劉甜雨, 王 清, 陳慕雁
(1.海水養(yǎng)殖教育部重點(diǎn)實(shí)驗(yàn)室(中國(guó)海洋大學(xué)),山東 青島 266003;2.中國(guó)科學(xué)院煙臺(tái)海岸帶研究所 中國(guó)科學(xué)院海岸帶環(huán)境過(guò)程與生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室, 山東 煙臺(tái) 264003;3.中國(guó)科學(xué)院煙臺(tái)海岸帶研究所,牟平海岸帶環(huán)境綜合試驗(yàn)站, 山東 煙臺(tái) 264003)
熱刺激對(duì)櫛孔扇貝免疫功能和熱休克蛋白表達(dá)的影響*
劉甜雨1, 王 清2,3**, 陳慕雁1
(1.海水養(yǎng)殖教育部重點(diǎn)實(shí)驗(yàn)室(中國(guó)海洋大學(xué)),山東 青島 266003;2.中國(guó)科學(xué)院煙臺(tái)海岸帶研究所 中國(guó)科學(xué)院海岸帶環(huán)境過(guò)程與生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室, 山東 煙臺(tái) 264003;3.中國(guó)科學(xué)院煙臺(tái)海岸帶研究所,牟平海岸帶環(huán)境綜合試驗(yàn)站, 山東 煙臺(tái) 264003)
為探究熱刺激對(duì)櫛孔扇貝(Chlamysfarreri)免疫功能的影響,以及熱休克蛋白在應(yīng)對(duì)急性高溫脅迫時(shí)的作用。本研究對(duì)一齡櫛孔扇貝進(jìn)行28℃熱刺激,采用流式細(xì)胞術(shù)于0、1、2、4、8 h測(cè)定血細(xì)胞的吞噬率和活性氧ROS含量;以鰻弧菌和溶壁微球菌為底物測(cè)定血清抗菌、溶菌活力;用彗星實(shí)驗(yàn)測(cè)定DNA損傷;用AO/EB(吖啶橙/溴化乙啶)熒光染色法檢測(cè)細(xì)胞凋亡;用熒光實(shí)時(shí)定量PCR檢測(cè)HSP70和HSP90 mRNA相對(duì)表達(dá)量。研究表明:熱刺激使血細(xì)胞中活性氧含量、吞噬活性以及血淋巴抗菌、溶菌活力受到抑制,總體表現(xiàn)為下降趨勢(shì);DNA損傷和細(xì)胞凋亡受熱刺激誘導(dǎo)顯著上升,具有明顯的時(shí)間-效應(yīng)關(guān)系;HSP70、HSP90 mRNA表達(dá)量顯著上調(diào),反應(yīng)迅速,且HSP70受熱刺激誘導(dǎo)更顯著。研究結(jié)果表明,熱刺激導(dǎo)致櫛孔扇貝血細(xì)胞發(fā)生細(xì)胞凋亡、加劇DNA損傷,造成免疫力下降,而機(jī)體通過(guò)大量表達(dá)熱休克蛋白HSP70、HSP90保護(hù)細(xì)胞和組織免受損傷。本研究為探究夏季易發(fā)扇貝大規(guī)模死亡原因提供了理論依據(jù)。
熱刺激;櫛孔扇貝;血細(xì)胞;免疫應(yīng)答;細(xì)胞凋亡;DNA損傷;HSP70;HSP90
櫛孔扇貝(Chlamysfarreri)是我國(guó)淺海筏式養(yǎng)殖的主要對(duì)象之一,自1980年代以來(lái),我國(guó)北方沿海逐漸形成了以櫛孔扇貝和海灣扇貝為代表的近海貝類養(yǎng)殖業(yè),成為我國(guó)沿海地區(qū)重要的經(jīng)濟(jì)支柱產(chǎn)業(yè)之一。1997年以來(lái),盲目追求高密度養(yǎng)殖使得貝類生存環(huán)境惡化,局部生態(tài)系統(tǒng)失衡,養(yǎng)殖區(qū)病害肆虐,導(dǎo)致櫛孔扇貝大規(guī)模死亡。扇貝大規(guī)模死亡多發(fā)生于夏季較高水溫期間,且由南及北呈傳染病樣波及[1-2]。大量研究發(fā)現(xiàn),在影響海洋雙殼貝類疾病流行的各種環(huán)境因子中,溫度是影響疾病時(shí)空分布的主要因素[3-6]。
在抵御病原體和環(huán)境脅迫時(shí),雙殼貝類的非特異性免疫發(fā)揮著至關(guān)重要的作用[7]。其中,細(xì)胞吞噬作用是雙殼類免疫防御的主要效應(yīng)方式[8-11],細(xì)胞吞噬活性已廣泛應(yīng)用于貝類機(jī)體健康狀況的評(píng)價(jià),以及衡量環(huán)境或病原脅迫下機(jī)體的免疫防御能力[12-15]。伴隨著細(xì)胞吞噬,通常會(huì)發(fā)生呼吸爆發(fā),產(chǎn)生活性氧(Reactive oxygen species,ROS)。ROS能夠?qū)Σ≡w產(chǎn)生殺傷作用[12],是反映生物體是否受到不良因素脅迫的重要指標(biāo)之一。研究表明,血細(xì)胞的吞噬活性和ROS含量對(duì)溫度變化十分敏感[16-20]。除血細(xì)胞作用外,貝類還會(huì)通過(guò)細(xì)胞分泌到體液中的各種酶類和肽段進(jìn)行體液免疫。體液因子能夠抑菌、殺菌,包括溶酶體酶、凝集素、抗菌肽和蛋白酶抑制劑等[21]。血清的抗菌、溶菌活力能體現(xiàn)出各體液免疫因子的綜合作用[22],是衡量生物體液免疫總體水平的一個(gè)重要指標(biāo)。研究表明,急劇水溫變化會(huì)影響貝類的免疫功能和抗病力,導(dǎo)致貝類免疫抑制而死亡[18, 23]。
外源性高溫還會(huì)導(dǎo)致DNA雙鏈結(jié)構(gòu)破壞、DNA鏈斷裂、堿基或堿基對(duì)被切除或替換等DNA損傷[24]。DNA損傷進(jìn)而會(huì)誘導(dǎo)細(xì)胞的程序性死亡,即細(xì)胞凋亡[25]。細(xì)胞凋亡是維持機(jī)體正常發(fā)育和自穩(wěn)態(tài)平衡的一種重要機(jī)制,受多種因素誘導(dǎo)發(fā)生[26]。在分子水平上,動(dòng)物體內(nèi)利用基因調(diào)節(jié)溫度適應(yīng)性的機(jī)制普遍存在,熱脅迫可以誘導(dǎo)動(dòng)物體內(nèi)熱休克蛋白基因的大量表達(dá)[27]。熱休克蛋白(Heat shock proteins,HSPs)是機(jī)體在應(yīng)激狀態(tài)下細(xì)胞迅速合成的一類蛋白質(zhì),其生物學(xué)特性在提高細(xì)胞耐受力和機(jī)體熱耐力的研究中具有非常重要的地位,受到人們的普遍關(guān)注;另外,因HSPs具有高度的保守性、普遍性和應(yīng)激性等特性[28],很多研究者利用其廣泛存在的特點(diǎn)及其與環(huán)境的特殊關(guān)系,選擇HSPs作為環(huán)境監(jiān)測(cè)的標(biāo)志物[29]。在熱休克蛋白家族中,HSP70和HSP90是生物抗逆性和抗感染的重要生物分子[30]。
為了扇貝養(yǎng)殖業(yè)的健康可持續(xù)發(fā)展,需要對(duì)貝類生理及抗逆機(jī)制有全面、深入、系統(tǒng)的認(rèn)識(shí),充分了解與應(yīng)激反應(yīng)相關(guān)的基因和調(diào)控機(jī)制。目前針對(duì)櫛孔扇貝已經(jīng)開(kāi)展了生理[31-35]、生態(tài)[36-40]、病害免疫[41-46]、遺傳育種[47, 48]、分子標(biāo)記[49-53]等多方面研究,但針對(duì)扇貝在急性熱脅迫下血淋巴細(xì)胞損傷、免疫反應(yīng)和基因表達(dá)的綜合研究尚不多見(jiàn)。本研究重點(diǎn)關(guān)注高溫對(duì)櫛孔扇貝的急性刺激及其響應(yīng)機(jī)制,通過(guò)測(cè)定熱刺激對(duì)櫛孔扇貝血淋巴細(xì)胞的吞噬活性、活性氧水平,抗菌、溶菌活力,DNA損傷,細(xì)胞凋亡,以及熱休克蛋白HSP70、HSP90 mRNA的相對(duì)表達(dá)量,多方面綜合分析高溫刺激在短時(shí)間內(nèi)對(duì)櫛孔扇貝造成的機(jī)體損傷,從而揭示免疫系統(tǒng)和應(yīng)激蛋白表達(dá)調(diào)控的啟動(dòng)和變化規(guī)律,為探究熱刺激對(duì)機(jī)體相關(guān)免疫指標(biāo)的影響及機(jī)體的應(yīng)對(duì)策略,為探索扇貝大規(guī)模流行性死亡的發(fā)病原因提供理論依據(jù),同時(shí)也為養(yǎng)殖貝類環(huán)境脅迫評(píng)價(jià)體系的構(gòu)建提供基礎(chǔ)資料。
1.1 實(shí)驗(yàn)生物
櫛孔扇貝購(gòu)自山東省青島市南山市場(chǎng),均為一齡貝,于實(shí)驗(yàn)室循環(huán)水槽中暫養(yǎng)1周后進(jìn)行實(shí)驗(yàn)。暫養(yǎng)期間海水溫度控制在15℃,鹽度30,pH 7.6~8.1,連續(xù)充氧,每日投喂螺旋藻2次。
1.2 實(shí)驗(yàn)處理
暫養(yǎng)結(jié)束后選取規(guī)格較一致的櫛孔扇貝,直接由暫養(yǎng)溫度轉(zhuǎn)移到水溫為28 ℃[35,54-55]的海水中,進(jìn)行急性熱脅迫實(shí)驗(yàn)。實(shí)驗(yàn)過(guò)程中,扇貝受外源刺激無(wú)閉殼反應(yīng)時(shí)認(rèn)定為死亡,并立即移除。實(shí)驗(yàn)開(kāi)始后0(對(duì)照組)、1、2、4和8 h分別進(jìn)行扇貝血細(xì)胞取樣,并測(cè)定相關(guān)實(shí)驗(yàn)指標(biāo)。每個(gè)指標(biāo)測(cè)定的生物學(xué)重復(fù)為4 ~ 6個(gè)個(gè)體。
