薛曉寧,石 凱
膠乳分離機(jī)高速轉(zhuǎn)鼓流體動力學(xué)特性
薛曉寧,石 凱
(廣東海洋大學(xué)機(jī)械與動力工程學(xué)院,湛江 524088)
為研究膠乳分離機(jī)轉(zhuǎn)鼓離心流場動力學(xué)特性,基于FLUENT二相流模型,模擬了膠乳的分離過程以及轉(zhuǎn)速、橡膠粒徑對分離效果的影響,以濃乳的干膠含量為綜合特征參數(shù)進(jìn)行模型驗證試驗,理論分析影響分離速度的因素、碟片內(nèi)液流的流動狀態(tài)及軌跡、濃縮極限等問題。模型中設(shè)置鮮膠乳體積分?jǐn)?shù)初始值為0.330,濃乳黏度0.038 48 mPa·s,表面張力系數(shù)0.034 N/m,橡膠粒徑為5 μm,膠清按水的屬性設(shè)置,碟片間隙為0.5 mm。計算結(jié)果表明:轉(zhuǎn)鼓轉(zhuǎn)速為
7 250 r/min時,膠乳進(jìn)入轉(zhuǎn)鼓10 s時橡膠粒子與膠清已呈現(xiàn)明顯分離傾向;當(dāng)轉(zhuǎn)鼓分別為6 750、7 250和7 750 r/min時,濃乳中的干膠體積分?jǐn)?shù)分別為0.588、0.613和0.636,轉(zhuǎn)速越高,干膠體積分?jǐn)?shù)越大,但轉(zhuǎn)速超過7 250 r/min,干膠體積分?jǐn)?shù)的增幅變緩,流體壓力和結(jié)構(gòu)應(yīng)力也將明顯增加;在7 250 r/min工作轉(zhuǎn)速下,當(dāng)膠乳粒徑分別取1、2、3、4和5 μm時,濃乳中干膠的體積分?jǐn)?shù)分別為0.354、0.392、0.447、0.531和0.601,濃乳中干膠體積分?jǐn)?shù)隨粒徑增大而增加,輕相出口處因流體渦漩體積分?jǐn)?shù)有一定波動。濃乳干膠含量的仿真結(jié)果與實測值高度接近,相對誤差為3.83%,由此驗證了模型的可靠性。輕/重相分離速度與粒徑、轉(zhuǎn)速直接相關(guān),因科氏力輕相/重相軌跡與碟片母線有偏離,膠乳濃縮存在上限,輕/重相出料路徑合理,離心去除細(xì)微雜質(zhì)的能力強。研究結(jié)果為揭示膠乳離心濃縮機(jī)理、優(yōu)化分離工藝及結(jié)構(gòu)提供了理論參考。
膠乳;加工;模型;碟式分離機(jī);高速轉(zhuǎn)鼓;流體動力學(xué);分離性能;數(shù)值模擬
中國天然橡膠種植加工主要分布在瓊、粵、滇地區(qū),鮮膠乳除加工成標(biāo)準(zhǔn)膠外,將其加工成濃乳(濃縮膠乳)是主要的利用方式,目前生產(chǎn)中均采用高速離心濃縮工藝,膠乳分離機(jī)是將鮮膠乳加工成濃乳和膠清的核心設(shè)備,高速轉(zhuǎn)鼓是其關(guān)鍵功能部件。雖然碟式分離機(jī)的工程應(yīng)用已非常普遍,但轉(zhuǎn)鼓基本是引進(jìn)仿制,在離心流場、結(jié)構(gòu)及工作參數(shù)設(shè)計方面缺乏深入理論研究。轉(zhuǎn)鼓高速旋轉(zhuǎn),結(jié)構(gòu)封閉狹窄,目前難以直接測得轉(zhuǎn)鼓的內(nèi)流場物理參數(shù)。CFD分析是解決這一問題可行有效的技術(shù)手段。
近年,利用CFD研究流體機(jī)械內(nèi)流場、結(jié)構(gòu)及工作性能研究較多,在離心泵、水輪機(jī)、旋風(fēng)分離器、水力旋流器等單相流、固液兩相流范疇有較多的研究[1-12];鄭勝飛等[13-18]對臥螺離心機(jī)用多相流模型仿真模擬了內(nèi)部流場,對其壓力場、速度場、固/液相體積分?jǐn)?shù)、影響流場及分離性能的參數(shù)(結(jié)構(gòu)參數(shù)、物性參數(shù)和操作參數(shù))進(jìn)行了一定的研究,對管式離心機(jī)等也有研究報道。
碟式分離機(jī)轉(zhuǎn)鼓結(jié)構(gòu)決定其流場更為復(fù)雜。目前,已有的少量公開文獻(xiàn)只涉及強度計算及結(jié)構(gòu)設(shè)計,對內(nèi)流場的研究較少。20世紀(jì)80年代出版的專著[19-20]對分離機(jī)結(jié)構(gòu)、流場有一些解析理論描述并做了大的簡化。相關(guān)的國外研究報道很少,國內(nèi)文獻(xiàn)基本屬于常規(guī)參數(shù)設(shè)計及一般性應(yīng)用問題探討[21-27]。近年,趙志國等[25-27]對潤滑油碟式分離機(jī)內(nèi)部流場進(jìn)行二維數(shù)值模擬,采用VOF多相流模型對分離過程、分離效率和油滴軌跡進(jìn)行了模擬分析;轉(zhuǎn)鼓中碟片數(shù)量眾多,以往的分析基本按單層碟片間隙處理[19-20],袁惠新等[28]采用三維數(shù)值模擬某型碟片分離機(jī)11層碟片內(nèi)的液體速度、壓力以及碟片之間流量及壓力的變化,但文中未述及碟片內(nèi)流體與原料進(jìn)入、輕/重相排出、內(nèi)腔流體狀況之間的關(guān)系,這與實際有較大的差距。由于缺乏系統(tǒng)理論研究,在設(shè)計計算、性能評判、選型時往往只能憑借經(jīng)驗或試驗。
天然橡膠物性獨特,其流場的研究則更具特殊性,國內(nèi)對膠乳分離機(jī)轉(zhuǎn)鼓流體動力學(xué)的研究較少。薛曉寧等[29]利用CFD對生產(chǎn)用膠乳分離機(jī)的轉(zhuǎn)鼓壓力場、速度場以及出口速度場進(jìn)行了定量分析與驗證。干膠含量(dry rubber content)指在在鮮膠乳、濃乳或膠清中純橡膠粒子的含量。本文通過CFD仿真及理論分析,對膠乳分離過程、分離性能及影響因素進(jìn)行研究,利用濃乳的干膠含量作為特征參數(shù)驗證計算模型,以期為揭示膠乳離心濃縮的機(jī)理、分離工藝及轉(zhuǎn)鼓結(jié)構(gòu)優(yōu)化提供了理論依據(jù)。
分析對象為浙江輕機(jī)實業(yè)公司LX460膠乳分離機(jī)轉(zhuǎn)鼓,轉(zhuǎn)鼓內(nèi)徑為398 mm,碟片錐角為80°,為分析用模型的結(jié)構(gòu)尺寸與實際機(jī)器一致,轉(zhuǎn)鼓實物如圖1所示。鮮膠乳經(jīng)進(jìn)料管從上端進(jìn)入轉(zhuǎn)鼓,再從碟片中性孔分配到各碟片間隙中完成分離;濃乳(輕相)向中心位置聚集,向上從輕相出口甩出;膠清(重相)向外移動,在內(nèi)壁處匯集并向上移動,從重相出口調(diào)節(jié)螺絲甩出[30]。
