,7(12):3559-3563.
[9] MA Y Y,LI W Y,CHO E C,et al.Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes,shell thicknesses,and optical properties[J].ACS Nano,2010,4(11):6725-6734.
[10] MCKIERNAN M,ZENG J,F(xiàn)ERDOUS S,et al.Facile synthesis of bimetallic Ag/Ni core/sheath nanowires and their magnetic and electrical properties[J].Small,2010,6(17):1927-1934.
[11] PACHOLSKI C,KORNOWSKI A,WELLER H.Site-specific photodeposition of silver on ZnO nanorods[J].Angewandte Chemie International Edition,2004,43(36):4774-4777.
[12] LEE J S,SHEVCHENKO E V,TALAPIN D V.Au-PbS core-shell nanocrystals:plasmonic absorption enhancement and electrical doping via intra-particle charge transfer[J].Journal of the American Chemical Society,2008,130(30):9673-9675.
[13] SUN Y,XIA Y.Large-scale synthesis of uniform silver nanowires through a soft,self-seeding,polyol process[J].Advanced Materials,2002,14(11):833-837.
[14] TAO A,KIM F,HESS C,et al.Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy[J].Nano Letters,2003,3(9):1229-1233.
[15] SHI H Y,HU B,YU X C,et al.Ordering of disordered nanowires:spontaneous formation of highly aligned,ultralong Ag nanowire films at oil-water-air interface[J].Advanced Functional Materials,2010,20(6):958-964.
[16] SUN Y G.Silver nanowires-unique templates for functional nanostructures[J].Nanoscale,2010,2(9):1626-1642.
[17] HOCHBAUM A I,YANG P D.Semiconductor nanowires for energy conversion[J].Chemical Reviews,2010,110(1):527-546.
[18] HUANG M H,MAO S,F(xiàn)EICK H,et al.Room-temperature ultraviolet nanowire nanolasers[J].Science,2001,292(5523):1897-1899.
[19] PAN Z W,DAI Z R,WANG Z L.Nanobelts of semiconducting oxides[J].Science,2001,291(5510):1947-1949.
[20] WANG Z L,SONG J H.Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J].Science,2006,312(5771):242-246.
[21] KO S H,LEE D,KANG H W,et al.Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell[J].Nano Letters,2011,11(2):666-671.
[22] XU C K,WU J M,DESAI U V,et al.Multilayer assembly of nanowire arrays for dye-sensitized solar cells[J].Journal of the American Chemical Society,2011,133(21):8122-8125.
[23] REN C L,YANG B F,WU M,et al.Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance[J].Journal of Hazardous Materials,2010,182(1/3):123-129.
[24] GU C D,CHENG C,HUANG H Y,et al.Growth and photocatalytic activity of dendrite-like ZnO@Ag heterostructure nanocrystals[J].Crystal Growth & Design,2009,9(7):3278-3285.
[25] HEIGHT M J,PRATSINIS S E,MEKASUWANDUMRONG O,et al.Ag-ZnO catalysts for UV-photodegradation of methylene blue[J].Applied Catalysis B:Environmental,2006,63(3/4):305-312.
[26] KARUNAKARAN C,RAJESWARI V,GOMATHISANKAR P.Optical,electrical,photocatalytic,and bactericidal properties of microwave synthesized nanocrystalline Ag-ZnO and ZnO[J].Solid State Sciences,2011,13(5):923-928.
[27] HU L B,KIM H S,LEE J Y,et al.Scalable coating and properties of transparent,flexible,silver nanowire electrodes[J].ACS Nano,2010,4(5):2955-2963.
[28] YANG C,GU H W,LIN W,et al.Silver nanowires:from scalable synthesis to recyclable foldable electronics[J].Advanced Materials,2011,23(27):3052-3056.
[29] YIN J,ZANG Y S,YUE C,et al.Ag nanoparticle/ZnO hollow nanosphere arrays:large scale synthesis and surface Plasmon resonance effect induced Raman scattering enhancement[J].Journal of Materials Chemistry,2012,22(16):7902-7909.
[30] WANG S W,YU Y,ZUO Y H,et al.Synthesis and photocatalysis of hierarchical heteroassemblies of ZnO branched nanorod arrays on Ag core nanowires[J].Nanoscale,2012,4(19):5895-5901.
[31] YANG J H,QI L M,ZHANG D B,et al.Dextran-controlled crystallization of silver microcrystals with novel morphologies[J].Crystal Growth & Design,2004,4(6):1371-1375.
[32] LI F,DING Y,GAO P X,et al.Single-crystal hexagonal disks and rings of ZnO:low-temperature,large-scale synthesis and growth mechanism[J].Angewandte Chemie International Edition,2004,43(39):5238-5242.
[33] YANG J H,LIU G M,LU J,et al.Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate[J].Applied Physics Letters,2007,90(10):103109.
[34] YANG J H,QIU Y F,YANG S H.Studies of electrochemical synthesis of ultrathin ZnO nanorod/nanobelt arrays on Zn substrates in alkaline solutions of amine-alcohol mixtures[J].Crystal Growth & Design,2007,7(12):2562-2567.
[35] LIU B,ZENG H C.Direct growth of enclosed ZnO nanotubes[J].Nano Research,2009,2(3):201-209.
[36] ZHENG Y H,ZHENG L R,ZHAN Y Y,et al.Ag/ZnO heterostructure nanocrystals:synthesis,characterization,and photocatalysis[J].Inorganic Chemistry,2007,46(17):6980-6986.
[37] SUN Y G,MAYERS B,XIA Y N.Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process[J].Nano Letters,2003,3(5):675-679.
[38] CHEN S H,CARROLL D L.Synthesis and characterization of truncated triangular silver nanoplates[J].Nano Letters,2002,2(9):1003-1007.