1.3 實(shí)驗(yàn)方法
1.3.1 血淋巴的采集和工作液制備 用預(yù)冷的1 mL注射器從每個(gè)扇貝閉殼肌中抽取約500 μL血淋巴,置于冰水混合物中,每個(gè)取樣時(shí)間隨機(jī)取扇貝20~30只,每5只混合為一個(gè)樣本。將每份混合血淋巴與等量抗凝劑(Glucose:20.8 g·L-1,EDTA:20mmol/L,Sodium chloride:20 g·L-1,Tris-HCl:0.05mol/L,pH=7.4)混勻,防止血細(xì)胞凝集,混合溶液用作血淋巴工作液。在使用BD公司生產(chǎn)的FACSVantage流式細(xì)胞儀進(jìn)行檢測(cè)活性氧產(chǎn)物和吞噬活性時(shí),為了防止堵塞儀器,血淋巴樣品上樣前必須先以50 μm網(wǎng)目的篩絹過(guò)濾,去除雜質(zhì)。
1.3.2 血細(xì)胞活性氧產(chǎn)物 取400 μL血淋巴工作液于實(shí)驗(yàn)離心管中,置于冰水混合物中,加入4 μL的2’7’-二氯熒光黃(DCFH-DA)(終濃度為0.01 mmol/L),18℃避光撫育1h后上樣。DCFH-DA本身不帶熒光,滲透入細(xì)胞后,DCFH-DA被水解為DCFH,結(jié)合在細(xì)胞內(nèi),被胞內(nèi)的活性氧產(chǎn)物進(jìn)一步氧化成為具有強(qiáng)熒光的DCF[56-57],測(cè)定活性氧產(chǎn)物的靜息值。DCF熒光值以任意單位表示(A.U.)。
1.3.3 血細(xì)胞的吞噬活性 實(shí)驗(yàn)采用經(jīng)石芳芳等[58]改進(jìn)后Delaporte[59]的方法,取200 μL血淋巴工作液在4 ℃,780g離心10 min,去上清,沉淀的血細(xì)胞用過(guò)濾海水重懸,然后加入濃度為0.3%的熒光微球30 μL,18 ℃避光撫育1 h,再加入230 μL 6%的福爾馬林溶液(過(guò)濾滅菌海水配置)中止反應(yīng),并上樣。血細(xì)胞吞噬活性用細(xì)胞吞噬率表示,即參與吞噬熒光微球的血細(xì)胞占所有吞噬細(xì)胞的比率。
1.3.4 血淋巴細(xì)胞的溶菌活力 以溶壁微球菌(Micrococcuslysodeikticus)凍干粉為底物,將菌體用0.1 mol/L、pH=6.4的無(wú)菌磷酸鉀鹽緩沖液配成一定濃度的菌懸液(OD570nm≈0.3),取3 mL菌懸液置于冰浴中,加入100 μL待測(cè)培養(yǎng)上清液混勻,于570 nm波長(zhǎng)處測(cè)定光密度值(A0),然后置于37℃水浴保溫30 min,取出后立即置于冰浴中10 min終止反應(yīng),測(cè)光密度值(A)。溶菌活力(UL)按下式計(jì)算:
UL=(A0-A)/A。
1.3.5 血淋巴細(xì)胞的抗菌活力 用0.1 mol/L、pH=6.4的無(wú)菌磷酸鉀鹽緩沖液將鰻弧菌配成一定濃度的菌懸液(OD570nm≈0.3),取3 mL菌懸液置于冰浴中,加入100 μL待測(cè)培養(yǎng)上清液混勻,在570 nm波長(zhǎng)處測(cè)定光密度值(A0),然后移入37 ℃水浴中孵育30 min,取出后立即置于冰浴內(nèi)10 min終止反應(yīng),在570 nm波長(zhǎng)處測(cè)定光密度值(A)??咕盍?Ua)按下式計(jì)算:
Ua=(A0-A)/A。
1.3.6 血細(xì)胞DNA損傷 參照Singh等[60]的方法,略加改進(jìn):將1%的正常熔點(diǎn)瓊脂糖100 μL滴加到潔凈的磨砂載玻片上,蓋玻片鋪片,4 ℃凝固10 min,移去蓋玻片;將血細(xì)胞懸液10 μL(106cell·mL-1)與90 μL0.6%低熔點(diǎn)瓊脂糖(37 ℃)混勻,取75 μL上述混合液滴加到第一層膠上,蓋玻片鋪片,4 ℃凝固10 min,取下蓋玻片,然后將載玻片水平浸入4 ℃預(yù)冷裂解液中裂解2 h;取出載玻片晾干后移入水平電泳槽中,倒入新配置預(yù)冷(4 ℃)的電泳緩沖液中避光解旋20 min,然后室溫電泳30 min (電壓25V,電流300 mA);電泳結(jié)束后用0.4 mol·L-1Tris緩沖液(pH=7.4)浸洗膠板2次,每次15 min;20 μg·mL-1溴化乙啶(EB)染色,在熒光顯微鏡(10×40)下觀察,激發(fā)波長(zhǎng)510~560 nm,阻斷波長(zhǎng)590 nm。每個(gè)樣品作3個(gè)重復(fù),每張載玻片上隨機(jī)觀察100個(gè)細(xì)胞。采用CASP軟件分析彗星圖像,選擇Olive尾矩(OTM值)用于DNA損傷的評(píng)價(jià)指標(biāo),并根據(jù)彗星尾長(zhǎng)對(duì)DNA損傷程度進(jìn)行分級(jí)[61]:無(wú)損傷,<5 μm(0);輕度損傷,5~25 μm(+);中度損傷,25~45 μm(++);重度損傷,>45 μm(+++)。
1.3.7 血細(xì)胞凋亡 參照Spector等[62]的方法,取50 μL血細(xì)胞懸液,加入6 μL濃度為100 μg·mL-1的AO/EB(吖啶橙/溴化乙啶)染液進(jìn)行熒光染色,混勻后,將細(xì)胞懸液滴加到載玻片上,加蓋玻片,置于熒光顯微鏡下觀察計(jì)數(shù)正?;罴?xì)胞數(shù)量、凋亡細(xì)胞數(shù)量、壞死細(xì)胞數(shù)量,正常細(xì)胞被AO染成綠色,壞死的血細(xì)胞被EB染成紅色,凋亡初期血細(xì)胞呈現(xiàn)橙紅色,并帶有綠色斑點(diǎn),凋亡末期細(xì)胞呈現(xiàn)橙紅色。每個(gè)樣品計(jì)數(shù)200個(gè)細(xì)胞,按以下公式計(jì)算細(xì)胞凋亡指數(shù)。
凋亡指數(shù)=B/(A+B+C)×100%;
早期凋亡率=D/(A+B+C)×100%;
晚期凋亡率=E/(A+B+C)×100%。
式中,字母A、B、C、D、E分別代表正?;罴?xì)胞數(shù)量、凋亡細(xì)胞總數(shù)量、壞死細(xì)胞數(shù)量、凋亡早期細(xì)胞數(shù)量、凋亡晚期細(xì)胞數(shù)量。
1.3.8 血細(xì)胞中熱休克蛋白HSP70和HSP90的mRNA相對(duì)定量表達(dá)
1.3.8.1 總RNA的提取、純化和反轉(zhuǎn)錄 為了減小個(gè)體間的誤差,每個(gè)時(shí)間點(diǎn)隨機(jī)選取18只扇貝,每3只扇貝的血淋巴作為一個(gè)樣品,共設(shè)置6個(gè)重復(fù)。血淋巴樣品于4 ℃,3 000g離心5 min收集血細(xì)胞。采用Trizol法提取血細(xì)胞總RNA,使用PrimeScriptTMRT reagent Kit with gDNA Eraser(Perfect Real Time)試劑盒(TaKaRa,日本)進(jìn)行總RNA的純化和cDNA的反轉(zhuǎn)錄。
1.3.8.2熒光定量PCR分析 采用已經(jīng)發(fā)表的HSP70[63]和HSP90[64]的特異性引物用于基因表達(dá)分析,內(nèi)參基因?yàn)棣?actin(見(jiàn)表1)?;蛳鄬?duì)表達(dá)水平采用SYBR?Premix Ex TaqTM(Tli RNaseH Plus)試劑盒(TaKaPa,日本)檢測(cè);檢測(cè)過(guò)程在7500 型實(shí)時(shí)熒光定量PCR系統(tǒng)(Applied Biosystems,美國(guó))上進(jìn)行。
每個(gè)樣品設(shè)置3個(gè)重復(fù),特異性引物的退火溫度和循環(huán)數(shù)經(jīng)優(yōu)化后如下:95 ℃變性30 s;95 ℃變性5 s,60 ℃退火30 s,此步驟循環(huán)40次。在PCR運(yùn)行結(jié)束后制作引物溶解曲線,分析其擴(kuò)增效率以確保引物特異性和產(chǎn)物的單一性。根據(jù)實(shí)驗(yàn)結(jié)果,以β-actin為內(nèi)參基因,根據(jù)2-△△CT方法計(jì)算得到各基因的相對(duì)表達(dá)量[65]。
表1 用于基因表達(dá)分析的引物信息
1.4 數(shù)據(jù)處理
流式細(xì)胞儀的數(shù)據(jù)處理采用WinMDIversion28軟件;彗星實(shí)驗(yàn)用CASP分析獲得的數(shù)據(jù)采用國(guó)際常用參數(shù)分析方法[66],結(jié)果數(shù)值表示為“平均數(shù)±標(biāo)準(zhǔn)差”;數(shù)據(jù)統(tǒng)計(jì)采用SPSS17.0和Excel 2010軟件統(tǒng)計(jì)分析,用單因素方差分析(One-way,ANOVA)和Duncan's多重比較法對(duì)組間進(jìn)行差異分析,若P<0.05,則定義為差異顯著。
2.1 熱刺激對(duì)血細(xì)胞內(nèi)活性氧含量的影響
活性氧水平采用DCF熒光值(AU)表示,實(shí)驗(yàn)結(jié)果如圖1所示,熱刺激開(kāi)始4 h內(nèi),扇貝血細(xì)胞活性氧水平變化較??;8 h時(shí)ROS水平明顯下降,與對(duì)照組(0 h)差異顯著(P<0.05)。
(*表示與對(duì)照組(0 h)組間差異顯著(P< 0.05)。* Indicates groups significantly different from the controls (P< 0.05).)
