吳 凡,張明輝,傅 鑫,郭 昕,王繼良,王京獻(xiàn)
(西安飛行自動(dòng)控制研究所,西安 710065)
空間三軸機(jī)抖激光陀螺交流穩(wěn)頻系統(tǒng)設(shè)計(jì)
吳 凡,張明輝,傅 鑫,郭 昕,王繼良,王京獻(xiàn)
(西安飛行自動(dòng)控制研究所,西安 710065)
針對(duì)空間三軸機(jī)抖激光陀螺設(shè)計(jì)了交流穩(wěn)頻控制系統(tǒng),分析了系統(tǒng)原理,進(jìn)行了Simulink仿真建模和試驗(yàn)研究。在系統(tǒng)原理中分析了控制過(guò)程,推導(dǎo)了系統(tǒng)函數(shù),通過(guò)Simulink交流穩(wěn)頻系統(tǒng)仿真建模摸索了空間三軸機(jī)抖激光陀螺交流穩(wěn)頻系統(tǒng)中 PID參數(shù)對(duì)系統(tǒng)響應(yīng)的影響,并得到了優(yōu)化參數(shù)(KP=0.048, KI=0.0021, KD=0.0037),為硬件調(diào)試提供了參考。將交流穩(wěn)頻控制系統(tǒng)應(yīng)用于國(guó)產(chǎn)某型空間三軸機(jī)抖激光陀螺進(jìn)行試驗(yàn),試驗(yàn)結(jié)果顯示通過(guò)PID參數(shù)調(diào)節(jié)后的交流穩(wěn)頻陀螺PZT碼值變化平穩(wěn),陀螺靜態(tài)脈沖輸出穩(wěn)定,與原直流穩(wěn)頻控制方法相比將空間三軸機(jī)抖激光陀螺的精度提高了20%。
空間三軸;激光陀螺;交流穩(wěn)頻;PID參數(shù)
激光陀螺具有啟動(dòng)快、壽命長(zhǎng)、數(shù)字輸出、動(dòng)態(tài)范圍寬、可靠性高、技術(shù)成熟度高等諸多優(yōu)點(diǎn),目前已成為高精度慣性導(dǎo)航系統(tǒng)的首選慣性傳感器,廣泛應(yīng)用于機(jī)載捷聯(lián)慣性導(dǎo)航系統(tǒng)中[1-2]。近年來(lái),隨著慣性導(dǎo)航需求的提升和光學(xué)加工制造技術(shù)的成熟[3-4],激光陀螺不斷向著高精度、小型化、集成化的方向發(fā)展[5],其中,空間三軸機(jī)抖激光陀螺具有體積小、重量輕、集成度高等優(yōu)勢(shì),成為機(jī)抖激光陀螺新的發(fā)展方向。相比于單軸機(jī)抖激光陀螺穩(wěn)頻控制方法[6-10],空間三軸機(jī)抖激光陀螺穩(wěn)頻控制需要實(shí)現(xiàn)三個(gè)軸同時(shí)穩(wěn)頻,由于每個(gè)壓電陶瓷上控模電壓的變化會(huì)同時(shí)引起兩個(gè)軸腔長(zhǎng)的變化,因此三個(gè)軸的光頻控制相互牽連,空間三軸機(jī)抖激光陀螺的穩(wěn)頻控制較為復(fù)雜。
針對(duì)空間三軸機(jī)抖激光陀螺穩(wěn)頻控制問(wèn)題,工程上,國(guó)內(nèi)外普遍采用了直流穩(wěn)頻的控制方案,直流穩(wěn)頻控制方案是對(duì)三個(gè)壓電陶瓷上的控模電壓輪流采取兩加一減和兩減一加的方式進(jìn)行分時(shí)控制,相當(dāng)于將空間三軸陀螺三個(gè)軸的直流穩(wěn)頻控制轉(zhuǎn)化為分時(shí)的單軸直流穩(wěn)頻控制,這種穩(wěn)頻控制方案對(duì)空間三軸激光陀螺穩(wěn)頻來(lái)說(shuō)便于實(shí)現(xiàn),但穩(wěn)頻精度和穩(wěn)頻效率低,影響了陀螺的性能。