圖1 膠乳分離機(jī)轉(zhuǎn)鼓Fig.1 Drum of latex separator
鮮膠乳來自橡膠樹,是由水和膠乳粒子組成的多相體系生物合成產(chǎn)物,分散相包括橡膠粒子、非膠粒子,連續(xù)相則為膠清(水),純橡膠粒子以液珠形式均勻分布于連續(xù)相膠清中。鮮膠乳中橡膠烴(干膠)成分25%~41.3%,水50%~70%,其余是非膠物質(zhì)。鮮膠乳、濃乳、干膠和膠清的密度分別為0.96~0.98、0.92~0.96、0.91、1.02 g/cm3[31]。
2.1 流體動力學(xué)控制方程
離心分離的流體控制方程包括連續(xù)方程、動量方程、能量方程、組分方程、湍動能k方程和湍流耗散率ε方程,盡管這些方程中因變量各不相同,但它們均反映了單位體積內(nèi)物理量的守恒性質(zhì)。如果用φ表示通用變量,則上述各控制方程都可以表示成以下通用形式[32]:
其展開形式為:
式中φ通用變量可以代表μ、υ、ω和T等求解變量,μ、υ、 ω分別為x、y和z方向的速度,m/s;T為時間,s;ρ為物料的密度, kg/m3;Γ廣義擴(kuò)散系數(shù),S為廣義源項。式(1)中?(ρ·φ)/?t為瞬態(tài)項,div(ρ·μ·φ)為對流項,div(Γ· gradφ) 為擴(kuò)散項,S為源項。對于特定的方程,φ、Γ和S具有特定的形式,文獻(xiàn)[32]詳述了3個符號與各特定方程的對應(yīng)關(guān)系。
離心分離機(jī)流體動力學(xué)由離心力場中的連續(xù)方程、歐拉平衡微分方程、柏努利方程、Navier Stokes微分方程組成,其特點在于采用柱坐標(biāo),詳見文獻(xiàn)[19]。本研究中未涉及能量交換等,故控制方程只涉及質(zhì)量方程、動量方程,將Navier Stokes方程與液流的連續(xù)方程聯(lián)立求解,就可描述離心力場中黏性液體的運動。
2.2 分析模型
關(guān)于分析模型的簡化與假設(shè)、模型構(gòu)建、網(wǎng)格劃分、邊界類型定義,薛曉寧等[29]在文獻(xiàn)中有詳述,在此不再贅述。取30張碟片創(chuàng)建的兩相流二維分析模型如圖2所示,模型劃分為4個計算區(qū)域:1)分離區(qū)為碟片組及相鄰碟片構(gòu)成的錐形薄層區(qū)域,2)沉渣區(qū)為碟片大端以外與轉(zhuǎn)鼓內(nèi)壁之間的圓環(huán)區(qū)域,3)堰流區(qū)為流體入口到碟片組以及碟片組以上到出流區(qū)以下的部分,4)出流區(qū)為輕相、重相從轉(zhuǎn)鼓排出的區(qū)域。
圖2 轉(zhuǎn)鼓流場二維模型Fig.2 Two-dimensional model of drum flow-field
2.3 多相流模型
選用壓力基求解器,按動量方程、壓力修正方程、能量方程、組分方程及其他標(biāo)量方程的求解順序,依次求解,可在分離求解和耦合求解之間實現(xiàn)轉(zhuǎn)換,Time選擇為瞬態(tài)Transient,2D Space選軸對稱旋轉(zhuǎn)Axisymmetric Swirl[32-33]。
多相流模型選用Mixture Model,該模型適用于各相速度不同、流動中有相混合或分離、離心沉降及相間曳力規(guī)律未知的多相流場合,另分散相橡膠粒子分布寬廣,Mixture Model更合適[33];為獲得好的分離效果,轉(zhuǎn)鼓內(nèi)應(yīng)盡量避免產(chǎn)生湍流,碟片間隙內(nèi)為層流狀態(tài),故選擇層流模型Viscous-Laminar[32]。
2.4 物料屬性與參數(shù)設(shè)置
2.4.1 初始條件的確定
1)鮮膠乳的干膠體積分?jǐn)?shù):在鮮膠乳中橡膠粒子約占膠乳體積的20%~50%,橡膠烴(干膠)占25%~41%[31],該值與膠樹品系、樹齡、開割時間等因素有關(guān),因分析模型中是用干膠體積分?jǐn)?shù)來表征橡膠含量。干膠體積分?jǐn)?shù)乘以其密度再除以總物質(zhì)密度即為總物質(zhì)中的干膠質(zhì)量分?jǐn)?shù)。
2)膠乳粒子大?。合鹉z粒子中的橡膠是非水溶性的,橡膠粒子一般是0.02~3 μm的球形粒子,但有些無性系成齡膠樹所產(chǎn)膠乳中,粒子可能呈梨形甚至帶著尾巴的,橡膠粒子的長度多數(shù)為2~4 μm,少數(shù)達(dá)到10 μm,但也是由球形粒子聚集而成[31]。本文膠乳粒子按球形處理,根據(jù)對不同粒徑模型的計算調(diào)試結(jié)果,也考慮到高速下粒子的離心絮凝效應(yīng)[20]作用,取粒子平均直徑為5 μm。
3)進(jìn)料速度:進(jìn)料速度是由處理量計算得到,分析時分離機(jī)原料處理量為0.6 m3/h,則可計算出進(jìn)料速度為0.252 m/s,初始速度設(shè)定為定值;進(jìn)料速度不宜過大,太大可能會導(dǎo)致制成率下降,膠清中殘留橡膠含量增加。
4)轉(zhuǎn)鼓轉(zhuǎn)速與碟片間隙:分離過程的仿真是按工作轉(zhuǎn)速7 250 r/min分析,但分析轉(zhuǎn)速對分離性能的影響時則取不同轉(zhuǎn)速進(jìn)行分析;碟片間隙為0.5 mm。
2.4.2 多相流設(shè)置
設(shè)置第一相為水(膠清),鑒于膠清中的橡膠及雜質(zhì)含量極低,主要構(gòu)成是水,故在軟件材料庫中選水的參數(shù)做為膠清的參數(shù);設(shè)置第二相為濃乳,設(shè)定濃乳的密度為0.95 g/cm3、動力黏度為0.038 48 mPa·s,表面張力系數(shù)為0.034 N/m,橡乳粒子為球形[31],選顆粒Granular,粒子平均粒徑取5 μm。