2.2 熱刺激對(duì)血細(xì)胞吞噬活性的影響
櫛孔扇貝血細(xì)胞的吞噬活性受高溫脅迫的影響極顯著(P<0.01)。實(shí)驗(yàn)開(kāi)始時(shí),細(xì)胞吞噬率約為21.7%,脅迫2 h內(nèi)吞噬活性無(wú)顯著變化,4 h吞噬活性明顯增大(P<0.05),吞噬率達(dá)到25.8%,熱刺激8 h后,降為23.1%,顯著低于4 h時(shí)的吞噬率,并與初始吞噬率差異不顯著(P>0.05)(見(jiàn)圖2)。
2.3 熱刺激對(duì)血淋巴細(xì)胞溶菌、抗菌活力的影響
櫛孔扇貝血淋巴細(xì)胞的抗菌、溶菌活力測(cè)定結(jié)果見(jiàn)表2,隨時(shí)間的變化規(guī)律如圖3所示:血淋巴細(xì)胞在不同高溫脅迫時(shí)間下,抗菌活力差異不顯著(P>0.05),對(duì)照組(實(shí)驗(yàn)開(kāi)始0 h)抗菌活力最大,熱刺激6 h內(nèi),抗菌活力略有下降,8 h活力降到最小值,并顯著低于對(duì)照組(P<0.05);溶菌活力隨著熱刺激時(shí)間的延長(zhǎng)變化明顯(P<0.05),對(duì)照組溶菌活力最大,熱刺激后其活力平緩上升后緩慢下降,于實(shí)驗(yàn)開(kāi)始4 h時(shí)與
對(duì)照組產(chǎn)生顯著性差異,隨后溶菌活力稍下降并達(dá)到最低值(見(jiàn)圖3)。
(小寫(xiě)字母為Duncan分析結(jié)果,含有完全不同字母的表示差異顯著(P< 0.05)。Bars showing different lowercase letters are significantly >different from each other by Duncan analysis (P<0.05).)
熱刺激時(shí)間/hStimulustime溶菌活力Bacteriolyticactivities抗菌活力AntibacterialactivitiesA0AULA0AUa00.29±0.010.27±0.010.11±0.020.31±0.010.28±0.010.1±0.0310.37±00.34±0.010.08±0.020.33±0.010.31±0.020.08±0.0320.28±0.010.26±00.09±0.030.33±0.040.3±0.030.08±0.0440.21±00.2±0.010.05±0.030.34±0.020.31±0.020.07±0.02*80.21±0.010.2±0.010.05±0.02*0.33±0.010.31±0.010.04±0.01*
注:*表示與對(duì)照組(0 h)組間差異顯著(P< 0.05)。
Note: * indicates groups significantly different from the controls (P< 0.05).
(左側(cè):血淋巴細(xì)胞對(duì)鰻弧菌的抗菌活力,右側(cè):血淋巴細(xì)胞對(duì)溶壁微球菌的溶菌活力;*表示抗菌活力在熱刺激8 h后與對(duì)照組差異顯著(P< 0.05);小寫(xiě)字母為Duncan分析結(jié)果,含有完全不同字母的表示差異顯著(P< 0.05)。Left: the antibacterial activity of hemolymph onVibrio anguillarum;Right: the bacteriolytic activity of hemolymph on Micrococcus lysodeikticus. * indicates antibacterial activities significantly different from the controls after 8 h treatment (P< 0.05); Bars showing different lowercase letters are significantly different from each other by Duncan analysis (P< 0.05).)
2.4 熱刺激對(duì)血細(xì)胞的DNA損傷
高溫脅迫下櫛孔扇貝細(xì)胞核彗星圖像如圖4所示。細(xì)胞未受高溫脅迫時(shí),較少細(xì)胞出現(xiàn)拖尾,細(xì)胞核影像基本呈規(guī)則的圓形,邊緣光滑且亮度均勻;高溫脅迫開(kāi)始即出現(xiàn)明顯的拖尾現(xiàn)象,細(xì)胞拖尾現(xiàn)象隨時(shí)間推移逐漸明顯:脅迫開(kāi)始2 h內(nèi)細(xì)胞拖尾尾長(zhǎng)較短,4~8 h時(shí),彗星頭部逐漸變小,彗尾變長(zhǎng),呈掃帚狀,且熒光強(qiáng)度增加。如表3顯示,高溫使血細(xì)胞DNA受到嚴(yán)重?fù)p傷,并隨著脅迫時(shí)間的延長(zhǎng)DNA損傷程度逐漸增大,高溫刺激1 h就達(dá)到輕度損傷,實(shí)驗(yàn)結(jié)束時(shí)達(dá)到中度損傷。各時(shí)間組的尾長(zhǎng)、尾部DNA含量、尾矩和Olive尾矩與對(duì)照組比較,差異顯著(P<0.05),進(jìn)一步分析表明,1和2 h之間4種參數(shù)差異均不顯著,其它各時(shí)間組之間均具有顯著差異。
圖4 高溫刺激不同時(shí)間櫛孔扇貝血細(xì)胞DNA損傷的彗星圖像
熱刺激時(shí)間①/h尾長(zhǎng)②/μm尾部DNA含量③/%尾矩④Olive尾矩⑤損傷程度⑥01.26±1.934.86±5.80.16±0.610.3±0.60111.01±4.31*15.89±5.41*1.89±1.34*2.56±1.33*+213.41±2.59*17.74±5.9*2.45±1.05*2.74±1.11*+420.94±2.99*23.94±5.91*5.08±1.63*5.24±1.25*+836.13±9.43*32.85±11.07*12.34±7.6*9.6±4.37*++
注:*表示與對(duì)照組(0 h)差異顯著(P<0.05)。損傷程度劃分:無(wú)損傷,<5 μm(0);輕度損傷,5~25 μm(+);中度損傷,25~45 μm(++);重度損傷,>45 μm(+++)。
Note: * indicates groups significantly different from the controls (P< 0.05). Damage degree: no DNA damage, < 5 μm(0); mild DNA damage, 5~25 μm(+); moderate DNA damage, 25~45 μm (++); severe DNA damage, > 45 μm (+++).
①Stimulus time;②Tail length;③Tail DNA;④Tail moment;⑤Olive tail moment;⑥D(zhuǎn)amage degree
2.5 熱刺激對(duì)血細(xì)胞凋亡的影響
熱刺激后,櫛孔扇貝血細(xì)胞凋亡指數(shù)、早期凋亡率和晚期凋亡率隨時(shí)間的延長(zhǎng)逐漸增加,并具有統(tǒng)計(jì)學(xué)意義(P<0.05),且早期和晚期凋亡率的強(qiáng)度相似(P>0.05)(見(jiàn)圖5)。分析結(jié)果顯示,在未進(jìn)行熱刺激時(shí),扇貝血細(xì)胞凋亡指數(shù)較低(0.5%),早期凋亡率和晚期凋亡率相等。熱刺激1 h后,凋亡細(xì)胞數(shù)量增加,且早期凋亡率大于晚期凋亡率;熱刺激2 h后,血細(xì)胞的凋亡指數(shù),早期、晚期凋亡率與對(duì)照組產(chǎn)生顯著差異(P<0.05);到8 h時(shí),凋亡指數(shù)最高,達(dá)到3.72%,早期凋亡率仍略大于晚期凋亡率,分別為2.02%和1.72%。
2.6 熱刺激下熱休克蛋白HSP70和HSP90的差異表達(dá)
利用實(shí)時(shí)熒光定量PCR技術(shù),檢測(cè)櫛孔扇貝受熱刺激后血細(xì)胞中HSP70和HSP90基因mRNA相對(duì)表達(dá)量的變化。如圖6所示,高溫28℃刺激下,HSP70和HSP90基因mRNA表達(dá)影響受熱處理時(shí)間極顯著(P<0.01)。HSP70轉(zhuǎn)錄水平隨熱處理時(shí)間延長(zhǎng)顯著升高,熱刺激4和8 h后,分別增至初始表達(dá)量的3.90和7.27倍;HSP90在各取樣時(shí)間的轉(zhuǎn)錄水平差異顯著(P<0.05),但增長(zhǎng)較平緩,8 h后的表達(dá)量?jī)H為初始表達(dá)量的2.32倍。扇貝血細(xì)胞中熱休克蛋白HSP70和HSP90的初始轉(zhuǎn)錄水平相近,高溫刺激后HSP70轉(zhuǎn)錄水平的升高速度大于HSP90,且在8 h時(shí)產(chǎn)生顯著性差異(P<0.05)。
圖5 高溫刺激后櫛孔扇貝血細(xì)胞的細(xì)胞凋亡率
圖6 熱刺激下HSP70和HSP90的相對(duì)表達(dá)量
3.1 熱應(yīng)激對(duì)櫛孔扇貝血細(xì)胞活性氧含量和吞噬活性的影響
本研究結(jié)果顯示,在28℃高溫脅迫8 h內(nèi),扇貝血細(xì)胞的吞噬活性先下降后升高,在4 h時(shí)達(dá)到峰值,隨后迅速降低,活性氧含量8h后顯著低于初始水平。分析結(jié)果得到,急性高溫刺激使血細(xì)胞活性氧產(chǎn)物升高[16],但一段時(shí)間后可能由于持續(xù)高溫脅迫使細(xì)胞內(nèi)活性氧累積增多,損害機(jī)體細(xì)胞,導(dǎo)致血細(xì)胞的死亡率增加,進(jìn)而造成吞噬活力下降,ROS生產(chǎn)力降低。本研究中細(xì)胞凋亡實(shí)驗(yàn)結(jié)果可對(duì)此解釋提供理論支持:血細(xì)胞凋亡率在熱刺激2 h后顯著增加,8 h達(dá)到最大。大量研究表明,高溫會(huì)使細(xì)胞分裂及增殖受到抑制,血細(xì)胞數(shù)量減少[35],且顆粒血細(xì)胞的數(shù)量和比例更易受溫度影響而降低[71],而顆粒細(xì)胞在貝類血細(xì)胞中起吞噬作用,這可能是本研究中櫛孔扇貝受到高溫脅迫8 h時(shí)血細(xì)胞吞噬活力顯著降低的主要原因。同時(shí),細(xì)胞吞噬活性與貝類血細(xì)胞的表面特征有關(guān),而持續(xù)高溫對(duì)細(xì)胞表面的受體數(shù)量產(chǎn)生影響,也可能是吞噬活性降低的原因之一[16, 19-20, 72]。