提高空間三軸機(jī)抖激光陀螺穩(wěn)頻控制精度和穩(wěn)頻效率對(duì)提高陀螺精度,充分發(fā)揮空間三軸機(jī)抖激光陀螺的潛能有重要意義。交流穩(wěn)頻控制方法能同時(shí)對(duì)三個(gè)軸腔長(zhǎng)失諧量進(jìn)行解調(diào)與補(bǔ)償,因此穩(wěn)頻控制精度和穩(wěn)頻效率高。研究空間三軸機(jī)抖激光陀螺的交流穩(wěn)頻控制方法對(duì)提高空間三軸機(jī)抖激光陀螺精度有重要意義。本文針對(duì)空間三軸機(jī)抖激光陀螺交流穩(wěn)頻控制方法,研究了控制過(guò)程,推導(dǎo)了系統(tǒng)函數(shù),進(jìn)行了系統(tǒng)參數(shù)仿真、PID參數(shù)優(yōu)化和對(duì)比試驗(yàn),證明該方法能較好地應(yīng)用于空間三軸機(jī)抖激光陀螺諧振腔穩(wěn)頻控制,并提高空間三軸機(jī)抖激光陀螺的精度。
空間三軸機(jī)抖激光陀螺中,X軸、Y軸、Z軸三個(gè)諧振腔相互對(duì)稱,三個(gè)腔內(nèi)的激光光頻分別通過(guò)空間三軸機(jī)抖激光陀螺腔體上的三個(gè)壓電陶瓷 PZT1、PZT2、PZT3進(jìn)行控制,如圖1所示。
圖1 空間三軸陀螺結(jié)構(gòu)圖Fig.1 Structure of the space three-axis laser gyro
在三個(gè)壓電陶瓷PZT1、PZT2、PZT3的直流控模電壓上分別施加同頻同相位同幅值的正弦交流調(diào)制信號(hào),使三個(gè)腔長(zhǎng)發(fā)生同步的周期性的變化,三個(gè)軸內(nèi)的激光頻率也相應(yīng)的周期性變化,從而引起光強(qiáng)調(diào)制,對(duì)三路光強(qiáng)信號(hào)分別進(jìn)行去直濾波后可以得到每個(gè)軸的鑒頻交流光強(qiáng)信號(hào)。解調(diào)中,使用與正弦交流調(diào)制信號(hào)同頻的參考信號(hào)進(jìn)行相敏解調(diào),將三路參考信號(hào)相位進(jìn)行延時(shí)處理使參考信號(hào)與其對(duì)應(yīng)的鑒頻交流光強(qiáng)信號(hào)相位差為0,三路鑒頻交流光強(qiáng)信號(hào)經(jīng)A/D轉(zhuǎn)換后以其參考信號(hào)的正負(fù)半周期為基準(zhǔn)分別累加其對(duì)應(yīng)的鑒頻交流光強(qiáng)信號(hào)正負(fù)半周期碼值,將多個(gè)參考信號(hào)周期內(nèi)的正負(fù)半周期信號(hào)A/D累加碼值做差即為對(duì)應(yīng)軸的誤差信號(hào)碼值,誤差信號(hào)經(jīng)過(guò) PID控制和D/A轉(zhuǎn)化作用于直流控模電壓形成負(fù)反饋,從而實(shí)現(xiàn)空間三軸機(jī)抖激光陀螺三個(gè)軸的交流穩(wěn)頻控制。
根據(jù)圖1中PZT1、PZT2、PZT3與諧振腔X軸、Y軸、Z軸的對(duì)應(yīng)關(guān)系,可以得到三個(gè)壓電陶瓷補(bǔ)償信號(hào)與腔長(zhǎng)信號(hào)的對(duì)應(yīng)方程:
則式(1)可以寫為:
易得到:
在穩(wěn)頻控制系統(tǒng)中,誤差信號(hào)分配模塊系統(tǒng)結(jié)構(gòu)可以設(shè)為H=A-1,對(duì)A矩陣進(jìn)行求逆運(yùn)算,得到:
因此誤差信號(hào)分配模塊系統(tǒng)函數(shù)H如式(9)所示:
對(duì)壓電陶瓷補(bǔ)償信號(hào)vPZT進(jìn)行PID控制產(chǎn)生壓電陶瓷驅(qū)動(dòng)信號(hào)來(lái)驅(qū)動(dòng)壓電陶瓷實(shí)現(xiàn)誤差補(bǔ)償,離散PID控制器表達(dá)式如式(10)所示:
式中:KP為比例系數(shù),KI為積分系數(shù),KD為微分系數(shù),TI為積分時(shí)間常數(shù),TD為微分時(shí)間常數(shù),k為采樣序號(hào),T為采樣周期,u(k)為第k次采樣時(shí)刻控制器輸出,e(k)為第k次采樣時(shí)刻輸入。