邊界條件的設(shè)置:相選擇mixture,依據(jù)轉(zhuǎn)鼓結(jié)構(gòu),設(shè)置重相、輕相出口的當(dāng)量直徑分別為12、6 mm,設(shè)定重相、輕相出口的出流比例分別為0.67、0.33;選擇邊界,設(shè)定內(nèi)壁面為Moving Wall,設(shè)定旋轉(zhuǎn)角速度為分析的值;選擇膠清、濃乳的相,設(shè)定膠清、濃乳膠速度入口的速度均為0.252 m/s;選擇Multiphase選項,根據(jù)粵西、海南開割前期鮮膠乳干膠含量的檢測結(jié)果,定義鮮膠乳干膠體積分?jǐn)?shù)為0.330。
2.5 求解算法與離散方法
壓力速度耦合算法采用PISO算法,該法按預(yù)測-修正-修正求解,適于求解瞬態(tài)問題;梯度插值采用單元體最小二乘法插值(least squares cell based),對多面體網(wǎng)格求解更精確;離散方法(動量項)有5種格式,二階離散格式更適合四邊形網(wǎng)格的復(fù)雜流動。經(jīng)過調(diào)試,本文選擇二階迎風(fēng)格式;由于是高速旋轉(zhuǎn)流場,故壓力插值壓力基分離求解器選擇PRESTO!算法,求解控制方程采用SIMPLE方法[32-33]。
3.1 仿真結(jié)果
初始化流場旋轉(zhuǎn)速度7 250 r/min,設(shè)置時間步長為0.005 s、總迭代時間步數(shù)為10000。仿真結(jié)果如圖3,反映了分離過程中不同時間點輕相-濃乳、重相-膠清中干膠體積分?jǐn)?shù)的變化過程,描述了膠乳離心分離的動態(tài)過程。由圖3可看出,轉(zhuǎn)鼓達(dá)到工作轉(zhuǎn)速時,濃乳與膠清在碟片分離區(qū)開始出現(xiàn)分離,膠清沿碟片向下運動,濃膠逐漸分離向中心聚集。圖3各分圖中右上方局部放大圖,清晰地呈現(xiàn)了濃乳在碟片上端出口、膠清在斜通道末端的干膠體積分?jǐn)?shù)變化情況。仿真結(jié)果表明:
1)鮮膠乳進(jìn)入轉(zhuǎn)鼓10 s時,橡膠粒子已在碟片上端出口有聚集,并開始向輕相出口移動,而膠清則向下運動,在轉(zhuǎn)鼓體內(nèi)壁處不斷聚集,并沿重相通道向出口移動,兩者已出現(xiàn)了明顯的分離;在碟片小端出口干膠體積分?jǐn)?shù)最大,隨著分離時間的推移,濃乳、膠清分離程度愈加明顯,輕相出口處的干膠體積分?jǐn)?shù)逐漸增大,當(dāng)超過120 s后,分離狀態(tài)已趨于穩(wěn)定狀態(tài),出口處濃乳、膠清的干膠體積分?jǐn)?shù)均已穩(wěn)定不變。
2)在7 250 r/min工作轉(zhuǎn)速下,輕相出口濃乳干膠平均體積分?jǐn)?shù)仿真結(jié)果為0.612 6,按總含固率62.5%的濃乳相對密度約為0.950 g/cm3進(jìn)行計算[31],對應(yīng)的濃乳干膠質(zhì)量分?jǐn)?shù)0.582 2。
圖3 分離過程中不同時間點濃乳和膠清中干膠體積分?jǐn)?shù)圖Fig.3 Dry rubber volume fraction diagrams of concentrated latex and skim serum at different simulation time point of latex separation process
3.2 仿真結(jié)果的驗證
3.2.1 驗證方法
由于目前測試技術(shù)及儀器直接測取內(nèi)流場參數(shù)及微觀分離過程實現(xiàn)難度極大,本文以濃乳干膠含量做為特征參數(shù)來驗證模型的正確性。濃乳中的干膠含量是綜合反映轉(zhuǎn)鼓結(jié)構(gòu)、膠乳特性、分離轉(zhuǎn)速等的特征參數(shù),并且干膠含量檢測易行可靠。
試驗材料:采自三葉膠樹的當(dāng)天含氨新鮮膠乳,鮮膠乳質(zhì)量良好(揮發(fā)脂肪酸值低于0.06),無異味、凝粒。根據(jù)干膠含量測定標(biāo)準(zhǔn)GB/T8299-2008,采用化學(xué)凝固標(biāo)準(zhǔn)方法在加工廠化驗室完成。將鮮乳膠或濃縮膠乳試驗原料稀釋至總含固率為20%,并用乙酸酸化,然后將凝固的橡膠壓成薄片,在70 ℃溫度下干燥,依據(jù)測定數(shù)據(jù)可計算得到干膠含量。
儀器:分析天平(中衡精密儀器有限公司)、101A-2型數(shù)顯電熱鼓風(fēng)干燥箱(上海浦東榮豐科學(xué)儀器公司),專用壓片用具,玻璃皿或瓷皿,濾紙。試劑:乙酸,20 g/L的水溶液。
試驗用離心設(shè)備采用浙江輕機(jī)制造的LX-460膠乳分離機(jī)(結(jié)構(gòu)參數(shù)與分析模型一致),機(jī)器狀態(tài)良好,為保證試驗條件與建模參數(shù)接近,進(jìn)料口采用孔徑11.5 mm大進(jìn)料管,重相膠清出口采用孔長9.5 mm調(diào)節(jié)螺絲,轉(zhuǎn)鼓實際工作轉(zhuǎn)速7 213 r/min,進(jìn)料10 min后從濃乳出口采樣。
3.2.2 驗證結(jié)果
仿真模型的設(shè)定:生產(chǎn)中該型分離機(jī)處理膠乳的生產(chǎn)率按576 kg/h,鮮膠乳干膠體積分?jǐn)?shù)為0.33,按其密度0.965 g/cm3計算得鮮膠乳干膠質(zhì)量分?jǐn)?shù)為0.31845,轉(zhuǎn)速為7 250 r/min。仿真結(jié)果:濃乳干膠體積分?jǐn)?shù)為0.612 6,按濃乳密度取0.95 g/cm3計算,得濃乳的干膠質(zhì)量分?jǐn)?shù)仿真值為0.582 2。
試驗于2016年7月在廣墾橡膠湛江分公司開展,測得試驗用鮮膠乳的干膠質(zhì)量分?jǐn)?shù)為0.3582,受2015年10月臺風(fēng)重創(chuàng),膠樹開割時間退遲,試驗時剛開割,故干膠含量偏高,一般開割一段時間后鮮膠乳的干膠質(zhì)量分?jǐn)?shù)降到0.25~0.27范圍。為保證試驗用鮮膠乳干膠體積分?jǐn)?shù)與分析模型一致,對原料鮮膠乳通過計算加水稀釋,并測得稀釋后的鮮膠乳干膠質(zhì)量分?jǐn)?shù)為0.3111,與分析模型的設(shè)定值0.31845接近。離心濃縮后,濃乳干膠質(zhì)量分?jǐn)?shù)測定結(jié)果為0.6054。
試驗條件與仿真設(shè)定條件高度吻合,仿真值與實測值接近,相對誤差為3.83%,由此驗證了模型的可靠性。
3.3 仿真分析討論
3.3.1 轉(zhuǎn)速對濃乳體積分?jǐn)?shù)的影響