3.2 熱刺激對(duì)櫛孔扇貝血細(xì)胞抗菌、溶菌活力的影響
貝類的體液免疫主要通過(guò)細(xì)胞分泌到細(xì)胞和體液中的各種酶類和肽段來(lái)完成,起到異物識(shí)別、清除及維持自身內(nèi)環(huán)境穩(wěn)定的作用。各體液免疫因子的綜合作用可以通過(guò)血清的抗菌活力和溶菌活力體現(xiàn)[73]。本研究選用鰻弧菌和溶壁微球菌作為底物,測(cè)定了高溫刺激對(duì)櫛孔扇貝抗菌、溶菌活力的影響。實(shí)驗(yàn)結(jié)果顯示,櫛孔扇貝的血淋巴的抗菌、溶菌活力在28 ℃熱刺激下受到抑制,存在時(shí)間—效應(yīng)關(guān)系,并在實(shí)驗(yàn)結(jié)束時(shí)顯著低于初始活力,但熱刺激剛開(kāi)始時(shí),抗菌、溶菌活力出現(xiàn)了短暫增強(qiáng)。相關(guān)研究也得到了類似的結(jié)論,Ottaviani等[74]用細(xì)菌注射刺激蝸牛Planorbariuscorneus后,發(fā)現(xiàn)在注射后2 h內(nèi)細(xì)菌清除率最高;Dang等[75]的研究表明,短期水溫升高會(huì)使歐洲鮑(Haliotisrubra)的抗菌活力和抗病毒活力上升,但長(zhǎng)時(shí)間高溫脅迫會(huì)導(dǎo)致歐洲鮑抗菌活力和抗病毒活力受到抑制;李曉英等[76]發(fā)現(xiàn)短期溫度驟升能提升青蛤(Cyclinasinensis)超氧化物歧化酶(SOD)和過(guò)氧化氫酶(CAT)活力,但長(zhǎng)期高溫刺激會(huì)抑制兩種酶活性;時(shí)少坤[77]對(duì)鮑的研究中發(fā)現(xiàn),鮑血淋巴堿性磷酸酶(AKP)、溶菌酶(LZM)活力受高溫刺激(水溫30℃)48 h后均顯著低于對(duì)照組。以上研究表明,高溫脅迫會(huì)嚴(yán)重降低機(jī)體免疫酶活力,進(jìn)而導(dǎo)致機(jī)體免疫力降低。
溶菌酶能夠破壞溶解細(xì)菌細(xì)胞壁中的肽聚糖,具有較強(qiáng)的溶菌能力[78]。其特點(diǎn)之一是底物特異性強(qiáng),不同來(lái)源的溶菌酶作用的底物不同[79],本實(shí)驗(yàn)結(jié)果顯示,當(dāng)以鰻弧菌為底物時(shí),扇貝血淋巴抗菌活性變化不明顯;而當(dāng)?shù)孜餅槿鼙谖⑶蚓鷷r(shí),其溶菌活力受高溫影響更加顯著??赡苁怯捎趯?shí)驗(yàn)使用的鰻弧菌為菌懸液,而溶壁微球菌為凍干粉,后者更容易被溶菌酶降解;或者可能是鰻弧菌和溶壁微球菌細(xì)胞壁中的肽聚糖含量不同,造成溶菌酶的降解能力存在差異。
3.3 熱刺激造成櫛孔扇貝血細(xì)胞DNA損傷和細(xì)胞凋亡
動(dòng)物體內(nèi)DNA在受到來(lái)自體內(nèi)外各種因素的刺激時(shí),例如:外源性的高溫高壓、紫外線、射線、重金屬、強(qiáng)氧化劑、強(qiáng)酸和強(qiáng)堿等物理化學(xué)因素和內(nèi)源性ROS、酸堿不平衡及DNA在復(fù)制和傳遞過(guò)程中出現(xiàn)的錯(cuò)誤等,會(huì)發(fā)生DNA雙鏈結(jié)構(gòu)破壞、DNA鏈斷裂、堿基或堿基對(duì)被切除或替換等DNA損傷[24]。DNA損傷還會(huì)進(jìn)一步誘導(dǎo)細(xì)胞凋亡。細(xì)胞凋亡又稱細(xì)胞程序性死亡,存在于多細(xì)胞生物的整個(gè)生命過(guò)程當(dāng)中,可及時(shí)清除機(jī)體內(nèi)多余和受損傷的細(xì)胞,是機(jī)體內(nèi)細(xì)胞死亡的重要途徑,也是維持機(jī)體正常發(fā)育和自穩(wěn)態(tài)平衡的一種重要機(jī)制。
彗星實(shí)驗(yàn)(Comet assay),又稱單細(xì)胞凝膠電泳技術(shù)(Single cell gel electrophoresis,SCGE),是一種簡(jiǎn)便、快速和靈敏的檢測(cè)DNA損傷的新方法[80],目前已廣泛應(yīng)用于生物監(jiān)測(cè)、臨床病理和遺傳毒理學(xué)等領(lǐng)域[81-82]。在電泳過(guò)程中,損傷的DNA斷鏈及片段分子量小,會(huì)離開(kāi)核DNA向陽(yáng)極移動(dòng),形成彗星狀的圖像,而未損傷的DNA部分保持球形。大多研究認(rèn)為以O(shè)TM(Olive尾矩)為指標(biāo)的結(jié)果最為可靠因?yàn)樗梢苑从澄膊康拿娣e、尾部的DNA含量以及尾部的DNA所占總DNA的百分比[83]。
本研究結(jié)果表明,隨著熱刺激時(shí)間延長(zhǎng),櫛孔扇貝血細(xì)胞細(xì)胞彗星尾長(zhǎng)增加、尾部熒光強(qiáng)度增強(qiáng),這是說(shuō)明熱刺激導(dǎo)致血細(xì)胞產(chǎn)生數(shù)量較多的小DNA斷片,受損較為嚴(yán)重。進(jìn)一步采用尾長(zhǎng)、尾部DNA含量、尾矩,Olive尾矩等作為分析指標(biāo),結(jié)果發(fā)現(xiàn),高溫刺激(28℃)可導(dǎo)致櫛孔扇貝血細(xì)胞DNA受到明顯的損傷,并與高溫脅迫存在時(shí)間-效應(yīng)關(guān)系。研究表明,外源性高溫和內(nèi)源性ROS都是導(dǎo)致動(dòng)物細(xì)胞DNA損傷的因素[24],但本實(shí)驗(yàn)中,DNA損傷在活性氧含量顯著變化前就已發(fā)生,且損傷程度持續(xù)升高,推測(cè)外源性高溫誘導(dǎo)扇貝血細(xì)胞DNA損傷作用大于內(nèi)源性影響因素ROS。細(xì)胞凋亡隨時(shí)間延長(zhǎng)而顯著增加,與DNA損傷的變化規(guī)律相似,這可能是細(xì)胞凋亡過(guò)程中細(xì)胞染色體上DNA發(fā)生特異性降解所致[25]。
3.4 熱休克蛋白HSP70、HSP90對(duì)高溫刺激的響應(yīng)
在動(dòng)物體內(nèi),利用基因調(diào)節(jié)溫度適應(yīng)性的機(jī)制普遍存在。熱休克蛋白(heat shock proteins,HSPs),又稱為應(yīng)激蛋白,是機(jī)體在應(yīng)激狀態(tài)下細(xì)胞迅速合成的一類蛋白質(zhì)。當(dāng)細(xì)胞或機(jī)體處于正常狀態(tài)時(shí),HSPs主要維持細(xì)胞正常的生理機(jī)能[84]。當(dāng)細(xì)胞或機(jī)體處于應(yīng)激狀態(tài)時(shí),HSPs大量誘導(dǎo)表達(dá),增加細(xì)胞抵抗不良環(huán)境的能力[85],參與維持細(xì)胞內(nèi)環(huán)境的相對(duì)穩(wěn)定[86]。
按照分子量大小,Morimote等[87]將熱休克蛋白分成4個(gè)家族:HSP90家族(分子量約83~110 kDa),HSP70家族(分子量約66~78 kDa),HSP60家族及小分子量smHSP(分子量約12~43 kDa)家族。其中,HSP90是真核生物體內(nèi)最豐富的細(xì)胞質(zhì)蛋白之一,參與機(jī)體免疫調(diào)節(jié)和信號(hào)傳導(dǎo)以及細(xì)胞周期調(diào)控等[88];HSP70是目前研究比較深入的一種蛋白質(zhì),應(yīng)激狀態(tài)下參與降解錯(cuò)誤折疊和變性的蛋白質(zhì)以及其調(diào)節(jié)過(guò)程[89],同時(shí)還有抗細(xì)胞凋亡、抗氧化以及提高細(xì)胞耐受力,促進(jìn)細(xì)胞增殖等基本的功能,且在熱休克蛋白家族中,HSP70對(duì)環(huán)境的擾動(dòng)最為敏感[90]。這在本實(shí)驗(yàn)中也得到體現(xiàn):在受到熱刺激后,HSP70的轉(zhuǎn)錄水平和增長(zhǎng)速度顯著大于HSP90,表明HSP70的誘導(dǎo)受溫度影響更明顯。目前,普遍認(rèn)為HSP70的細(xì)胞保護(hù)功能構(gòu)成了細(xì)胞應(yīng)激耐受的基礎(chǔ)[91-92]。研究表明,熱脅迫可以誘導(dǎo)動(dòng)物體內(nèi)HSPs基因的大量表達(dá)[93-95],這在本實(shí)驗(yàn)中得到印證。結(jié)果顯示,櫛孔扇貝在受到高溫刺激后,HSP70和HSP90的轉(zhuǎn)錄水平隨時(shí)間均顯著提高,表明扇貝會(huì)通過(guò)誘導(dǎo)增加HSP70和HSP90基因mRNA的表達(dá)應(yīng)對(duì)高溫脅迫,還有研究發(fā)現(xiàn)應(yīng)激狀態(tài)下HSP70 mRNA主要通過(guò)增強(qiáng)其自身的穩(wěn)定性以及優(yōu)先翻譯來(lái)保證機(jī)體需要[96]。Fehrenbach等[97]發(fā)現(xiàn)高溫環(huán)境中HSPs的表達(dá)可以降低DNA損傷,但在本實(shí)驗(yàn)中,DNA損傷一直處于增長(zhǎng)狀態(tài),HSP70、HSP90 mRNA表達(dá)量隨時(shí)間顯著增加,說(shuō)明DNA損傷可能是誘導(dǎo)細(xì)胞過(guò)表達(dá)HSPs的原因之一。目前,關(guān)于HSPs與細(xì)胞凋亡的研究較多,但它們之間的具體關(guān)系不是十分清楚。大量研究表明HSPs可以抑制細(xì)胞凋亡,HSP70[98]、HSP90[88, 99]可以在凋亡體形成的不同階段發(fā)揮阻斷作用,但I(xiàn)shiyama等[100]研究發(fā)現(xiàn)如果細(xì)胞凋亡已啟動(dòng),再用應(yīng)激因子誘導(dǎo)細(xì)胞表達(dá)HSPs,HSPs不但不能抵抗細(xì)胞凋亡,甚至還可以促進(jìn)細(xì)胞凋亡。
另外,HSP70家族成員眾多,有學(xué)者在牡蠣中發(fā)現(xiàn)HSP70基因發(fā)生了明顯擴(kuò)張,數(shù)目高達(dá)88個(gè)[101]。由于扇貝基因組信息尚未公布,本研究?jī)H對(duì)櫛孔扇貝其中一個(gè)HSP70基因進(jìn)行了研究,有關(guān)櫛孔扇貝HSP70基因家族其它成員對(duì)熱刺激的表達(dá)響應(yīng)機(jī)制有待進(jìn)一步研究。
