徐雅琴,劉 菲,郭瑩瑩,陳宏超,王麗波,楊 昱
黑穗醋栗果實超聲波降解多糖的結構及抗糖基化活性
徐雅琴,劉 菲,郭瑩瑩,陳宏超,王麗波,楊 昱※
(東北農(nóng)業(yè)大學理學院,哈爾濱 150030)
為了充分利用黑穗醋栗果實中的多糖資源,該文對水提醇沉,大孔樹脂純化制得黑穗醋栗果實多糖進行超聲波降解,并對分離純化后得到的低分子量多糖的理化性質(zhì)、結構特征和抗糖基化反應活性進行了研究。利用葡聚糖凝膠Sephadex G-100對降解多糖進行分離純化,高效液相色譜法測定分子量,氣相色譜法測定單糖組成,紅外光譜、紫外光譜、剛果紅試驗和電鏡掃描初步表征多糖結構。結果表明:黑穗醋栗果實降解多糖(BCP I)純度為83.88% ± 0.76%;重均分子量為235 955 Da;BCP I為酸性雜多糖,單糖組成及物質(zhì)量比為:半乳糖醛酸:鼠李糖:阿拉伯糖:甘露糖:葡萄糖:半乳糖=2.31 : 1.11 : 3.14 : 0.34 : 0.36 : 1.00。BCP I具有多糖的特征吸收峰,不含多酚、蛋白質(zhì)和核酸;不具有三股螺旋結構,呈現(xiàn)片狀不規(guī)則的形態(tài)。抗糖基化活性測定結果表明BCP I對糖基化反應3個階段(Amadori產(chǎn)物形成階段、二羰基化合物形成階段和糖基化終產(chǎn)物形成階段)產(chǎn)物的形成均表現(xiàn)出良好的抑制作用,抑制率隨濃度與時間的增加而增大。最大抑制率分別為49.55% ± 0.79%,41.82% ± 0.72%和42.01% ± 0.13%,均高于對照氨基胍。研究結果可為后續(xù)深入探討黑穗醋栗果實多糖結構與降血糖活性之間的構效關系提供理論基礎。
純化;超聲波;降解;黑穗醋栗果實;多糖;結構;抗糖基化
多糖,又稱多聚糖,是自然界含量最豐富的生物聚合物,廣泛存在于高等植物、藻類、菌類及動物體內(nèi)。研究表明多糖具有多種生理活性,如增強免疫調(diào)節(jié)、抗腫瘤、抗氧化、降血糖、降血脂、抑菌等功效[1-3]。然而大多數(shù)天然提取的多糖由于其分子量較大,水溶性差,不利于生物體有效吸收并發(fā)揮生物學功能[4]。研究發(fā)現(xiàn)通過適當?shù)姆椒ń到舛嗵牵汛蠓肿訑嗔殉稍谝欢ǚ肿恿糠秶鷥?nèi)的較小片段,可提高其生物活性[5]。目前,有關多糖降解的研究主要集中在酶法降解、化學方法降解和物理方法降解等[6]。酶法降解總體成本較高且專一性酶不易獲得[7];化學方法費時、難以控制且對環(huán)境不友好[8];物理降解法是一種綠色高效的降解方法,操作簡單,可控性好,常用的方法有微波法[9]、輻射法[10]和超聲波法[11]。與微波法和輻射法相比,超聲波降解在獲取所需性質(zhì)的多糖的同時不會破壞多糖的單元結構[12],從而保證了多糖的生物活性,在食品體系中發(fā)揮著重要作用。
黑穗醋栗(Ribes nigrum L.)又稱黑加侖,因果實中含有豐富的活性成分[13-14],與藍莓、樹莓和沙棘等一起被稱為“第三代”新型水果,受到消費者的廣泛關注。近年來,有關黑穗醋栗果實中花色苷、黃酮類、多酚類等活性物質(zhì)的研究較多[14-15],而對于多糖的研究僅有少量報道。目前,黑穗醋栗果實多糖因其顯著的抗氧化、抗腫瘤、降血糖、增強免疫力等多種功效[16-17],正逐漸引起植物學家和醫(yī)藥學家的關注,成為研究熱點。課題組前期已從黑穗醋栗果實中提取出具有體外抗氧化活性的天然多糖。但是這些多糖因較大的分子量和較低的溶解度,一定程度上限制了其生物活性的發(fā)揮[17-18]。此外,前期研究主要將超聲波技術應用于黑穗醋栗多糖的輔助提取,提高多糖提取率[18-19],而有關超聲波降解對黑穗醋栗果實多糖結構和活性的影響研究未見報道。因此,本文通過超聲波法降解黑穗醋栗果實多糖,初步探討降解多糖的結構特征和抗糖基化反應活性,為進一步開發(fā)利用黑穗醋栗果實多糖資源提供科學依據(jù)。