圖4為時間點120 s時出流區(qū)的濃乳干膠體積分?jǐn)?shù),提取輕相出口處從A到B路徑的濃乳干膠體積分?jǐn)?shù)值,則可得相應(yīng)轉(zhuǎn)速下輕相出口的濃乳干膠體積分?jǐn)?shù)變化曲線如圖5所示,轉(zhuǎn)速分別為6 750 、7 250 和7 750 r/min時,濃乳干膠平均體積分?jǐn)?shù)分別為0.587 5、0.612 6和0.635 8。由此可知,在確定的轉(zhuǎn)鼓結(jié)構(gòu)和相同的分離時間下,轉(zhuǎn)速越高,濃乳干膠的體積分?jǐn)?shù)越大,即濃乳中干膠含量越高。
浙江輕機(jī)實業(yè)有限公司造膠乳分離機(jī)與廣重膠乳分離機(jī)的轉(zhuǎn)鼓核心結(jié)構(gòu)參數(shù)相同。早期浙江輕機(jī)轉(zhuǎn)鼓轉(zhuǎn)速比廣重轉(zhuǎn)鼓約低230 r/min,使用中存在濃乳干膠含量指標(biāo)不穩(wěn)定、制成率偏低的不足,而結(jié)構(gòu)及參數(shù)相同的廣重轉(zhuǎn)鼓則無同樣類似問題,九十年代末浙江輕機(jī)公司將轉(zhuǎn)速提高至與廣重轉(zhuǎn)鼓接近,原來的問題不再出現(xiàn),由此實證了轉(zhuǎn)速影響分離效果的仿真結(jié)果的正確性。
圖4 仿真時間點120 s時出流區(qū)干膠體積分?jǐn)?shù)Fig.4 Dry rubber volume fraction of the outflow area when simulation time point is 120 s
圖5 A-B路徑輕相出口濃乳干膠體積分?jǐn)?shù)變化曲線Fig.5 Dry rubber volume fraction curve of concentrated latex along A-B path in light phase outlet
3.3.2 影響分離轉(zhuǎn)速的因素
表1是轉(zhuǎn)鼓體在不同轉(zhuǎn)速下受到的最大離心流體壓力、結(jié)構(gòu)應(yīng)力的模擬結(jié)果,轉(zhuǎn)速增加,可將膠清中更小的膠乳分離出來,但同時流體壓力、結(jié)構(gòu)應(yīng)力也會大幅增加,這將對轉(zhuǎn)鼓的結(jié)構(gòu)、材料及制造工藝提出更嚴(yán)苛的要求。分析圖5可知,隨著轉(zhuǎn)速增加體積分?jǐn)?shù)值將相應(yīng)提高,但轉(zhuǎn)速超過7 250 r/min后,濃乳干膠體積分?jǐn)?shù)的增幅趨緩。所以,確定轉(zhuǎn)鼓轉(zhuǎn)速參數(shù)時,需要在轉(zhuǎn)鼓的分離性能、強度及安全性、制造成本之間綜合平衡。目前工作轉(zhuǎn)速下,膠清中的極微小橡膠粒子無法分離出來,約有4%~6%的橡膠隨膠清排放。
3.3.3 橡膠粒徑對濃乳干膠體積分?jǐn)?shù)的影響
粒徑分別設(shè)置為1、2、3、4和5 μm時,兩相流模型的仿真結(jié)果如圖6所示,在工作轉(zhuǎn)速下輕相出口濃乳的體積分?jǐn)?shù)仿真結(jié)果分別為0.354、0.392、0.447、0.531和0.601。
表1 不同轉(zhuǎn)速下最大流體壓力和轉(zhuǎn)鼓體最大等效應(yīng)力Table1 Maximum fluid pressure and maximum equivalent stress of drum body at different speed
橡膠粒子的大小不同時,所受離心力也不同,粒徑較大時其密度相對要小一些,所受的離心力也略微要小一點,因此,大橡膠粒子更易與膠清分離。這種情況的典型例證是牛奶分離機(jī)在分離奶油時需將牛奶加熱到35 ℃,加熱的目的就是為了增大乳脂的脂肪球,獲得更佳分離效果[34]。據(jù)文獻(xiàn)[31]膠清中殘留的橡膠粒子直徑小于0.15 μm,說明離心分離實際上已把一些很?。?.15~1 μm)的粒子從膠清中分離出來了,可能原因:1)微小橡膠粒子在離心絮凝效應(yīng)[20]作用下會聚集增大,2)膠乳屬于活體,其物理化學(xué)特性、微生物可能導(dǎo)致粒子變大。
圖6 鮮膠乳中不同橡膠粒徑時的干膠體積分?jǐn)?shù)圖Fig.6 Dry rubber volume fraction diagrams of different rubber particle size of raw latex
3.3.4 輕相出口體積分?jǐn)?shù)的波動
由圖3、圖4可知:仿真時間點30~120 s,輕相出口處濃乳干膠體積分?jǐn)?shù)均存在一定的下降。造成該現(xiàn)象的可能原因,速度場仿真分析[29]表明,此處存在較大流體速度渦漩;另外,頂?shù)隙伺c轉(zhuǎn)鼓蓋之間有一環(huán)狀縫隙,濃乳從縫隙進(jìn)到出口孔之前,濃乳受到強大離心力從出口甩出,這將導(dǎo)致濃乳干膠體積分?jǐn)?shù)有一定的下降。為降低渦漩,有必要優(yōu)化輕、重相出口結(jié)構(gòu)。
4.1 輕相與重相的分離速度
設(shè)膠清的動力黏度η,mPa·s;膠清、橡膠粒子的密度分別為γ、γ2,kg/m3;粒子半徑r,mm;回轉(zhuǎn)半徑R,mm。在重力場中,由于橡膠粒子和膠清有密度差,橡膠粒子會上浮而膠清則會下沉。橡膠粒子上浮時,受到重力、上浮力和摩擦阻力,受力平衡時粒子勻速上浮,橡膠粒子與膠清之間存在分離速度,但在重力場中分離速度極其緩慢,24 h內(nèi)上升不到1 mm[34],無實際工程應(yīng)用意義。
設(shè)轉(zhuǎn)鼓轉(zhuǎn)速為n,r/min;分離因數(shù)Fr=a/g,離心加速度a,m/s2;重力加速度g,m/s2;Fr反映離心分離的強度,欲取得良好的分離效果,F(xiàn)r必須達(dá)到一定的值。經(jīng)計算得到,在碟片中性孔處,橡膠粒子受到的離心加速度相當(dāng)于g的7 051倍。
高速離心分離時分離速度將大幅增加,在碟片中粒子的分離速度[15]為:
將膠乳物性及轉(zhuǎn)鼓參數(shù)帶入式(3)得到的規(guī)律曲線(從略)可知:橡膠粒子越大,膠清黏度越小,膠清與粒子的密度差越大,轉(zhuǎn)速越高、回轉(zhuǎn)半徑越大時,分離速度越大,就越容易獲得高的干膠含量和制成率。粒子所受離心力隨回轉(zhuǎn)半徑增加而加大,膠清往碟片周邊運動過程中,其中夾帶的橡膠粒子將按大小順序不斷從膠清中逐漸被分離出來。
4.2 碟片間隙內(nèi)膠乳的流動及運動
通過解Navier-Stokes方程可得到描述碟片間隙內(nèi)液流及沉降過程規(guī)律的無量綱特性準(zhǔn)數(shù)λ值,λ值計算式見文獻(xiàn)[19-20]。λ值是判定層流轉(zhuǎn)變?yōu)橥牧鞯闹笜?biāo),當(dāng)λ=2π時碟片中的層流轉(zhuǎn)變?yōu)橥牧鳎椒蛛x機(jī)λ值推薦取5~12[20]。在膠乳分離機(jī)上代入有關(guān)參數(shù)計算得λ=5,故可判斷碟片間濃乳、膠清的流動為層流。
在碟片間隙內(nèi)膠清、雜質(zhì)將向外移動,而橡膠則向中心移動,液流的運動狀態(tài)決定于液體質(zhì)點各方向分速度,液流運動由沿碟片母線方向的徑向速度、科氏力引起的相對周向速度構(gòu)成。液流沿碟片母線方向的運動,離碟片表面愈遠(yuǎn),液流間的內(nèi)摩擦力愈小,則相對移動的距離就愈大,徑向速度變大。同時,因科氏力的作用,液流質(zhì)點絕對周向速度有所降低,周向速度略滯后于碟片表面,這將使質(zhì)點離心力減小,最終導(dǎo)致液流徑向速度減小,且離碟片愈遠(yuǎn),滯后程度越大,因此碟片附近的液流相對滯后比較小,受到的離心力大,其沿母線的運動必然快于液流中間層。周向速度的減小量在數(shù)值上遠(yuǎn)遠(yuǎn)小于旋轉(zhuǎn)速度。
由上述分析,在碟片間隙內(nèi)濃乳、膠清的運動軌跡可依照圖7來描述[34],圖中實線、虛線分別代表重相膠清、輕相橡膠粒子的運動軌跡,軌跡與碟片母線有偏離、不平行,準(zhǔn)數(shù)λ值越大,偏離程度將加大。
圖7 碟片間隙內(nèi)輕相/重相的運動軌跡Fig.7 Movement locus of light/heavy phase in disc clearance
4.3 膠乳濃縮極限
仿真結(jié)果表明,隨著分離轉(zhuǎn)速的增加,輕相出口濃乳平均體積分?jǐn)?shù)也將逐步增大,此時濃乳的黏度也將伴隨干膠含量的增加而加大,粒子運動阻力增大,同時濃乳沿碟片往中心運動,使回轉(zhuǎn)半徑減小,在此過程中橡膠粒子的離心力逐漸減小,進(jìn)一步被濃縮的趨勢逐漸變?nèi)酢_@揭示了離心濃縮天然膠乳最終的干膠含量存在上限的機(jī)制,按文獻(xiàn)[31]試驗得到的濃乳最大干膠質(zhì)量分?jǐn)?shù)不超過0.67,這可以通過采用進(jìn)料孔徑最小的進(jìn)料管與出料孔長度最大的調(diào)節(jié)螺絲來實現(xiàn)[31]。從設(shè)備操作角度,也不宜過度濃縮,否則會導(dǎo)致碟片間隙等通道內(nèi)產(chǎn)生凝膠,導(dǎo)致通道堵塞、分離性能惡化。
4.4 輕/重相路徑與雜質(zhì)的分離
當(dāng)膠乳濃縮達(dá)到預(yù)期的程度后,應(yīng)盡快從轉(zhuǎn)鼓中排出,濃乳應(yīng)經(jīng)歷盡可能短的路徑,即從轉(zhuǎn)鼓排出;膠清的排出路徑應(yīng)適當(dāng)曲折迂回,以增加膠清在轉(zhuǎn)鼓中停留的時間,以及在大回轉(zhuǎn)半徑處分離出更小的橡膠粒子的概率。另外,因膠清出口靠近中心,流出時受到的離心力小,這有利于使雜質(zhì)沉積在轉(zhuǎn)鼓內(nèi)壁,提高膠清清潔度。轉(zhuǎn)鼓結(jié)構(gòu)滿足上述要求。
從膠乳中可分離出的雜質(zhì)極限粒子直徑d計算式[20]:
式中T為膠乳的溫度 ,K,取300 K;Δρ為雜質(zhì)與膠乳的密度差,g/cm3;ω1為轉(zhuǎn)鼓角速度,rad/s;R為雜質(zhì)在轉(zhuǎn)鼓中的回轉(zhuǎn)半徑,mm。
如取膠泥雜質(zhì)密度為2.7 g/cm3,經(jīng)計算得中性孔處可分離出的雜質(zhì)極限粒徑為0.05 μm,故具有強大的除雜能力。雜質(zhì)的存在會增加碟片間隙內(nèi)紊流的可能性[20],也會縮短清洗轉(zhuǎn)鼓的間隔時間,對此,建議改進(jìn)膠乳加工工藝,在進(jìn)行離心濃縮之前,先將鮮膠乳采用專用碟片分離機(jī)除去絕大部分雜質(zhì)。
1)構(gòu)建的兩相流模型清晰地呈現(xiàn)了膠乳的動態(tài)分離過程,膠乳進(jìn)入轉(zhuǎn)鼓歷經(jīng)120 s時濃乳、膠清的干膠體積分?jǐn)?shù)均已穩(wěn)定不變,濃乳中干膠體積分?jǐn)?shù)達(dá)到最大值;在7 250 r/min工作轉(zhuǎn)速下仿真結(jié)果對應(yīng)的干膠質(zhì)量分?jǐn)?shù)計算值為0.582 2,仿真結(jié)果與濃乳干膠含量實測值接近,與實測值的相對誤差為3.83%,分析模型具可靠性。
2)當(dāng)轉(zhuǎn)速為6 750 、7 250 和7 750 r/min時,濃乳干膠體積分?jǐn)?shù)分別為0.587 5、0.612 6和0.635 8,當(dāng)粒徑分別取1、2、3、4和5 μm時,工作轉(zhuǎn)速下濃乳的干膠體積分?jǐn)?shù)分別為0.354、0.392、0.447、0.531和0.601,計算結(jié)果表明,轉(zhuǎn)速、粒徑顯著影響天然橡膠分離速度,轉(zhuǎn)速越高,濃乳中干膠含量增加,膠清殘留橡膠減少,大橡膠粒子更易分離,但隨轉(zhuǎn)速增加,流體壓力和結(jié)構(gòu)應(yīng)力也將明顯增加。
3)碟片內(nèi)膠乳的流動為層流,橡膠粒子、膠清的運動軌跡是徑向和周向運動的合成,橡膠粒子、膠清的運動軌跡與母線有偏離,偏離程度與特性準(zhǔn)數(shù)值有關(guān),揭示了膠乳濃縮存在上限值的根本原因,濃乳/膠清歷經(jīng)路徑設(shè)計有利于防止凝膠產(chǎn)生和充分除雜,轉(zhuǎn)鼓具備離心去除極限粒徑為0.05 μm細(xì)微雜質(zhì)的性能,建議從工藝上將除雜安排在離心濃縮之前。
