王 炳 蔣林樹 劉建新
(1.奶牛營(yíng)養(yǎng)學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京農(nóng)學(xué)院動(dòng)物科學(xué)技術(shù)學(xué)院,北京102206;2.浙江大學(xué)動(dòng)物科學(xué)學(xué)院奶業(yè)科學(xué)研究所,杭州310058)
稻草或玉米秸稈替代苜蓿對(duì)奶牛氮代謝、血清生理生化指標(biāo)及肝臟和腎臟組織形態(tài)變化的影響
王 炳1,2蔣林樹1*劉建新2*
(1.奶牛營(yíng)養(yǎng)學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京農(nóng)學(xué)院動(dòng)物科學(xué)技術(shù)學(xué)院,北京102206;2.浙江大學(xué)動(dòng)物科學(xué)學(xué)院奶業(yè)科學(xué)研究所,杭州310058)
本試驗(yàn)旨在研究稻草或玉米秸稈替代苜蓿對(duì)奶牛氮代謝、血清生理生化指標(biāo)及肝臟和腎臟組織形態(tài)變化的影響。選擇45頭泌乳中期的經(jīng)產(chǎn)健康荷斯坦奶牛,隨機(jī)分成3組,每組15頭牛。各組飼喂含不同粗飼料的飼糧,分別為苜蓿組(23%苜蓿干草+7%羊草,AH組)、玉米秸稈組(30%玉米秸稈,CS組)和稻草組(30%稻草,RS組),飼糧精粗比均為55∶45。試驗(yàn)期12周。結(jié)果表明:CS組和RS組奶牛的糞氮排泄量顯著高于AH組(P<0.05),RS組奶牛的尿氮排泄量顯著高于AH組和CS組(P<0.05)。RS組奶牛的血清尿素氮和肌酸酐含量顯著高于AH組(P<0.05)。RS組奶牛的血清總膽固醇含量顯著高于AH組和CS組(P<0.05)。CS組奶牛的血清谷丙轉(zhuǎn)氨酶活性顯著高于AH組(P<0.05),而血清谷草轉(zhuǎn)氨酶活性顯著高于AH組和RS組(P<0.05)。各組奶牛的肝臟、腎臟組織切片結(jié)構(gòu)清晰,未見(jiàn)明顯異常。由此可見(jiàn),飼喂玉米秸稈或稻草粗飼料的奶牛糞氮、尿氮排泄量的增加導(dǎo)致奶牛氮的利用效率降低。各組奶牛肝臟和腎臟的組織形態(tài)無(wú)顯著變化,但飼喂玉米秸稈或稻草飼糧可導(dǎo)致奶牛血清中反映肝臟、腎臟健康功能的指標(biāo)升高。
奶牛;氮代謝;肝臟;血清
近10年來(lái),我國(guó)奶業(yè)得到了突飛猛進(jìn)的發(fā)展,特別在奶牛單產(chǎn)水平上有了很大的提高,苜蓿作為優(yōu)質(zhì)牧草的應(yīng)用功不可沒(méi)。但是,我國(guó)苜蓿草資源量有限,目前依賴于大量進(jìn)口,從2008年到2015年,我國(guó)對(duì)苜蓿草的進(jìn)口量增長(zhǎng)加劇[1],到2015年,苜蓿草的年進(jìn)口量達(dá)近121萬(wàn)t,這儼然已成為制約我國(guó)奶業(yè)可持續(xù)發(fā)展的因素之一。與此同時(shí),我國(guó)存在豐富的農(nóng)作物秸稈類資源,年產(chǎn)量有8億t左右[2-3],其中稻草、玉米秸稈和小麥秸稈是我國(guó)的主要作物秸稈類型,每年有2億t左右的玉米秸稈以及相似產(chǎn)量的稻草產(chǎn)出[2-4],因此,如何將這些秸稈作為奶牛粗飼料資源進(jìn)行有效利用得到越來(lái)越多的關(guān)注。