根據(jù)上述空間三軸機(jī)抖激光陀螺交流穩(wěn)頻解調(diào)原理分析,可以通過(guò)Simulink建模模擬系統(tǒng)階躍響應(yīng),并對(duì) PID的控制參數(shù)進(jìn)行分析,對(duì)穩(wěn)頻控制系統(tǒng)的PID參數(shù)調(diào)節(jié)具有參考意義。
由原理分析可知,鑒頻交流光強(qiáng)信號(hào)實(shí)質(zhì)上為調(diào)制電壓在增益曲線上的相干解調(diào),因此我們將一個(gè)軸的增益曲線看作二次函數(shù):
式中,U0為峰值電壓,β為與增益曲線有關(guān)的常系數(shù)。
設(shè)調(diào)制電壓為:
式(12)中ΔvL的值實(shí)際為腔長(zhǎng)的失諧量,將其帶入式(11),得到鑒頻交流光強(qiáng)信號(hào)UPAC:
由于相敏檢波只能解調(diào)出與調(diào)制信號(hào)同頻的信號(hào),因此經(jīng)過(guò)隔直和帶通后鑒頻交流光強(qiáng)信號(hào)UPAC可以寫成式(14):
圖2 穩(wěn)頻系統(tǒng)Simulink仿真框圖Fig.2 Simulink diagram of the AC laser frequency stabilization system
圖3 PZT補(bǔ)償信號(hào)階躍響應(yīng)仿真結(jié)果Fig.3 Simulation results of compensation signal step response
將基于PID控制的交流穩(wěn)頻控制系統(tǒng)應(yīng)用于國(guó)產(chǎn)某型空間三軸機(jī)抖激光陀螺上,調(diào)節(jié)三路PID控制參數(shù)得到較小響應(yīng)時(shí)間和較短的超調(diào)量,三路PID控制參數(shù)值與仿真結(jié)果相近。對(duì)基于PID控制的交流穩(wěn)頻陀螺進(jìn)行常溫靜態(tài)測(cè)試,測(cè)試時(shí)間為3600 s。與原直流穩(wěn)頻測(cè)試結(jié)果進(jìn)行對(duì)比,測(cè)試結(jié)果如表1所示?;赑ID控制的交流穩(wěn)頻控制方式將陀螺精度大致提高了0.003 (°)/h,其三路PZT碼值變化和脈沖輸出結(jié)果分別如圖4和圖5所示,可見基于PID控制的交流穩(wěn)頻陀螺PZT碼值變化平穩(wěn),陀螺靜態(tài)脈沖輸出穩(wěn)定。
表1 陀螺精度的對(duì)比試驗(yàn)結(jié)果Tab.1 comparison on gyros’ precisions (°/h)
圖4 PZT信號(hào)碼值Fig.4 PZT signal code value
圖5 脈沖信號(hào)Fig.5 Pulse signal
本文研究了空間三軸機(jī)抖激光陀螺交流穩(wěn)頻控制方法,并對(duì)PID控制參數(shù)仿真與優(yōu)化,得到了較好的穩(wěn)頻控制系統(tǒng)響應(yīng)。通過(guò)電子控制實(shí)現(xiàn)了空間三軸機(jī)抖激光陀螺交流穩(wěn)頻,并與直流穩(wěn)頻和等步長(zhǎng)的交流穩(wěn)頻進(jìn)行了對(duì)比試驗(yàn),試驗(yàn)結(jié)果證明,通過(guò)PID參數(shù)調(diào)節(jié)后的空間三軸機(jī)抖激光陀螺交流穩(wěn)頻系統(tǒng)輸出PZT碼值變化平穩(wěn),陀螺靜態(tài)脈沖輸出穩(wěn)定,能較好地提高空間三軸機(jī)抖激光陀螺諧振腔穩(wěn)頻控制的精度和效率,與原直流穩(wěn)頻方法相比,將空間三軸機(jī)抖激光陀螺的精度提高了20%。
(References):
[1] Wang Jian-zhong. Application and research of high precision data acquisition for laser gyro[J]. Advances in Natural Science, 2016, 9(2): 32-38.