研究方法和結(jié)果為揭示膠乳分離機(jī)離心濃縮機(jī)理、優(yōu)化分離工藝參數(shù)和轉(zhuǎn)鼓結(jié)構(gòu)提供了理論參考,為進(jìn)一步研究打下了基礎(chǔ),今后,在橡膠-膠清-雜質(zhì)三相流三維離心流場下結(jié)構(gòu)、物性、操作參數(shù)對流體動力學(xué)特性的影響等方面,有待做進(jìn)一步深入的研究。
[1] 王福軍,流體機(jī)械旋轉(zhuǎn)湍流計算模型研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(2):1-14.
Wang Fujun. Research progress of computational model for rotating turbulent flow in fluid machinery[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(2): 1-14. (in Chinese with English abstract)
[2] 裴吉,王文杰,袁壽其,等. 低比轉(zhuǎn)數(shù)離心泵內(nèi)部非定常流動特性數(shù)值預(yù)測[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2014,45(1):79-83,88.
Pei Ji, Wang Wenjie, Yuan Shouqi, et al. Numerical prediction of inner flow unsteadiness in a low-specific speed centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 79-83, 88. (in Chinese with English abstract)
[3] 邵春雷,顧伯勤,陳 曄. 離心泵內(nèi)部非定常壓力場的數(shù)值研究[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(1):75-80
Shao Chunlei, Gu Boqin, Chen Ye. Numerical simulation of unsteady pressure field in centrifugal pumps[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 75-80. (in Chinese with English abstract)
[4] 辛喆,吳俊宏,常近時. 混流式水輪機(jī)的三維湍流流場分析與性能預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(3):118-124.
Xin Zhe, Wu Junhong, Chang Jinshi. Flow field analysis and performance prediction of three-dimensional turbulent flow in Francis turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 118-124. (in Chinese with English abstract)
[5] 夏得峰,林光榮,王明賢,等. 基于計算流體力學(xué)的旋風(fēng)除塵器優(yōu)化[J]. 中國粉體技術(shù),2015,21(1):100-102.
Xia Defeng, Lin Guangrong, Wang Mingxian, et al. Cyclone optimization based on computational fluid dynamics[J]. China Power Science and Technology, 2015, 21(1): 100-102. (in Chinese with English abstract)
[6] 王江云,毛羽,王娟. 立式天然氣多管旋風(fēng)分離器內(nèi)流體的流動特性[J]. 化工機(jī)械,2015,42(2):225-229.
Wang Jiangyun, Mao Yu, Wang Juan. Flow characteristic of vertical multi-tube cyclone separation for natural gas[J]. Chemical Machinery, 2015, 42(2): 225-229. (in Chinese with English abstract)
[7] 蔣夢婷,王博,陳言信,等.旋風(fēng)分離器內(nèi)高速旋轉(zhuǎn)流場的數(shù)值計算方法選擇[J].環(huán)境工程學(xué)報,2012,6(8):2736-2743.
Jiang Mengting,Wang Bo, Chen Yanxin, et al. Selection of numerical approaches to calculate the high-speed rotating flow field within a cyclone separator. Chinese Journal of Environmental Engineering, 2012, 6(8): 2736-2743. (in Chinese with English abstract)
[8] 崔瑞,王光輝,李茂林.雙錐旋流分離器內(nèi)固-液分離過程的數(shù)值模擬[J]. 中國粉體技術(shù),2015,21(3):6-11.
Cui Rui, Wang Guanghui, Li Maolin. Numerical simulation of solid-Liquid separation process in dual-cone hydrocyclone[J]. China Power Science and Technology, 2015, 21(3): 6-11. (in Chinese with English abstract)
[9] 舒朝暉,楊拓,周宇,等. 除油旋流器操作參數(shù)對分離效率影響的數(shù)值模擬[J]. 石油化工設(shè)備,2015,44(5):1-6.