1.1 材料與試劑
黑穗醋栗(黑豐)成熟果實,2015年7月采于黑龍江省農(nóng)科院牡丹江農(nóng)科所,洗滌后于-20 ℃儲藏備用。
大孔吸附樹脂D4006,南開大學化工廠;SephadexG-100,瑞典Pharmacia公司進口分裝;半乳糖醛酸,上海源葉生物科技有限公司;葡聚糖T-10、T-40、T-70、T-110、T-2000,北京拜爾迪生物公司;D-葡萄糖、D-半乳糖、D-鼠李糖、L-阿拉伯糖、D-甘露糖、D-木糖,美國Sigma公司;其他藥品均為分析純。
1.2 儀器與設備
JY92-2D超聲波細胞粉碎機(寧波新芝生物科技股份有限公司);TU-1901雙光束紫外可見分光光度計(北京普析通用儀器有限責任公司);FE-20K酸度計(上海精密儀器儀表有限公司);R-205旋轉蒸發(fā)儀(上海申勝生物技術有限公司);FTS135型傅立葉變換紅外光譜儀(美國BID-BAD公司);LC-10AVP高效液相色譜儀(日本島津公司);GC-2010氣相色譜儀(日本島津公司);S-3400N型顯微鏡(日本HITACHI公司)。
1.3 方法
1.3.1 黑穗醋栗果實多糖的制備
參考課題組前期研究方法[19],稍加修改。稱取一定量黑穗醋栗果實勻漿,按料液比1:20 g/mL加入去離子水,溫度80 ℃,電動攪拌,轉速200 r/min,提取時間2 h。提取液抽濾、濃縮(50 ℃,真空度< 0.09 MPa),體積分數(shù)40%乙醇溶液醇沉,4 ℃冰箱靜置過夜,所得沉淀微孔濾膜抽濾(0.45 μm),凍干(-50 ℃,真空度< 15 Pa,干燥24 h),得到粉紅色的黑穗醋栗果實粗多糖。
使用D4006型大孔樹脂(2.0 cm × 30 cm)對黑穗醋栗果實粗多糖進行純化,純化條件:溫度25 ℃,上樣液質(zhì)量濃度4.00 mg/mL,洗脫劑為去離子水,洗脫流速1.00 mL/min。將洗脫后的黑穗醋栗果實多糖溶液濃縮(50 ℃,真空度< 0.09 MPa),凍干(-50 ℃,真空度<15 Pa,干燥24 h),命名為BCP,苯酚-硫酸法檢測其含量[20]。
1.3.2 黑穗醋栗果實降解多糖的制備
稱取2.400 g黑穗醋栗果實多糖(BCP),加入400 mL去離子水使BCP質(zhì)量濃度為6 mg/mL,充分溶解后,利用超聲波細胞粉碎機進行超聲降解。超聲條件:超聲時間30 min,超聲溫度25 ℃,超聲功率600 W。降解后多糖溶液經(jīng)過透析(3 500 Da,72 h)、濃縮,凍干,得到降解多糖。
將得到的降解多糖配制成15 mg/mL溶液,利用葡聚糖凝膠Sephadex G-100(1.8 cm × 40 cm)分離純化[21],上樣量為1.00 mL,洗脫劑為去離子水,洗脫流速1.0 mL/min,每1.00 mL為一管,收集洗脫液,苯酚-硫酸法跟蹤檢測至無糖檢出。根據(jù)洗脫曲線收集多糖組分,濃縮,凍干,得到黑穗醋栗果實降解多糖(BCP I),苯酚-硫酸法測其含量。
1.3.3 黑穗醋栗果實降解多糖理化性質(zhì)的測定
將BCP I溶解在去離子水、乙醇、乙醚、乙酸乙酯、丙酮、氯仿等溶劑,觀察其溶解性。利用酸度計、茚三酮試驗、碘-碘化鉀試驗、斐林試劑反應、三氯化鐵反應測定BCP I的化學性質(zhì)。
1.3.4 黑穗醋栗果實降解多糖分子量和單糖組成測定
分子量測定:液相色譜條件:日本Shimadzu公司高效液相色譜儀;Waters Ultrahydroge 2000色譜柱(7.8 mm × 300 mm);示差折光檢測器RID-10A;Shimadzu CLASSVp數(shù)據(jù)處理工作站;進樣量:10 μL;壓力:2.3 MPa;洗脫劑:Na2SO4溶液(0.05 mol/L),流速:1.0 mL/min。
將BCP I與標準品(T-10、T-40、T-70、T-110、T-2000)精確配制成2.0 mg/mL溶液,0.45 μm微孔濾膜過濾后進樣,測定色譜峰保留時間,GPC分析軟件計算得到多糖分子量。