本研究表明,在受到熱刺激后,扇貝會(huì)通過(guò)非特異性免疫系統(tǒng)應(yīng)對(duì)脅迫,且體液免疫比細(xì)胞免疫反應(yīng)迅速。28℃熱刺激下,外源性高溫誘導(dǎo)扇貝血細(xì)胞DNA損傷作用大于內(nèi)源性影響因素ROS,并可直接誘導(dǎo)細(xì)胞凋亡,血細(xì)胞凋亡可能是導(dǎo)致細(xì)胞吞噬活性下降的重要原因,進(jìn)而降低血淋巴細(xì)胞的免疫、抗菌能力,使扇貝的免疫功能受到嚴(yán)重的抑制,為病原體的入侵和繁殖提供可乘之機(jī);同時(shí)熱刺激后,熱休克蛋白HSP70和HSP90轉(zhuǎn)錄水平顯著提高且反應(yīng)迅速,HSP70的轉(zhuǎn)錄受溫度影響更明顯,表明誘導(dǎo)熱休克蛋白,特別是HSP70的過(guò)量表達(dá),是機(jī)體應(yīng)對(duì)熱刺激的重要機(jī)制。綜合分析表明,夏季水溫若達(dá)到28℃高溫,短時(shí)間內(nèi)即可造成櫛孔扇貝細(xì)胞損傷,抗菌能力顯著下降,極易受到病原菌侵害,增大扇貝大規(guī)模死亡的可能性。本研究初步探究了熱刺激后扇貝防御系統(tǒng)的啟動(dòng),綜合分析了扇貝對(duì)熱刺激的抗逆機(jī)制,為探究夏季易發(fā)扇貝大規(guī)模死亡原因提供了理論依據(jù)。
[1] 張福綏, 楊紅生. 山東沿岸夏季櫛孔扇貝大規(guī)模死亡原因分析[J]. 海洋科學(xué), 1999(1): 44-47. Zhang F S, Yang H S. Analysis of mass mortality of farmingChlamysFarreriin summer in coastal areas of Shandong, China[J]. Marine Sciences, 1999(1): 44-47.
[2] 商志強(qiáng), 張益額, 孫召波. 櫛孔扇貝死亡原因分析及防治措施[J]. 中國(guó)水產(chǎn), 1998(12): 36-37. Shang Z Q, Zhang Y E, Sun Z B. Discussion on the cause of death and its preventionof scallopChlamysfarreri[J]. China Fisheries, 1998(12): 36-37.
[3] Chu F E. Defense mechanisms of marine bivalves[J]. Recent Advances in Marine Biotechnology, 2000, 5: 1-42.
[4] Xiao J, Ford S E, Yang H, et al. Studies on mass summer mortality of cultured zhikong scallops (ChlamysfarreriJones et Preston) in China[J]. Aquaculture, 2005, 250(3-4): 602-615.
[5] Harvell C D, Kim K, Burkholder J M, et al. Emerging marine diseases--climate links and anthropogenic factors[J]. Science, 1999, 285(5433): 1505-1510.
[6] 許友卿, 吳衛(wèi)君, 蔣偉明, 等. 溫度對(duì)貝類免疫系統(tǒng)的影響及其機(jī)理研究進(jìn)展[J]. 水產(chǎn)科學(xué), 2012(3): 176-180. Xu Y Q, Wu W J, Jiang W M, et al. Effect of temperature on immune system and the mechanism in shellfish[J]. Fisheries Science, 2012(3): 176-180.
[7] Song L, Wang L, Qiu L, et al. Bivalve immunity[C]//Soderhall K. Advances in Experimental Medicine and Biology. US: Spinger, 2010: 44-65.
[8] Lopez C, Carballal M J, Azevedo C, et al. Differential phagocytic ability of the circulating haemocyte types of the carpet shell clamRuditapesdecussatus(Mollusca: Bivalvia)[J]. Diseases of Aquatic Organisms, 1997, 30(3): 209-215.
[9] Mortensen S, Glette J. Phagocytic activity of scallop (Pectenmaximus) haemocytes maintained in vitro[J]. Fish & Shellfish Immunology, 1996, 6(2): 111-121.
[10] Tripp M R. Phagocytosis by hemocytes of the hard clam,Mercenariamercenaria[J]. Journal of Invertebrate Pathology, 1992, 59(3): 222-227.
[11] Mourton C, Boulo V, Chagot D, et al. Interactions betweenBonamiaostreae(Protozoa: Ascetospora) and hemocytes ofOstreaedulisandCrassostreagigas(Mollusca: Bivalvia): in vitro system establishment[J]. Journal of Invertebrate Pathology, 1992, 59(3): 235-240.
[12] 劉世良, 麥康森. 貝類免疫系統(tǒng)和機(jī)理的研究進(jìn)展[J]. 海洋學(xué)報(bào)(中文版), 2003(2): 95-105. Liu S L, Mai K S. The progress of studies on molluscs immunological system and mechanism-a review[J]. Acta Oceanologica Sinica, 2003(2): 95-105.
[13] Hégaret H, Wikfors G H, Soudant P. Flow cytometric analysis of haemocytes from eastern oysters,Crassostreavirginica, subjected to a sudden temperature elevation[J]. Journal of Experimental Marine Biology and Ecology, 2003, 293(2): 249-265.
[14] 張朝霞, 王軍, 丁少雄, 等. 貝類免疫學(xué)研究新進(jìn)展[J]. 廈門(mén)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2006(S2): 90-96. Zhang C X, Wang J, Ding S X, et al. Recent progresses of shellfish’s immunology[J]. Journal of Xiamen University(Natural Science), 2006(S2): 90-96.
[15] 張峰, 李光友. 貝類血細(xì)胞活性氧體內(nèi)防御作用的研究進(jìn)展[J]. 海洋科學(xué), 1999(2): 16-19. Zhang F, Li G Y. Progress on researches of reactive oxygen intermediates of molluscs hemocytes in internal defense[J]. Marine Science, 1999(2): 16-19.
[16] Cheng W, Hsiao I, Hsu C, et al. Change in water temperature on the immune response of Taiwan abaloneHaliotisdiversicolorsupertexta and its susceptibility to Vibrio parahaemolyticus[J]. Fish & Shellfish Immunology, 2004, 17(3): 235-243.
[17] Gagnaire B, Frouin H, Moreau K, et al. Effects of temperature and salinity on haemocyte activities of the Pacific oyster,Crassostreagigas(Thunberg)[J]. Fish & Shellfish Immunology, 2006, 20(4): 536-547.
[18] Monari M, Matozzo V, Foschi J, et al. Effects of high temperatures on functional responses of haemocytes in the clamChameleagallina[J]. Fish & Shellfish Immunology, 2007, 22(1-2): 98-114.
[19] Fisher W S, Auffret M, Balouet G. Response of European flat oyster (Ostreaedulis) hemocytes to acute salinity and temperature changes[J]. Aquaculture, 1987, 67(1): 179-190.
[20] Liu S, Jiang X, Hu X, et al. Effects of temperature on non-specific immune parameters in two scallop species:Argopectenirradians(Lamarck 1819) andChlamysfarreri(Jones & Preston 1904)[J]. Aquaculture Research, 2004, 35(7): 678-682.