Shu Chaohui, Yang Tuo, Zhou Yu, et al. Numerical simulation of the effect of operational on separation efficiency in de-oliing hydrocyclones[J]. Petro-Chemical Equipment, 2015, 44(5): 1-6. (in Chinese with English abstract)
[10] 崔巖,王建軍,孫茂生,等. 水力旋流除砂器內(nèi)液-固兩相流動試驗與數(shù)值模擬[J]. 石油機(jī)械,2015,43(11):123-128.
Cui Yan, Wang Jianjun, Sun Maosheng, et al. Expeiment and numerical simulation on the liquid-solid flow in hydrocyclone desander[J]. China Petroleum Machinery, 2015, 43(11): 123-128. (in Chinese with English abstract)
[11] 劉書孟,董喜貴,劉鼎恒,等. 黏度對三相分離旋流器性能影響的數(shù)值模擬[J]. 石油化工設(shè)備,2014,43(3):27-30.
Liu Shumeng, Dong Xigui, Liu Dingheng, et al. Numerical simulation of influence of viscosity on the separation performance of three-phase hydrocyclones[J]. Petro-Chemical Equipment, 2014, 43(3): 27-30. (in Chinese with English abstract)
[12] 喻黎明,鄒小艷,譚弘嚴(yán),等. 基于CFD-DEM耦合的水力旋流器水沙運動三維數(shù)值模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(1):126-13.
Yu Liming, Zou Xiaoyan, Tan Hongyan, et al. 3D numerical simulation of water and sediment flow in hydrocyclone based on coupled CFD-DEM[J]. Journal of Agricultural Machinery, 2016, 47(1): 126-13. (in Chinese with English abstract)
[13] 鄭勝飛,任欣,謝林君. 臥螺離心機(jī)流場的三維數(shù)值模擬[J]. 輕工機(jī)械,2009,27(6):26-29.
Zhen Shengfei, Ren xin, Xie Linjun. Three-dimensional numerical simulation of spiral centrifuge flow field[J]. Light Industry Machinery, 2009, 27(6): 26-29. (in Chinese with English abstract)
[14] 于萍,林葦,王曉彬,等. 臥螺離心機(jī)離心分離場速度仿真分析[J]. 機(jī)械工程學(xué)報,2011,47(24):151-157.
Yu Ping,Lin Wei,Wang Xiaobin,et al. Velocity simulation analysis on centrifugal separation field of horizontal spiral centrifuge[J]. Journal of Mechanical Engineering, 2011, 47(24): 151-157. (in Chinese with English abstract)
[15] Zhu Guorui, Tan Wei. Experimental and numerical study of the concentration distribution in a horizontal screw decanter centrifuge[J]. Ind Eng Chem Res, 2013, 52: 17249-17256.
[16] 付雙成,董連東,袁惠新. 基于Euler多相流模型的臥螺離心機(jī)速度場數(shù)值模擬與分析[J]. 化工進(jìn)展,2014,33(1):36-42.
Fu Shuangcheng, Dong Liandong, Yuan Huixin. Numerical simulation and analysis on flow field in a decanter centrifuge based on the Euler model[J]. Chemical Industry and Engineering Progress, 2014, 33(1): 36-42. (in Chinese with English abstract)
[17] 周翠紅,凌鷹,申文君,等. 臥式螺旋沉降離心機(jī)污泥脫水模擬研究[J]. 機(jī)械工程學(xué)報,2014,50(16):206-212.
Zhou Cuihong, Ling Ying, Sheng Wenjun, et al. Numerical study on sludge dewatering by horizontal decanter centrifuge[J]. Journal of Mechanical Engineering, 2014, 50(16): 206-212. (in Chinese with English abstract)
[18] 朱明軍,袁惠新,付雙成. 臥螺式浮渣分離離心機(jī)兩相數(shù)值模擬[J]. 化工進(jìn)展,2015,34(2):336-342,375
Zhu Mingjun, Yuan Huixin, Fu Shuangcheng. Two-phase numerical simulation research in a decanter centrifuge of separating floating sludge[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 336-342, 375. (in Chinese with English abstract)
[19] 索科羅夫著,汪泰臨,孫啟才,陳文梅譯. 離心分離理論及設(shè)備[M]. 北京:機(jī)械工業(yè)出版社,1986.
[20] 孫啟才,金鼎五. 離心機(jī)原理結(jié)構(gòu)與設(shè)計計算[M]. 北京:機(jī)械工業(yè)出版社,1987.
[21] 楊如惠. 碟式離心機(jī)的分離影響因素及模型淺析[J]. 合成技術(shù)及應(yīng)用,2010,25(3):56-58.
Yang Ruhui. The analysis of classification influence factor and simulation about disc centrifuge[J]. Synthetic Technology and Application, 2010, 25(3): 56-58. (in Chinese with English abstract)
[22] 袁惠新,王飛,付雙成,等. 碟式離心機(jī)分離性能的研究[J]. 化工機(jī)械,2011,38(2):157-159
Yuan Huixin, Wang Fei, Fu Shuangcheng, et al. Research on separation performance of disc centrifuge[J]. Chemical Machinery, 2011, 38(2): 157-159. (in Chinese with English abstract)
[23] 濮偉. 碟式分離機(jī)重液出口影響因素及參數(shù)關(guān)系圖[J]. 過濾與分離,2006,16(3):29-30,33.
Pu Wei. Influence factors and parameter-relation diagram of the exit of heavy liquid in disc separator[J]. Journal of Filtration & Separation, 2006, 16(3): 29-30,33. (in Chinese with English abstract)
[24] 劉廣明. 碟式分離機(jī)分離效果的分析研究[J]. 過濾與分離,2009,19(1):27-30 Liu Guangming. Analysis and research for the separation effect of disc separator[J]. Journal of Filtration & Separation, 2009, 19(1): 27-30. (in Chinese with English abstract)
[25] 趙志國,石博強,李宴. 潤滑油分離機(jī)內(nèi)部流場數(shù)值模擬與分離效率分析[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(8):163-168.
Zhao Zhiguo, Shi Boqiang, Li Yan. Separation efficiency analysis and numerical simulation of lubricant separator inner flow field pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(8): 163-168. (in Chinese with English abstract)
[26] 趙志國,石博強,李宴,等. 基于Fluent的碟式分離機(jī)雜質(zhì)顆粒運動流場分析[J]. 煤礦機(jī)械,2011,32(3):112-114.