單糖組成的測定:按照聶永心等[22]的方法,將BCP I進行酸水解和衍生化后進樣,各單糖標準品也進行衍生化后混合進樣,氣相色譜儀進行分析檢測(肌醇作為內(nèi)標),計算BCP I的單糖組成。
氣相色譜條件:RTX-1701石英毛細管色譜柱(0.25 μm × 30.0 m);氫火焰離子化的檢測器(FID);程序升溫:180(5 ℃/min)-220 ℃(5 min),220(10 ℃/min)-280 ℃(20 min);汽化和檢測器的溫度為280 ℃;載氣:高純氮氣。
1.3.5 黑穗醋栗果實降解多糖的紅外光譜和紫外光譜
采用溴化鉀壓片法,在4 000~400 cm-1范圍內(nèi)進行紅外光譜掃描;采用雙光束紫外可見分光光度計在波長190~630 nm范圍內(nèi)進行紫外光譜掃描。
1.3.6 黑穗醋栗果實降解多糖的剛果紅試驗和掃描電鏡測定
參照文獻[21]的方法,將BCP I和剛果紅試劑配制成不同濃度NaOH溶液,紫外-可見光譜掃描,測量樣品溶液的最大吸收波長。將樣品BCP I放入離子濺射鍍膜儀,樣品表面鍍一層100 nm左右的金膜,然后利用掃描電鏡觀察BCP I的形貌特征。
1.3.7 黑穗醋栗果實降解多糖的抗糖基化反應活性測定
[23]的方法,建立牛血清蛋白-葡萄糖糖基化反應體系,以氨基胍作為陽性對照,測定不同質(zhì)量濃度(0.05、0.20、0.40 mg/mL)BCP I溶液對Amadori產(chǎn)物、二羰基化合物、末期糖基化終產(chǎn)物(advanced glycation end products, AGEs)的抑制作用。
1.4 數(shù)據(jù)處理
所有試驗數(shù)據(jù)均以3次試驗結果的平均數(shù)±標準誤差(mean ± SD)表示,SPSS軟件進行差異顯著性分析,以P<0.05作為顯著性差異標準。
2.1 黑穗醋栗果實降解多糖的制備
BCP經(jīng)超聲波降解,葡聚糖凝膠Sephadex G-100分離純化后,得到主要組分BCP I,洗脫曲線見圖1。如圖1所示,洗脫峰為單一吸收峰,峰形對稱,且無拖尾現(xiàn)象,說明BCP I為均一組分。苯酚-硫酸法測得多糖回收率為88.04% ± 0.51%,純度為83.88% ± 0.76%。
圖1 BCP I的葡聚糖凝膠SephadexG-100洗脫曲線Fig.1 Elution curve of BCP I by Sephadex G-100
2.2 黑穗醋栗果實降解多糖理化性質(zhì)
BCP I為白色疏松狀(棉花糖狀)固體,易溶于水,難溶于乙醇、乙醚、乙酸乙酯等有機溶劑。BCP I水溶液pH值為3.35±0.47,表明它是酸性多糖。BCP I與茚三酮反應呈陰性,表明BCP I中不含有氨基酸、蛋白質(zhì);BCP I與三氯化鐵反應無顏色變化,表明該多糖不含多酚類物質(zhì);與斐林試劑進行反應后,無磚紅色沉淀氧化亞銅生成,表明BCP I中不含有游離還原糖。
2.3 黑穗醋栗果實降解多糖分子量和單糖組成
BCP I高效液相色譜圖見圖2a。根據(jù)BCP I保留時間(TR=13.669 min),GPC軟件計算得到多糖BCP I重均分子量Mw為235 955 Da,數(shù)均分子量Mn為34 205 Da,黏均分子量Mz為1 105 803 Da。未降解多糖BCP重均分子量Mw為441 320 Da,數(shù)均分子量Mn為58 492 Da,黏均分子量Mz為1 547 684 Da。由此可見,BCP經(jīng)過超聲波處理后,分子量降低,多糖發(fā)生降解。
各標準品和BCP I的氣相色譜圖見圖2b,2c。在相同色譜條件下,保留時間可作為定性分析的依據(jù),通過與標準單糖保留時間相比較,可確定多糖樣品中的單糖組分。氣相色譜分析結果表明,BCP I是由6種單糖組成的酸性雜多糖,單糖組成及物質(zhì)的量比為:半乳糖醛酸:鼠李糖:阿拉伯糖:甘露糖:葡萄糖:半乳糖=2.31 : 1.11 : 3.14 : 0.34 : 0.36 : 1.00。