[21] 洪一江, 余穎, 郭紅軍, 等. 池蝶蚌(Hyriopsisschlegeli)血淋巴的抗菌力、溶菌酶和酚氧化酶活力[J]. 南昌大學(xué)學(xué)報(bào)(理科版), 2008(1): 66-69. Hong Y J, Yu Y, Guo H J, et al. The Activities of the Antibacterial, bacteriolysis and phenoloxidase in the haemolymph ofHyriopsisschlegeli[J]. Journal of Nanchang University (Natural Science), 2008(1): 66-69.
[22] 王雷, 李光友, 毛遠(yuǎn)興. 中國(guó)對(duì)蝦血淋巴中的抗菌、溶菌活力與酚氧化酶活力的測(cè)定及其特性研究[J]. 海洋與湖沼, 1995(2): 179-185. Wang L, Li G Y, Mao Y X. Studies on the activities and characteristics of the antibacteria, bacteriolysis and phenoloxidase in the haemolymph ofPenaeuschinensis[J]. Oceanologia Et Limnologia Sinica, 1995(2): 179-185.
[23] Yu J H, Song J H, Choi M C, et al. Effects of water temperature change on immune function in surf clams,Mactraveneriformis(Bivalvia: Mactridae)[J]. Journal of Invertebrate Pathology, 2009, 102(1): 30-35.
[24] 冉茂良, 高環(huán), 尹杰, 等. 氧化應(yīng)激與DNA損傷[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2013, 25(10): 2238-2245. Ran M L, Gao H, Yin J, et al. Oxidative stress and DNA injury[J]. Acta Zoonutrimenta Sinica, 2013, 25(10): 2238-2245.
[25] 苗國(guó)英. 櫛孔扇貝(Chlamysfarreri)凋亡相關(guān)基因功能研究[D]. 青島: 中國(guó)科學(xué)院研究生院(海洋研究所), 2014. Miao G Y. The study of apoptosis-related genes in Zhikong scallopChlamysfarreri[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2014.
[26] 李敏, 林俊. 細(xì)胞凋亡途徑及其機(jī)制[J]. 國(guó)際婦產(chǎn)科學(xué)雜志, 2014(2): 103-107. Li M, Lin J. The apoptotic pathways and their mechanisms [J]. Journal of International Obstetrics and Gynecology, 2014(2): 103-107.
[27] Yang F, Xu B, Zhao S, et al. De novo sequencing and analysis of the termite mushroom (Termitomycesalbuminosus) transcriptome to discover putative genes involved in bioactive component biosynthesis[J]. Journal of Bioscience and Bioengineering, 2012, 114(2): 228-231.
[28] Craig E A, Schlesinger M J. The heat shock response [J]. CRC Critical Reviews in Biochemistry, 1985, 18(3): 239-280.
[29] Schr O Der H C, Batel R, Hassanein H, et al. Correlation between the level of the potential biomarker, heat-shock protein, and the occurrence of DNA damage in the dab, Limanda limanda: a field study in the North Sea and the English Channel[J]. Marine Environmental Research, 2000, 49(3): 201-215.
[30] 胡曉麗. 高溫脅迫和鰻弧菌感染對(duì)櫛孔扇貝基因表達(dá)影響的分析及相關(guān)基因的克隆與表達(dá)[D]. 青島: 中國(guó)海洋大學(xué), 2005. Hu X L. Effect of Heat Stress and vibrio anguillarum challenge on gene expression of scallop (Chlamysfarreri) and cloning and expression of related genes[D]. Qingdao: Ocean University of China, 2005.
[31] 杜美榮, 劉毅, 蔣增杰, 等. 底播蝦夷扇貝數(shù)量性狀的相關(guān)性和通徑分析[J]. 水產(chǎn)科學(xué), 2015(1): 8-13. Du M R, Liu Y, Jiang Z J, et al. Correlation and path analysis of quantitative traits in bottom-cultured yesso scallopPatinopectenyessoensis[J]. Fisheries Science, 2015(1): 8-13.
[32] 任加云, 李樹(shù)峰. 多氯聯(lián)苯(PCB_(1254))對(duì)櫛孔扇貝消化盲囊和鰓絲EROD、GST酶活力的影響[J]. 中國(guó)水產(chǎn)科學(xué), 2008(2): 342-346. Ren J Y, Li S F. Effects of polychlorinated biphenyls 1254 (PCB1254) on two enzyme activity of biotransformation in digestive gland and gills of scallopChlamysferrari[J]. Journal of Fishery Sciences of China, 2008(2): 342-346.
[33] 王俊, 姜祖輝, 唐啟升. 櫛孔扇貝耗氧率和排氨率的研究[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2002, 13(9): 1157-1160. Wang J, Jiang Z H, Tang Q S, Oxygen consumption and ammonia-N excretion rates ofChlamysfarreri[J]. Chinese Journal of Applied Ecology, 2002, 13(9): 1157-1160.
[34] 徐英江, 田秀慧, 任傳博, 等. 氨基脲在櫛孔扇貝體內(nèi)的生物富集與消除規(guī)律[J]. 水產(chǎn)學(xué)報(bào), 2013(3): 443-449. Xu Y J, Tian X H, Ren C B, et al. Research on accumulation and elimination of semicarbazide inChlamysfarreri[J]. Journal of Fisheries of China, 2013(3): 443-449.
[35] 張冬冬, 邢婧, 戰(zhàn)文斌. 溫度驟變對(duì)櫛孔扇貝全血細(xì)胞和顆粒血細(xì)胞數(shù)量的影響[J]. 中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 44(5): 40-45. Zhang D D Xing J, Zhan W B. Influence of temperature shock on the numerical variation of scallop hemocytes and granulocytes[J]. Periodical of Ocean University of China, 2014, 44(5): 40-45.
[36] 梁玉波, 張福綏. 溫度、鹽度對(duì)櫛孔扇貝(Chlamysfarreri)胚胎和幼蟲(chóng)的影響[J]. 海洋與湖沼, 2008(4): 334-340. Liang Y B, Zhang F S. Effects of temperature/salinity on development of embryos and larve of scallopChlamysfarreri[J]. Oceanologia Et Limnologia Sinica, 2008(4): 334-340.
[37] 馬元慶, 張秀珍, 孫玉增, 等. 櫛孔扇貝對(duì)重金屬的富集效應(yīng)研究[J]. 水產(chǎn)學(xué)報(bào), 2010(10): 1572-1578. Ma Y Q, Zhang X Z, Sun Y Z, et al. The research of heavy metal enrichment inChlamysfarreri[J]. Journal of Fisheries of China, 2010(10): 1572-1578.
[38] 王彩理, 王秀華, 王東升, 等. 扇貝的產(chǎn)業(yè)化及可持續(xù)發(fā)展概述[J]. 天津農(nóng)業(yè)科學(xué), 2016(2): 48-52. Wang C L, Wang X H Wang D S, et al. Sustainable development of scallop industrial integration[J]. Tianjin Agricultural Sciences, 2016(2): 48-52.
[39] 張明亮, 鄒健, 方建光, 等. 海洋酸化對(duì)櫛孔扇貝鈣化、呼吸以及能量代謝的影響[J]. 漁業(yè)科學(xué)進(jìn)展, 2011(4): 48-54. Zhang M L, Zou J, Fang J G, et al. Impacts of marine acidification on calcification, respiration and energy metabolism of Zhikong scallopChlamysfarreri[J]. Marine Fisheries Research, 2011(4): 48-54.
[40] 張明亮, 鄒健, 毛玉澤, 等. 養(yǎng)殖櫛孔扇貝對(duì)桑溝灣碳循環(huán)的貢獻(xiàn)[J]. 漁業(yè)現(xiàn)代化, 2011(4): 13-16. Zhang M L, Zou J, Mao Y Z, et al. Contribution of culturing scallop to carbon cycle in Sanggou Bay [J]. Fishery Modernization, 2011(4): 13-16.
[41] 栗志民, 錢佳慧, 勞翠英, 等. 溫度和鹽度對(duì)華貴櫛孔扇貝免疫相關(guān)酶的聯(lián)合效應(yīng)[J]. 海洋科學(xué)進(jìn)展, 2015(2): 227-238. Li Z M, Qian J H, Lao C Y, et al. Synergistic effects of temperature and salinity on the activities of immune-related enzymes ofChlamysnobilis(Reeve)[J]. Advances in Marine Science, 2015(2): 227-238.
[42] 連姍姍, 李雪, 邢強(qiáng), 等. 繁殖和高溫對(duì)櫛孔扇貝抗氧化能力的影響[J]. 中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 45(10): 18-24. Lian S S, Li X, Xing Q, et al. Effects of reproduction and heat stress on the antioxidant ability of zhikong scallop (Chlamysfarreri)[J]. Periodical of Ocean University of China, 2015, 45(10): 18-24.
[43] 牟海津, 江曉路. 免疫多糖對(duì)櫛孔扇貝酸性磷酸酶、堿性磷酸酶和超氧化物歧化酶活性的影響[J]. 青島海洋大學(xué)學(xué)報(bào): 自然科學(xué)版, 1999, 29(3): 463-468. Mou H J, Jiang X L. Effects of immunopolysaccharide on activities of acid phosphatase akaline phosphatase and superoxide dismutase inChlamysfarreri[J]. Periodical of Ocean University of China, 1999, 29(3): 463-468.
[44] 錢佳慧, 栗志民, 申玉春, 等. 溫度和鹽度對(duì)華貴櫛孔扇貝抗氧化酶活性的聯(lián)合效應(yīng)研究[J]. 南方水產(chǎn)科學(xué), 2015(6): 49-57. Qian J H, Li Z M, Shen Y C, et al. Synergistic effect of temperature and salinity on antioxidant enzymes activities ofChlamysnobilis[J]. South China Fisheries Science, 2015(6): 49-57.
[45] 徐翊軒, 戰(zhàn)文斌, 邢婧. 溫度與脂多糖對(duì)櫛孔扇貝血細(xì)胞吞噬活力的影響[J]. 中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 45(6): 31-38. Xu Y X, Zhan W B, Xing J. Effect of water temperature on phagocytic activitiy of the haemocytes of scallop (Chlamysfarreri) after stimulated by lipopolysaccharide[J]. Periodical of Ocean University of China, 2015, 45(6): 31-38.