[2] Liu Zhi-ping, Han Zong-hu. The technical situation and development tendency of foreign optical strapdown inertial navigation system[J]. Aerospace Control, 2012, 30(5): 94-99.
[3] Yu X D, Wei G, Long X W, et al. Finite element analysis and optimization of dither mechanism in dithered ring laser gyroscope[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(3): 415-421.
[4] Yang Y, Li J, Tang B. Design of high precision and low latency signal demodulating circuit on mechanically dithered ring laser gyro[J]. Computer Measurement & Control, 2015. 37(2): 178-182.
[5] Wen F, Li J. Design of laser gyro signal high-speed demodulation filter based on FPGA[J]. Application of Electronic Technique, 2014, 2(5): 45-52.
[6] 馬家君, 蔣軍彪, 劉健寧. 全反射棱鏡式激光陀螺自適應(yīng)穩(wěn)頻技術(shù)[J]. 光學(xué)學(xué)報(bào), 2015, 35(3): 164-170. Ma Jia-jun, Jiang Jun-biao, Liu Jian-ning. Adaptive frequency stabilization technique for total reflection prism laser gyros[J] . Acta Optica Sinica, 2015, 35(3): 164-170.
[7] 韓宗虎, 胡曉東. 激光陀螺反射鏡散射檢測(cè)方法[J]. 中國(guó)慣性技術(shù)學(xué)報(bào), 2015, 23(4): 540-543. Han Zong-hu, Hu Xiao-dong. Method of mirror scattering test for laser gyro[J]. Journal of Chinese Inertial Technology, 2015, 23(4): 540-543.
[8] Bondarenko E A. A laser gyro with a four-mirror square resonator: formulas for simulating the dynamics of the synchronisation zone parameters of the frequencies of counterpropagating waves during the device operation in the self-heating regime[J]. Quantum Electronics, 2014, 44(4): 364.
[9] Baker S M, Johnson D E. Systems and methods for a ring laser gyroscope with electrically isolated dither motor. US: 9551578[P]. 2017-1-24.
[10] 馬家君, 蔣軍彪. 全反射棱鏡式激光陀螺穩(wěn)頻特性研究[J]. 中國(guó)激光, 2015, 42(1): 29-36. Ma Jia-jun, Jiang Jun-biao. Research on the frequency stabilization properties of total reflection prism laser gyros[J] . Chinese Journal of Lasers, 2015, 42(1): 29-36.
[11] Zou J, Yang J, Bangqian A. Low-cost integrated navigation system based on ARM and FPGA design[J]. Computer Measurement & Control, 2013, 13(2): 33-40.
[12] Klimkovich B V, Tolochko A M. A correcting filter for a mechanically dithered single-axis ring laser gyro[J]. Gyroscopy and Navigation, 2017, 8(1): 43-50.
Design of AC laser frequency stabilization system for space three-axis mechanical dithering laser gyro
WU Fan, ZHANG Ming-hui, FU Xin, GUO Xin, WANG Ji-liang, WANG Jing-xian
(Flight Automatic Control Research Institute, Xi’an 710065, China)
To design an AC laser frequency stabilization system for the space three-axis mechanical dithering laser gyro, the principle of the AC frequency stabilization system is analyzed, the system simulation model based on Simulink tool is built, and the experimental research is made. In the principle analysis, the control procedure of the system is analyzed, the system function is deduced, and the influence of PID parameters on the system response in the AC laser frequency stabilization is explored through the system simulation model based on Simulink tool. Then, the optimal PID parameters (KP=0.048, KI=0.0021, KD=0.0037) are obtained, which can provide reference for the system debugging. Finally, the test experiment is made by applying the AC laser frequency stabilization system into some Chinese-made space three-axis mechanical dithering laser gyro. The experiment results show that the PZT code value and the gyro pulse output of the AC frequency stabilization gyro are stable by using PID parameters control, and the precision of the space three-axis mechanical dithering laser gyro is increased by 20% compared with that by the original DC laser frequency stabilization control method.
space three axis; laser gyroscope; AC laser frequency stabilization; PID parameter
U661.1
A
1005-6734(2017)02-0265-04
10.13695/j.cnki.12-1222/o3.2017.02.024
2017-01-05;
2017-03-24
裝備預(yù)先研究項(xiàng)目(51309010202)
吳凡(1988—),男,工程師,現(xiàn)主要從事激光陀螺控制技術(shù)研究。E-mail: wufan_franck@163.com