圖2 BCP I液相色譜和氣相色譜圖Fig.2 HPLC and GC chromatograms of BCP I
2.4 黑穗醋栗果實降解多糖紅外光譜和紫外光譜
由BCP I紅外光譜圖(圖3a)可知,BCP I在4 000~500 cm-1范圍內(nèi)具有明顯的多糖特征吸收峰。3 428.29 cm-1處和2 930.71 cm-1處分別為O-H的伸縮振動峰和C-H伸縮振動峰[24],1 744.23和1 618.44 cm-1處分別為酯化羰基C=O和酯化羧基COO-的伸縮振動峰[25]。此外,吸收峰出現(xiàn)在1 441.08 cm-1處,表明多糖BCP I中含有糖醛酸[26],這與GC測定結果一致。在1 200~1 000 cm-1處存在吸收峰,表明多糖BCP I為吡喃糖[27]。在919.87 cm-1處和830.12 cm-1處分別出現(xiàn)吸收峰,表明多糖存在α-和β-兩種糖苷鍵[28]。
紫外光譜掃描結果如圖3b,BCP I在260、280 nm處無吸收,表明降解多糖中不含蛋白質(zhì)、核酸、花色苷[29]。該測定結果和2.2的結果一致。
圖3 BCP I的紅外光譜和紫外光譜Fig.3 Infrared and ultraviolet spectra of BCP I
2.5 黑穗醋栗果實降解多糖剛果紅試驗結果
研究表明,在堿性條件下,與剛果紅空白對照相比,具有三股螺旋結構的多糖與剛果紅形成的絡合物的最大吸收波長(λmax)會發(fā)生變化,而如果待測多糖不具有三股螺旋結構,其形成的絡合物將會與空白對照溶液λmax變化趨勢相近[30]。剛果紅、BCP I-剛果紅絡合物在不同NaOH濃度下最大吸收波長的變化見圖4。由圖4可以看出,多糖BCP I-剛果紅混合溶液與剛果紅對照溶液的λmax變化趨勢相近,表明BCP I不具有三股螺旋結構。
圖4 不同NaOH濃度下剛果紅,BCP I-剛果紅絡合物最大吸收波長(λmax)Fig.4 Maximum absorption wave length (λmax) of Congo red and Congo red-BCP I at various NaOH concentrations
2.6 黑穗醋栗果實降解多糖掃描電鏡分析
掃描電鏡是研究多糖形貌特征的重要方法,超聲波降解前后黑穗醋栗多糖的掃描電鏡觀察結果如圖5所示,為多糖在放大100倍時的SEM圖像。從圖5可以看出,降解前后黑穗醋栗多糖表面均比較光滑,呈片狀,形態(tài)不規(guī)則。然而,與降解前多糖BCP相比(圖5a),降解后多糖BCP I片狀結構的表面積顯著減小(圖5b),表明超聲波降解黑穗醋栗多糖效果明顯。Yan等采用超聲波法降解桑黃菌絲多糖時得到同樣的結論[5]。
圖5 超聲波降解前后多糖的掃描電鏡圖像(放大100倍)Fig.5 SEM images of ultrasonic polysaccharides before and after degradation(× 100 times)
2.7 黑穗醋栗果實降解多糖抗糖基化活性
在非酶促條件下,蛋白質(zhì)游離氨基與還原糖的羰基經(jīng)過一系列反應可以產(chǎn)生穩(wěn)定的末期糖基化終產(chǎn)物(AGEs),該反應叫做非酶糖基化反應[31]。糖基化反應主要3個階段:初期Amadori產(chǎn)物形成階段、中期二羰基化合物形成階段和反應末期終產(chǎn)物AGEs形成階段。AGEs能夠導致許多慢性疾病,如糖尿病腎臟合并癥、動脈粥樣硬化、老年性癡呆癥,嚴重威脅人類健康[32]。研究表明,抑制劑若能夠抑制上述3個階段中的任一產(chǎn)物的生成,都可以減少AGEs的形成,有利于治療慢性疾病[33]。
BCP I抗糖基化活性結果如圖6所示,不同濃度(0.05,0.20,0.40 mg/mL)BCP I對糖基化反應的3個階段的產(chǎn)物均有一定的抑制作用;且隨著時間和濃度的增加,多糖的抑制率顯著增加(P<0.05)。