[46] 張維翥, 吳信忠, 李登峰, 等. 櫛孔扇貝血液細(xì)胞的免疫功能[J]. 動(dòng)物學(xué)報(bào), 2005, 51(4): 669-677. Zhang W Z, Wu X Z, Li D F, et al. Immunological functions of blood cells in the scallopChlamysfarreri[J]. Acta Zoologica Sinica, 2005, 51(4): 669-677.
[47] 李紅蕾, 宋林生, 劉保忠, 等. 櫛孔扇貝不同種群的遺傳結(jié)構(gòu)及其雜種優(yōu)勢(shì)[J]. 海洋與湖沼, 2002(2): 188-195. Li H L, Song L S, Liu B Z, et al. Studies on the genetic structure of different population ofChlamysfarreriand their hybrids' heterosis[J]. Oceanologia Et Limnologia Sinica, 2002(2): 188-195.
[48] 宋林生, 李俊強(qiáng), 李紅蕾, 等. 用 RAPD 技術(shù)對(duì)我國(guó)櫛孔扇貝野生種群與養(yǎng)殖群體的遺傳結(jié)構(gòu)及其遺傳分化的研究[J]. 高技術(shù)通訊, 2002, 12(7): 83-86. Song L S, Li J Q, Li H L, et al. The genetic structure and genetic differentiation of the natural population and the hatchery stock ofChlamysfarrerirevealed by RAPD analysis[J]. Chinese High Technology Letters, 2002, 12(7): 83-86.
[49] 程潔, 張玲玲, 黃曉婷, 等. 櫛孔扇貝 Fosmid 文庫(kù)的構(gòu)建及基因組結(jié)構(gòu)特征分析[J]. 中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 2008, 38(1): 78-88. Cheng J, Zhang L L, Huang X T, et al. Fosmid library construction and genomic structure analysis in zhikong scallop (Chlamysfarreri)[J]. Periodical of Ocean University of China, 2008, 38(1): 78-88.
[50] 劉亞軍, 喻子牛, 姜艷艷, 等. 櫛孔扇貝 16S rRNA 基因片段序列的多態(tài)性研究[J]. 海洋與湖沼, 2002, 33(5): 477-483. Liu Y J, Yu Z N, Jiang Y Y, et al. Sequence polymorphism of mitochondrial 16S rRNA gene fragment in scallopChlamysfarreri[J]. Oceanologia Et Limnologia Sinica, 2002, 33(5): 477-483.
[51] 苗國(guó)英, 亓海剛, 李莉, 等. 櫛孔扇貝 BI-1 基因的克隆與表達(dá)分析[J]. 海洋與湖沼, 2014, 45(6): 1251-1257. Miao G Y, Qi H G, Li L, et al. Cloning and expression of Bax inhibitor-1 gene of zhikong scallopChlamysfarreri[J]. Oceanologia Et Limnologia Sinica, 2014, 45(6): 1251-1257.
[52] 潘魯青, 劉娜, 王靜. 櫛孔扇貝在B[a]P脅迫下生物標(biāo)志物篩選的研究[J]. 水生生物學(xué)報(bào), 2012, 36(2): 299-306. Pan L Q, Liu N, Wang J. Study of biomarkers selection of the ScallopChlamysfarreriexposed to B[a]P[J]. Acta Hydrobiologica Sinica, 2012, 36(2): 299-306.
[53] 張秀英, 張曉軍, 趙翠, 等. 櫛孔扇貝BES-SSR的開(kāi)發(fā)及遺傳多樣性分析[J]. 水產(chǎn)學(xué)報(bào), 2012(6): 815-824. Zhang X Y, Zhang X J, Zhao C, et al. The development of BAC-end sequence-based microsatellite markers and analysis on population genetic diversity in Zhikong scallop (Chlamysfarreri)[J]. Journal of Fisheries of China, 2012(6): 815-824.
[54] Zhang H, Zhou Z, Yue F, et al. The modulation of catecholamines on immune response of scallopChlamysfarreriunder heat stress[J]. General and Comparative Endocrinology, 2014, 195: 116-124.
[55] Sun Z, Yang C, Wang L, et al. The protein expression profile in hepatopancreas of scallopChlamysfarreriunder heat stress and Vibrio anguillarum challenge[J]. Fish & Shellfish Immunology, 2014, 36(1): 252-260.
[56] Knight J A. Review: Free radicals, antioxidants, and the immune system[J]. Annals of Clinical and Laboratory Science, 2000, 30(2): 145-158.
[57] Haugland R P. Handbook of Fluorescent Probes and Research Products[M]. [s.1]: Molecular Probes, 2002.
[58] 石芳芳, 李成華, 宋林生, 等. 用流式細(xì)胞儀測(cè)定扇貝血細(xì)胞吞噬活性[J]. 生物技術(shù)通報(bào), 2006(S1): 430-433. Shi F F, Li C H, Song L S, et al. Application of flow cytometry in the measurement of phagocytic activity in scallop haemocytes[J]. Biotechnology Bulletin, 2006(S1): 430-433.
[59] Delaporte M. Effect of a mono-specific algal diet on immune functions in two bivalve species -CrassostreagigasandRuditapesphilippinarum[J]. Journal of Experimental Biology, 2003, 206(17): 3053-3064.
[60] Singh N P, Mc Coy M T, Tice R R, et al. A Simple technique for quantitation of low levels of DNA damage in individual cells[J]. Experimental Cell Research, 1988, 175(1): 184-191.
[61] 徐謙, 楊進(jìn)波, 蔣長(zhǎng)征, 等. 熱休克蛋白70的表達(dá)在苯并[a]芘致DNA損傷中的作用[J]. 中華勞動(dòng)衛(wèi)生職業(yè)病雜志, 2004(2): 20-23. Xu Q, Yang J B, Jiang C Z, et al. Role of heat shock protein 70 expression in DNA damage induced by benzo(a)pyrene[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2004(2): 20-23.
[62] Spector D L, Goldman R D, Leinwand L A. Cell: A Laboratory Manual. Culture and Biochemical Analysis of Cells, vol. 1[Z]. New York: Cold Spring Harbor Laboratory Press, 1998.
[63] Gong X, Pan L, Miao J, et al. Application of SSH and quantitative real time PCR to construction of gene expression profiles from scallopChlamysfarreriin response to exposure to tetrabromobisphenol A[J]. Environmental Toxicology and Pharmacology, 2012, 34(3): 911-918.
[64] Gao Q, Song L, Ni D, et al. cDNA cloning and mRNA expression of heat shock protein 90 gene in the haemocytes of Zhikong scallopChlamysfarreri[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2007, 147(4): 704-715.
[65] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod[J]. Methods, 2001, 25(4): 402-408.
[66] 曹玉偉. 利用彗星實(shí)驗(yàn)研究硝基苯對(duì)煙草基因組DNA的損傷[D]. 哈爾濱: 哈爾濱師范大學(xué), 2009. Cao Y W. Toxicological Effects of Nitrobenzene on Tobacco[D]. Harbin: Harbin Normal University, 2009.
[67] 冼健安, 茍妮娜, 陳曉丹, 等. 流式細(xì)胞術(shù)檢測(cè)蝦類血細(xì)胞活性氧含量方法的建立[J]. 海洋科學(xué), 2012(2): 29-33. Xian J A, Gou N N, Chen X D, et al. Measurement of reactive oxygen species (ROS) production in shrimp haemocyte by flow cytometry[J]. Marine Sciences, 2012(2): 29-33.
[68] Le Moullac G, Haffner P. Environmental factors affecting immune responses in Crustacea[J]. Aquaculture, 2000, 191(1-3): 121-131.
[69] 馬淇, 劉壘, 陳佺. 活性氧、線粒體通透性轉(zhuǎn)換與細(xì)胞凋亡[J]. 生物物理學(xué)報(bào), 2012(7): 523-536. Ma Q, Liu L, Chen Q. Reactive oxygen species, mitochondrial permeability transition and apoptosis[J]Acta Biophysica Sinica, 2012(7): 523-536.
[70] Fisher W S, Chintala M M, Moline M A. Annual variation of estuarine and oceanic oysterCrassostreavirginicaGmelin hemocyte capacity[J]. Journal of Experimental Marine Biology and Ecology, 1989, 127(2): 105-120.
[71] Malagoli D, Casarini L, Sacchi S, et al. Stress and immune response in the musselMytilusgalloprovincialis[J]. Fish & Shellfish Immunology, 2007, 23(1): 171-177.
[72] Monari C, Bistoni F, Vecchiarelli A. Glucuronoxylomannan exhibits potent immunosuppressive properties[J]. Fems Yeast Research, 2006, 6(4):537-542.
[73] 黃勇超, 劉志昕. 鮑非特異性免疫研究進(jìn)展[J]. 水產(chǎn)科學(xué), 2008, 27(1): 51-54. Huang Y C, Liu Z X. Progress on the Nonspecific immunity in abalone[J]. Fisheries Science, 2008, 27(1): 51-54.
[74] Ottaviani E, Aggazzotti G, Tricoli S. Kinetics of bacterial clearance and selected enzyme activities in serum and haemocytes of the freshwater snailPlanorbariuscorneus(L. )(Gastropoda, Pulmonata) during the primary and secondary response to Staphylococcus aureus[J]. Comparative Biochemistry and Physiology Part A: Physiology, 1986, 85(1): 91-95.
[75] Dang V T, Speck P, Benkendorff K. Influence of elevated temperatures on the immune response of abalone,Haliotisrubra[J]. Fish & Shellfish Immunology, 2012, 32(5): 732-740.
[76] 李曉英, 董志國(guó), 薛洋, 等. 溫度驟升和窒息條件對(duì)青蛤酸性磷酸酶和溶菌酶的影響[J]. 水產(chǎn)科學(xué), 2009(6): 321-324. Li X Y, Dong Z G, Xue Y, et al. The impact of sharp increase in water temperature and hypoxia on activities of acid phosphatase (ACP) and lysozyme (LSZ) in clamCyclinasinensis[J]. Fisheries Science, 2009(6): 321-324.