Zhao Zhiguo, Shi Boqiang, Li Yan, et al. Analysis of movement flow of centrifuge granule based on fluent [J]. Coal Mine Machinery, 2011, 32(3): 112-114. (in Chinesewith English abstract)
[27] Zhao Zhiguo. The influence of structural changes on the interior flow field’s characteristics of disc separator[J]. Procedia Engineering, 2011(15): 5051-5055.
[28] 袁惠新,侯新瑞,付雙成. 碟片式離心機(jī)內(nèi)流動的數(shù)值模擬[J]. 化工進(jìn)展,2014,33(6):1403-1407
Yuan Huixin, Hou Xinrui,F(xiàn)u Shuangcheng. Numerical simulation of the flow in a disc centrifuge[J]. Chemical Industry and Engineering Progress, 2014, 33(6): 1403-1407. (in Chinese with English abstract)
[29] 薛曉寧,石凱. 膠乳分離機(jī)高速轉(zhuǎn)鼓內(nèi)流場的數(shù)值分析[J].流體機(jī)械,2016,44(8):22-27.
Xue Xiaoning, Shi Kai. Numerical analysis on flow-field characteristics of high-speed bowl of latex disc-separator[J]. Fluid Machinery, 2016, 44(8): 22-27. (in Chinese with English abstract)
[30] 薛曉寧. 平帶傳動碟式分離機(jī)[P]. 中國:ZL2008100290738,2011-04-13.
[31] 何映平. 天然橡膠加工學(xué)[M]. 海口:海南出版社,2007:9-128.
[32] 王福軍. 計算流體動力學(xué)分析-CFD軟件原理與應(yīng)用[M].北京:清華大學(xué)出版社,2004:7-13
[33] 李進(jìn)良,李承曦,胡仁喜. 精通FLUENT6.3流場分析[M].北京:化學(xué)工業(yè)出版社,2009:10-189
[34] 武建新. 乳品技術(shù)裝備[M]. 北京:中國輕工業(yè)出版社,2000:36-39
Fluid dynamics characteristic of high-speed drum for latex separator
Xue Xiaoning, Shi Kai
(College of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang, 524088, China)
Latex separator is the key part of latex concentrated processing equipment, and belongs to disc separator. Disc separator is widely used in various industrial sectors. At present, the theory research on flow field and structure of separator drum is still not perfect, which results in the lack of theoretical guidance for the optimization of flow field and structure about the drum. To solve this problem and to reveal the latex fluid dynamics characteristics of the drum, the research on the flow field of latex drum was carried out. A mathematical model for the flow field of centrifugal separation was established. Based on FLUENT and two-phase flow model built, the fluid dynamics characteristics were explored through simulation and theoretical analysis. In the simulation of latex separation process, the separation effects under different speeds and different rubber particle sizes were conducted. The test of model validation was carried out in the branch factory affiliated to Guangdong Agricultural Reclamation Rubber Group in Zhanjiang in July 2016. The testing separator was the LX-460 type latex separator whose drum parameters were the basis of the construction of analysis model. The measured dry rubber content as comprehensive characteristic parameter was used to validate the model. Based on the mechanics theory, the factors affecting the separation speed of light and heavy phases, the flow state and fluid flow trajectory within the disc gap, the concentration limit and other aspects were analyzed and discussed. For the parameter setting of the model, the kinematic viscosity of concentrated latex was 0.03848 mPa·s, the surface tension coefficient was 0.034 N/m, the rubber particle size was 5 μm, the dry rubber volume fraction of raw latex was 0.33, the latex temperature was 26℃, the disc clearance was 0.5 mm, and the properties of latex skim were set as that of water in material library. The research results showed that: At 7 250 r/min rotation speed of the drum, the dynamic process of latex separation was clearly displayed. The rubber particles showed a tendency of separating from latex skim 10 seconds after fresh latex entered the drum. The dry rubber volume fraction of concentrated latex at light phase outlet completely reached the maximum stable value 120 seconds after latex entered the drum. When the rotational speed was respectively 6 750, 7 250 and 7 750 r/min, the simulated dry rubber volume fraction of concentrated latex was 0.587 5, 0.612 6, 0.635 8 respectively at light phase outlet. The higher the speed, the larger the volume fraction of concentrated latex. But when the speed exceeded 7 250 r/min, the increase in the volume fraction of dry latex grew slow, and the fluid pressure and structural stress would increase obviously. When the latex particle sizes were respectively 1, 2, 3, 4 and 5 μm, the simulated values of dry rubber volume fraction at light phase outlet were 0.354, 0.392, 0.447, 0.531 and 0.609 at the 7 250 r/min speed. The dry rubber volume fraction of concentrated latex increased with the increase of the particle size. The dry rubber volume fraction at light phase outlet had a little fluctuation caused by a vortex. The simulation result was in agreement with the experimental result of concentrated latex. The relative error was 3.83%. The reliability of the analytical model was verified. In addition, the theoretical analysis results showed that the factors that significantly affected the separation speed between light and heavy phases were particle size, rotating speed and turning radius of particles. The trajectory of light and heavy phases between the discs would deviate from the conical disc busbar because of the the Coriolis force effect. With the increase of dry rubber content in the process of centrifugal concentration, the viscosity and the particle resistance increased gradually, the turning radius decreased gradually, and there existed the upper bound for latex concentration. The drum structure would be a reasonable design with shorter light-phase discharging path and longer heavy-phase discharging path. The minimum particle size of 0.05 μm would be obtained from the neutral hole by theoretical calculation. The centrifugal removal of tiny impurities was superior. The results provide more theoretical guidance and reference for revealing the mechanism of latex centrifugal concentration, and optimizing separation process and drum structure.
latexes; processing; models; disc separator; high-speed drum; fluid dynamics; separation performance; numerical simulation
10.11975/j.issn.1002-6819.2017.05.040
TH123; TQ332.1
A
1002-6819(2017)-05-0279-08
薛曉寧,石 凱. 膠乳分離機(jī)高速轉(zhuǎn)鼓流體動力學(xué)特性[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(5):279-286.
10.11975/j.issn. 1002-6819.2017.05.040 http://www.tcsae.org
Xue Xiaoning, Shi Kai. Fluid dynamics characteristic of high-speed drum for latex separator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 279-286. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.05.040 http://www.tcsae.org
2016-05-11
2016-12-20
廣東省科技計劃(2009B020312003),廣東省教育廳科研基金項目(B9810),海南省企業(yè)新型膠乳分離機(jī)研制合作項目(QH2005-02)。
薛曉寧,男(漢),青海西寧人,副教授,主要從事碟式分離機(jī)設(shè)計及理論、農(nóng)牧漁業(yè)技術(shù)裝備的研究。湛江,廣東海洋大學(xué),524088。Email:gdouxue@126.com