圖6 BCP I和氨基胍抗糖基化作用Fig.6 Antiglycation effects of BCP I and aminoguanidine
如圖6a、6b所示,相同濃度下,BCP I的抑制率高于對照氨基胍。第13天時,當BCP I質(zhì)量濃度為0.40 mg/mL,BCP I對Amadori產(chǎn)物和二羰基化合物的抑制作用均達到最大,抑制率分別為49.55%±0.79%,41.82%± 0.72%,高于對照氨基胍44.58%±1.02%,33.01%±0.28%。此外,由圖6c可以看出,第13 天時,不同質(zhì)量濃度(0.40、0.20、0.05 mg/mL)BCP I對AGEs的最大抑制率分別為42.01%±0.13%,36.86%±0.12%,33.05%±0.09%,均顯著高于相應濃度下氨基胍的抑制率(30.45%±0.13%,26.59%±0.20%和23.80%±0.49%)。由此可見,在試驗濃度范圍內(nèi),BCP I對AGEs的抑制作用均高于對照氨基胍。
研究結果表明超聲波降解對黑穗醋栗果實多糖分子量和空間結構產(chǎn)生一定影響。多糖分子量從441 320 Da(BCP)降低至235 955 Da(BCP I),減少了46.53%,同時降解多糖BCP I片狀結構的表面積相對于原多糖BCP明顯減小。Wang等[34]研究發(fā)現(xiàn),低功率超聲條件下,真菌多糖Cs-HKl在3 400和1 064 cm-1處吸收峰減弱,說明超聲波導致維持多糖二級結構的氫鍵發(fā)生斷裂,而在高功率條件下則裂解為大小不同的多糖碎片。Zhu等[12]對冬蟲夏草菌絲多糖進行超聲波降解,發(fā)現(xiàn)超聲波處理不改變多糖的特征屬性,單糖殘基的組成和糖苷鍵的類別沒有改變,但是分子量和特性黏度降低,并且超聲處理后的α-螺旋性增強,降解多糖的抗腫瘤活性顯著增加。Yu等[35]對紫菜多糖進行超聲波降解,得到低分子量、低黏度,高抑制癌細胞增值活性的降解多糖。Sun等[36]通過超聲波降解,得到系列低分子量海洋石斛降解多糖,降解多糖在清除自由基、抑制脂質(zhì)過氧化以及紅細胞溶血試驗中均比未降解多糖表現(xiàn)出更優(yōu)良的性能。由此可見,超聲波主要導致多糖分子量、單糖組成、分支度以及空間結構發(fā)生變化,進而對多糖的溶解度、黏度、結晶度以及生物活性產(chǎn)生一定的影響。目前,有關超聲波降解的確切機制還不明確。有研究者認為[5,35],與化學或熱分解不同,超聲波降解是非隨機過程,鏈斷裂主要在分子的中心位置發(fā)生。本試驗首次對超聲波降解后黑穗醋栗多糖的結構特征與抗糖基化活性進行了初步研究,但是有關超聲波降解黑穗醋栗果實多糖的作用機制還有待進一步深入探討。
1)黑穗醋栗果實多糖經(jīng)過超聲波降解,葡聚糖凝膠Sephadex G-100分離純化后,得到均一降解多糖,純度達到83.88%±0.76%,重均分子量為235 955 Da。降解多糖為酸性雜多糖,單糖組成的物質(zhì)量比為:半乳糖醛酸:鼠李糖:阿拉伯糖:甘露糖:葡萄糖:半乳糖=2.31 : 1.11 : 3.14 : 0.34 : 0.36 : 1.00。
2)黑穗醋栗果實降解多糖具有多糖的特征結構,不含蛋白、核酸和多酚類物質(zhì)。此外,降解多糖不具有三股螺旋結構,表面呈片狀,形態(tài)不規(guī)則。
3)黑穗醋栗果實降解多糖對糖基化反應3個階段產(chǎn)物的形成均表現(xiàn)出良好的抑制作用,同一濃度下,抑制率均高于對照氨基胍。因此,黑穗醋栗果實降解多糖可作為較好的糖基化反應抑制劑。
[參 考 文 獻]
[1] 景永帥,張丹參,吳蘭芳,等. 荔枝低分子量多糖的分離純化及抗氧化吸濕保濕性能分析[J]. 農(nóng)業(yè)工程學報,2016,32(9):277-283.