[77] 時(shí)少坤. 環(huán)境因子對(duì)貝類幾種免疫因子影響的研究[D]. 上海: 上海海洋大學(xué), 2013. Shi S K. Studies on the immune parameters of mollusc stimulated by environmental factors[D]. Shanghai: Shanghai Ocean University, 2013.
[78] 劉志鴻. 海洋雙殼貝類的免疫特性及調(diào)節(jié)[D]. 青島: 中國(guó)海洋大學(xué), 2004. Liu Z H. Immune Characteristics and Regulation of Marine Bivalves[D]. Qingdao: Ocean University of China, 2004.
[79] 劉益麗, 鄧霄禹, 江明鋒. 溶菌酶抑菌活性及檢測(cè)方法研究進(jìn)展[J]. 中國(guó)畜牧獸醫(yī), 2013(8): 189-194. Liu Y L, Deng X Y, Jiang M F. Research progress on antibacterial activity and detection method of lysozyme[J]. China Animal Husbandry & Veterinary Medicine, 2013(8): 189-194.
[80] 林愛(ài)軍, 張旭紅, 朱永官. 鎘對(duì)小麥葉片DNA傷害的彗星實(shí)驗(yàn)研究[J]. 環(huán)境科學(xué)學(xué)報(bào), 2005(3): 329-333. Lin A J, Zhang X H, Zhu Y G. The comet assay detects Cd-induced DNA damages in wheat leaves[J]. Acta Scientiae Circumstantiae, 2005(3): 329-333.
[81] Valverde M, Rojas E. Environmental and occupational biomonitoring using the Comet assay[J]. Mutation Research/Reviews in Mutation Research, 2009, 681(1): 93-109.
[82] Konca K, Lankoff A, Banasik A, et al. A cross-platform public domain PC image-analysis program for the comet assay[J]. Mutation Research, 2003, 534(1-2): 15-20.
[83] 羅明志, 齊浩, 陳文芳, 等. 彗星實(shí)驗(yàn)檢測(cè)紫外線誘導(dǎo)的K562細(xì)胞DNA損傷[J]. 癌變. 畸變. 突變, 2006(5): 400-403. Luo M Z, Qi H, Chen W F, et al. DNA damage induced by UV in K562 cells measured by comet assay[J]. Carcinogenesis, Teratogenesis, and Mutagenesis, 2006(5): 400-403.
[84] Georgopoulos C, Welch W J. Role of the major heat shock proteins as molecular chaperones[J]. Annual Review of Cell Biology, 1993, 9(1): 601-634.
[85] Yang X D, Feige U. Heat shock proteins in autoimmune disease. From causative antigen to specific therapy?[J]. Experientia, 1992, 48(7): 650-656.
[86] Robert J. Evolution of heat shock protein and immunity[J]. Developmental & Comparative Immunology, 2003, 27(6-7): 449-464.
[87] Morimoto R I. Cells in stress: Transcriptional activation of heat shock genes[J]. Science, New Series, 1993, 259(5100): 1409-1410.
[88] Pandey P, Saleh A, Nakazawa A, et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90[J]. The EMBO Journal, 2000, 19(16): 4310-4322.
[89] Mayer M P, Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism[J]. Cellular and Molecular Life Sciences, 2005, 62(6): 670-684.
[90] 陳慕雁. 櫛孔扇貝Chlamysfarreri生態(tài)免疫機(jī)制的基礎(chǔ)研究[D]. 青島: 中國(guó)科學(xué)院研究生院(海洋研究所), 2007. Chen M Y. Mechanism of Ecological Immunity inChlamysfarreri[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2007.
[91] Morimoto R I, Tissieres A, Georgopoulos C. 1 progress and perspectives on the biology of heat shock proteins and molecular chaperones[J]. Cold Spring Harbor Monograph Archive, 1994, 26: 1-30.
[92] Lindquist S, Craig E A. The heat-shock proteins[J]. Annual Review of Genetics, 1988, 22(1): 631-677.
[93] 郝振林, 劉京哲, 唐雪嬌, 等. 高溫下 3 種殼色蝦夷扇貝存活率, 代謝率, 免疫酶活力及 HSP70 表達(dá)的比較研究[J]. 海洋科學(xué), 2015, 39(11): 108-115. Hao Z L, Liu J Z, Tang X J, et al. A comparative study of survival, metabolism, immune indi-cators and HSP70 expression in three kinds of shell colors Japanese scallopMizuhopectenyessoensisunder high tem-perature stress[J]. Marine Sciences, 2015, 39(11): 108-115.
[94] 曲凌云, 相建海, 孫修勤, 等. 溫度刺激下櫛孔扇貝不同組織熱休克蛋白HSP70的表達(dá)研究[J]. 高技術(shù)通訊, 2005, 15(5): 96-100. Qu L Y, Xiang J H, Sun X Q, et al. Expression analysis of HSP70 in various tissues ofChlamysfarreriunder thermal stress[J]. Chinese High Technology Letters, 2005, 15(5): 96-100.
[95] Yang C, Wang L, Siva V S, et al. A novel cold-regulated cold shock domain containing protein from scallopChlamysfarreriwith nucleic acid-binding activity[J]. PLoS One, 2012, 7(2): 32012.
[96] 謝彥海. 褶紋冠蚌熱休克蛋白基因克隆與表達(dá)及2種淡水蚌的血細(xì)胞分析[D]. 南昌: 南昌大學(xué), 2011. Xie Y H. Cloning and expression analysis of heat shock proteins gene fromCristariaplicataand analysis hemocytes of two types of fresh water mussels[D]. Nanchang: Nanchang University, 2011.
[97] Fehrenbach E, Veith R, Schmid M, et al. Inverse response of leukocyte heat shock proteins and DNA damage to exercise and heat. [J]. Free Radical Research, 2003, 37(9): 975-982.
[98] Samali A, Cotter T G. Heat shock proteins increase resistance to apoptosis. [J]. Experimental Cell Research, 1996, 223(1): 163-170.
[99] Yahara I, Minami Y, Miyata Y. The 90kDa stress protein, Hsp90, is a novel molecular chaperone. [J]. Annals of the New York Academy of Sciences, 1998, 851(1): 54-60.
[100] Ishiyama T, Koike M, Akimoto Y, et al. Heat shock-enhanced T cell apoptosis with heat shock protein 70 on T cell surface in multicentric Castleman's disease[J]. Clinical and Experimental Immunology, 1996, 106(2): 351-356.
[101] Zhang G, Fang X, Guo X, et al. The oyster genome reveals stress adaptation and complexity of shell formation[J]. Nature, 2012, 490(7418): 49-54.
責(zé)任編輯 朱寶象
Effect of Thermal Stimulus on Immune Function and Heat Shock Protein Expression of ScallopChlamysfarreri
LIUTian-Yu1,WANGQing2, 3,CHENMu-Yan1
(1.TheKeyLaboratoryofMariculture(OceanUniversityofChina),MinistryEducation,Qingdao266003,China; 2.TheKeyLaboratoryofCoastalZoneEnvironmentProcessesandEcologicalRemediation,YantaiInstituteofCoastalZoneResearch,ChineseAcademyofSciences,Yantai264003,China; 3.MupingCoastalEnvironmentResearchStation,YantaiInstituteofCoastalZoneResearch,ChineseAcademyofSciences,Yantai264003,China)
The objective of this study was to evaluate the effect of thermal stimulus on the scallop,Chlamysfarreri, which was generally recognized as a temperature sensitive bivalve species. Immune response, DNA damage, apoptosis and transcription of heat shock protein (HSP70 and HSP90) genes in hemocytes were evaluated over a short period of thermal stimulus. The hemocyte of scallops was obtained on 0, 1, 2, 4, 8 h after being treated at 28 ℃. By using flow cytometry, reactive oxygen species (ROS) production and phagocytosis activity of hemocytes were estimated. The results demonstrated that both ROS and phagocytosis activity reached the highest level in 4 h and reduced markedly by 8 h. The stress also significantly decreased antibacterial and bacteriolytic activities. By contrast, the DNA damage (mainly DNA breakages) level in hemocytes as was detected by the alkaline comet assay increased following high-temperature exposure, and hemocyte apoptosis was observed under fluorescence microscope. Significant increases in the transcription of HSP70 and HSP90 genes were also detected in hemocytes, while the transcription of HSP70 grew faster than HSP90 did and reached to a higher level. This study demonstrated that immune response, DNA damage level and apoptosis of hemocytes in the scallop were strongly affected within several hours, and the transcripts of HSPs genes were strengthe-ned so as to protect the cells and tissues from injury whenC.farrerisubjected to short-term high temperature stressing.
thermal stimulus;Chlamysfarreri;hemocyte; immune response; apoptosis; DNA damage; HSP70; HSP90
山東省自然科學(xué)基金項(xiàng)目(ZR2012CQ016);中國(guó)科學(xué)院海洋生態(tài)與環(huán)境科學(xué)重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金項(xiàng)目(KLMEES201301);中國(guó)科學(xué)院青年創(chuàng)新促進(jìn)會(huì)項(xiàng)目(2016196)資助 Supported by Natural Science Foundation of Shandong Province, China (ZR2012CQ016);Open Fund of Key Laboratory of Marine Ecology and Environmental Science,Institute of Oceanology, Chinese Academy of Sciences (KLMEES201301);Youth Innovation Promotion Association of CAS (2016196)
2016-10-26;
2017-01-19
劉甜雨(1992-),女,碩士生。E-mail:liutianyu_92@163.com
** 通訊作者:E-mail:qingwang@yic.ac.cn
S917.4
A
1672-5174(2017)08-031-13
10.16441/j.cnki.hdxb.20160366
劉甜雨, 王清, 陳慕雁. 熱刺激對(duì)櫛孔扇貝免疫功能和熱休克蛋白表達(dá)的影響[J]. 中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 47(8): 31-43.
LIU Tian-Yu, WANG Qing, CHEN Mu-Yan. Effect of thermal stimulus on immune function and heat shock protein expression of scallopChlamysfarreri[J]. Periodical of Ocean University of China, 2017, 47(8): 31-43.