Jing Yongshuai, Zhang Danshen, Wu Lanfang, et al. Purification, antioxidant, hygroscopicity and moisture retention activity of low molecular weight polysaccharide from Litchi chinensis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 277-283. (in Chinese with English abstract)
[2] Chen R Z, Meng F L, Liu Z Q, et al. Antitumor activities of different fractions of polysaccharide purified from Ornithogalum caudatum Ait[J]. Carbohydrate Polymers, 2010, 80(3): 845-851.
[3] Zhao R, Jin R, Chen Y, et al. Hypoglycemic and hypolipidemic effects of Lycium barbarum polysaccharide in diabetic rats[J]. Chinese Herbal Medicines, 2015, 7(4): 310-315.
[4] Zhou C S, Yu X J, Zhang Y Z, et al. Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea[J]. Carbohydrate Polymers, 2012, 87(3): 2046-2051.
[5] Yan J K, Wang Y Y, Ma H L, et al. Ultrasonic effects on the degradation kinetics, preliminary characterization and antioxidant activities of polysaccharides from Phellinus linteus mycelia[J]. Ultrasonics Sonochemistry, 2016, 29: 251-257.
[6] Li S J, Xiong Q P, Lai X P, et al. Molecular modification of polysaccharides and resulting bioactivities[J]. Comprehensive Review in Food Science and Food Safety, 2016, 15(2): 237-250.
[7] Ren M, Yan W, Yao W, et al. Enzymatic degradation products from a marine polysaccharide YCP with different immunological activity and binding affinity to macrophages, hydrolyzed by alpha-amylases from different origins[J]. Biochimie, 2010, 92(4): 411-417.
[8] Anastyuk S D, Imbs T I, Shevchenko N M, et al. ESIMS analysis of fucoidan preparations from Costaria costata, extracted from alga at different life-stages[J]. Carbohydrate Polymers, 2012, 90(2): 993-1002.
[9] Li B, Liu S, Xing R E, et al. Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities[J]. Carbohydrate Polymers, 2013, 92(2): 1991-1996.
[10] Duy N N, Phu D V, Anh N T, et al. Synergistic degradation to prepare oligochitosan by gamma-irradiation of chitosan solution in the presence of hydrogen peroxide[J]. Radiation Physics and Chemistry, 2011, 80(7): 848-853.
[11] 王麗波,徐雅琴,于澤源,等. 南瓜籽多糖乙醇分級沉淀與超聲波改性研究[J]. 農(nóng)業(yè)工程學報,2015,46(8):206-210.
Wang Libo, Xu Yaqin, Yu Zeyuan, et al. Ethanol fractional precipitation and ultrasonic modification of pumpkin polysaccharides[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 46(8): 206-210. (in Chinese with English abstract)
[12] Zhu Z Y, Wei P, Li Y Y, et al. Effect of ultrasonic treatment on structure and antitumor activity of mycelial polysaccharides from Cordyceps gunnii[J]. Carbohydrate Polymers, 2014, 114: 12-20.
[13] Gopalan A, Reuben S C, Ahmed S, et al. The health benefits of blackcurrants[J]. Food & Function, 2012, 3(8): 795-809.
[14] Tabart J, Kevers C, Evers, D, et al. Ascorbic acid, phenolic acid, flavonoid, and carotenoid profiles of selected extracts from Ribes nigrum[J]. Journal of Agricultural and Food Chemistry, 2011, 59(9): 4763-4770.
[15] Feng C Y, Su S, Wang L J, et al. Antioxidant capacities and anthocyanin characteristics of the black–red wild berries obtained in Northeast China[J]. Food Chemistry, 2016, 204: 150-158.
[16] Messing J, Niehues M, Shevtsova A, et al. Antiadhesive properties of arabinogalactan protein from Ribes nigrumseeds against bacterial adhesion of Helicobacter pylori[J]. Molecules, 2014, 19(3): 3696-3717.
[17] Xu Y Q, Cai F, Yu Z Y, et al. Optimisation of pressurised water extraction of polysaccharides from blackcurrant and its antioxidant activity[J]. Food Chemistry, 2016, 194: 650-658.
[18] Xu Y Q, Zhang L, Yang Y, et al. Optimization of ultrasound–assisted compound enzymatic extraction and characterization of polysaccharides from blackcurrant[J]. Carbohydrate Polymers, 2015, 117: 895-902.
[19] 徐雅琴,宋秀梅,任中杰. 黑穗醋栗果實多糖清除自由基活性及結構初步研究[J]. 現(xiàn)代食品科技,2013,29(12):2821-2825.
Xu Yaqin, Song Xiumei, Ren Zhongjie. Analysis of structure and free radical scavenging activities of Ribes nigrumpolysaccharides[J]. Modern Food Science and Technology, 2013, 29(12): 2821-2825. (in Chinese with English abstract)
[20] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356.
[21] Xu Y Q, Liu G J, Yu Z Y, et al. Purification, characterization and antiglycation activity of a novel polysaccharide from black currant[J]. Food Chemistry, 2016, 199: 694-701.
[22] 聶永心,姜紅霞,蘇延友,等. 黃傘子實體多糖的提取純化及單糖組成分析[J]. 食品與發(fā)酵工業(yè),2010,36(4):198-200.
Nie Yongxin, Jiang Hongxia, Su Yanyou, et al. Purification and monosaccharide composition analysis of polysaccharide from fruit bodies of pholiota adiposa[J]. Food and Fermentation Industries, 2010, 36(4): 198-200. (in Chinese with English abstract)
[23] Xiang J, Fei K, Kong F, et al. Prediction of the antiglycation activity of polysaccharides from Benincasa hispida, using a response surface methodology[J]. Carbohydrate Polymers, 2016, 151: 358-363.
[24] Jin T, Jing N, Li D, et al. Characterization and antioxidant activities of degraded polysaccharides from Poria cocos sclerotium[J]. Carbohydrate Polymers, 2014, 105: 121-126.
[25] Chen X M, Jin J, Tang J, et al. Extraction, purification, characterization and hypoglycemic activity of a polysaccharide isolated from the root of Ophiopogon japonicus[J]. Carbohydrate Polymers, 2011, 83(2), 749-754.
[26] Yang X L, Wang R F, Zhang S P, et al. Polysaccharides from Panax japonicus C.A. Meyer and their antioxidant activities[J]. Carbohydrate Polymers, 2014, 101: 386-391.
[27] Wang Z B, Pei J J, Ma H L, et al. Effect of extraction media on preliminary characterizations and antioxidant activities of Phellinus linteus polysaccharides[J]. Carbohydrate Polymers,2014, 109: 49-55.
[28] Li X L, Xiao J J, Zha X Q, et al. Structural identification and sulfated modification of an antiglycation Dendrobium huoshanense polysaccharide[J]. Carbohydrate Polymers, 2014, 106: 247-254.
[29] 黎英,陳雪梅,嚴月萍,等. 超聲波輔助酶法提取紅腰豆多糖工藝優(yōu)化[J]. 農(nóng)業(yè)工程學報,2015,31(15):293-301.
Li Ying, Chen Xuemei, Yan Yueping, et al. Optimal extraction technology of polysaccharides from red kindey beanusing ultrasonic assistant with enzyme[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 293-301. (in Chinese with English abstract)
[30] He P, Zhang A, Zhang F, et al. Structure and bioactivity of a polysaccharide containing uronic acid from Polyporus umbellatus, sclerotia[J]. Carbohydrate Polymers, 2016, 152: 222-230.
[31] Raghu G, Jakhotia S, Yadagiri Reddy P, et al. Ellagic acid inhibits non-enzymatic glycation and prevents proteinuria in diabetic rats[J]. Food & Function, 2016, 7(3): 1574-1583.
[32] Wang X, Zhang L S, Dong L L. Inhibitory effect of polysaccharides from pumpkin on advanced glycation end-products formation and aldose reductase activity[J]. Food Chemistry, 2012, 130(4): 821-825.
[33] Sompong W, Adisakwattana S. Inhibitory effect of herbal medicines and their trapping abilities against methylglyoxalderived advanced glycation end-products[J]. BMC Complementary and Alternative Medicine, 2015, 15(1): 1-8.
[34] Wang Z M, Cheung Y C, Leung P H, et al. Ultrasonic treatment for improved solution properties of a highmolecular weight exopolysaccharide produced by a medicinal fungus[J]. Bioresource Technology, 2010, 101(14): 5517-5522.
[35] Yu X J, Zhou C S, Yang H, et al. Effect of ultrasonic treatment on the degradation and inhibition cancer cell lines of polysaccharides from Porphyra yezoensisd[J]. Carbohydrate Polymers, 2015, 117: 650-656.
[36] Sun L Q, Wang L, Li J, et al. Characterization and antioxidant activities of degraded polysaccharides from two marine Chrysophyta[J]. Food Chemistry, 2014, 160: 1-7.
Structure and antiglycation activity of polysaccharides after ultrasonic degradation from blackcurrant fruit
Xu Yaqin, Liu Fei, Guo Yingying, Chen Hongchao, Wang Libo, Yang Yu※
(College of Science, Northeast Agricultural University, Harbin 150030, China)
Blackcurrant (Ribes nigrum L.) is a kind of small berry with many health-beneficial substances, such as organic acids, unsaturated fatty acids, vitamins, polysaccharides, flavonoids, and anthocyanins. Recently, polysaccharide from blackcurrant (BCP) has received considerable attention for their prominent benefits to human health, including immunostimulation, antitumor, antimicrobial, antioxidant, and anti-inflammatory activities. Previous work from our laboratory had isolated BCP which showed apparent antioxidant activities in vitro. However, the polysaccharides’ high molecular weight and low solubility in water limit their absorption and utilization in the body. Thus, the degradation of polysaccharides should be carried out to improve the specific and unique properties. Notably, ultrasonic irradiation has been recently viewed as a new technique for the degradation of polysaccharides, mainly due to the fact that the reduction in the molecular weight is simply splitting the most susceptible chemical bonds without causing any major changes in the chemical nature of polysaccharides. At present, there are no reports on preparing degraded BCP with the method of ultrasonic degradation. In this study, the BCP was obtained through water extraction, 40% alcohol precipitation, and purification with D4006 macroporous resin. The BCP was dissolved in water (6 mg/mL) and then was degraded by ultrasonication at 600 W, 25 °C for 30 min. The degraded polysaccharide (BCP I) was obtained through the subsequent separation with Sephadex G-100. Physical and chemical properties, structural characterization and antiglycation activity of BCP I were preliminarily studied. The molecular weight was determined by high performance liquid chromatography, and the monosaccharide composition was determined by gas chromatography. Infrared spectrum, Congo red and electron microscopy were used to characterize the structure of the polysaccharides. The results showed that the purity of BCP I was 83.88%±0.76%, and the weight average molecular weight was 235 955 Da. BCP I was acidic polysaccharide, and consisted of galacturonic acid, rhamnose, arabinose, mannose, dextrose and galactose in a ratio of 2.31 : 1.11 : 3.14 : 0.34 : 0.36 : 1.00. Fourier transform infrared spectrum showed that BCP I had obvious characteristic peaks of polysaccharides, and BCP I was a pyranose form of sugar containing both α-type and β-type glycosidic linkage. Ultraviolet spectrum showed that BCP I did not contain anthocyanins, proteins and nucleic acids. Scanning electron microscope and Congo red test showed that BCP I exhibited sheet structure and had no triple helix structure, and the surface area of BCP I was reduced compared with BCP. The results of antiglycation assay showed that BCP I exhibited significant inhibitory effects on the product formation of 3 stages of glycation reaction, and the inhibitory rate increased with the increase of concentration and time. The maximum inhibitory rates were 49.55%±0.79%, 41.82%±0.72% and 42.01%±0.13%, respectively, which were higher than those of the control aminoguanidine (30.45%±0.13%,26.59%±0.20% and 23.80%±0.49%). Thus, BCP I can be considered as a kind of potential inhibitor of protein glycation. The results can provide a theoretical basis for further study on the structure-activity relationship between structure and hypoglycemic activity of the polysaccharides from blackcurrant.
purification; ultrasound wave; degradation; blackcurrant fruits; polysaccharides; structure; antiglycation activity
10.11975/j.issn.1002-6819.2017.05.042
TS218
A
1002-6819(2017)-05-0295-06
徐雅琴,劉 菲,郭瑩瑩,陳宏超,王麗波,楊 昱. 黑穗醋栗果實超聲波降解多糖的結構及抗糖基化活性[J]. 農(nóng)業(yè)工程學報,2017,33(5):295-300.
10.11975/j.issn.1002-6819.2017.05.042 http://www.tcsae.org
Xu Yaqin, Liu Fei, Guo Yingying, Chen Hongchao, Wang Libo, Yang Yu. Structure and antiglycation activity of polysaccharides after ultrasonic degradation from blackcurrant fruit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 295-300. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.05.042 http://www.tcsae.org
2016-10-21
2017-02-03
國家自然科學青年基金資助項目(NO. 31600276);黑龍江省自然科學基金資助項目(NO. C2015004);東北農(nóng)業(yè)大學SITP計劃項目(201710224147)
徐雅琴,女,教授。研究方向:天然產(chǎn)物提取及活性研究。哈爾濱 東北農(nóng)業(yè)大學理學院,150030。Email:xuyaqin@neau.edu.cn
※通信作者:楊 昱,女,博士,副教授。研究方向:天然產(chǎn)物提取及活性研究。哈爾濱 東北農(nóng)業(yè)大學理學院,150030。Email:yangyu_002@163.com