然而,由于農(nóng)作物秸稈本身營(yíng)養(yǎng)水平特別是代謝能及粗蛋白質(zhì)(CP)、微量元素、維生素等含量都較低,限制了其在奶牛上的應(yīng)用[5-6]。前期研究報(bào)道指出,稻草或玉米秸稈替代苜蓿飼喂奶牛,奶產(chǎn)量及乳蛋白合成明顯降低[7]。其主要原因是由于秸稈飼糧的營(yíng)養(yǎng)物質(zhì)不足,特別是能量缺乏,導(dǎo)致奶牛機(jī)體代謝出現(xiàn)了一定抑制[7]。并且在氨基酸代謝與利用研究中發(fā)現(xiàn),秸稈類特別是稻草飼喂奶牛后,消化道氨基酸流量降低,導(dǎo)致乳腺攝取游離氨基酸含量的降低,并進(jìn)而導(dǎo)致牛奶中尿素氮(UN)含量升高[7-8]。并且,由于秸稈缺乏能量,導(dǎo)致奶牛葡萄糖(GLU)代謝失衡,進(jìn)而制約了乳糖的合成[9]。但是關(guān)于飼喂秸稈對(duì)奶牛氮代謝以及動(dòng)物機(jī)體健康影響的系統(tǒng)性研究到目前為止還鮮有報(bào)道。因此,本試驗(yàn)探討玉米秸稈或稻草替代苜蓿飼喂奶牛對(duì)其氮代謝的影響來(lái)揭示奶牛乳蛋白合成較低的原因,并且通過(guò)研究對(duì)血清生理生化指標(biāo)以及肝臟和腎臟組織形態(tài)的影響,旨在探討稻草或玉米秸稈飼喂奶牛對(duì)奶牛機(jī)體營(yíng)養(yǎng)物質(zhì)代謝以及健康的影響。
1.1 試驗(yàn)動(dòng)物、飼糧及試驗(yàn)設(shè)計(jì)
試驗(yàn)選取45頭經(jīng)產(chǎn)荷斯坦奶牛,平均體重為
(607±56) kg,泌乳天數(shù)為(164±25) d,奶產(chǎn)量為(29.7±4.7) kg/d,根據(jù)奶產(chǎn)量、泌乳天數(shù)隨機(jī)分為3組,每組15頭牛。飼糧精粗比為55∶45(干物質(zhì)基礎(chǔ)),等氮但不等能,含有相同的精料和玉米青貯,主要區(qū)別為各組分別飼喂不同的粗飼料:苜蓿組(23%苜蓿干草+7%羊草,AH組)、玉米秸稈組(30%玉米秸稈,CS組)和稻草組(30%稻草,RS組)。飼糧以全混合日糧(TMR)飼喂,用全混合日糧攪拌機(jī)(9SJW-300)制作,試驗(yàn)飼糧組成及營(yíng)養(yǎng)水平見(jiàn)表1。適應(yīng)期為2周,試驗(yàn)期12周。奶牛栓系式飼養(yǎng)在通風(fēng)條件良好的牛舍中,日飼喂和擠奶3次,分別為06:30、14:00和20:00。管道式擠奶,自由飲水。試驗(yàn)動(dòng)物得到浙江大學(xué)動(dòng)物保護(hù)委員會(huì)批準(zhǔn),試驗(yàn)過(guò)程遵循學(xué)校規(guī)章制度。
表1 試驗(yàn)飼糧組成及營(yíng)養(yǎng)水平(干物質(zhì)基礎(chǔ))Table 1 Composition and nutrient levels of experimental diets (DM basis) %
1)每千克預(yù)混料含One kg of premix contained the following: 沸石 zeolite powder 174 g,酵母 yeast 1.25 g,吸附劑 mold adsorbent 25 g,KCl 21.44 g,MgO 41.25 g,NaCl 150 g,NaHCO3187.5 g,Ca 84 g,P 15 g,VA 125 000 IU,VD350 000 IU,VE 937.5 IU,Zn 1 750 mg,Se 17.5 mg,I 28.75 mg,F(xiàn)e 375 mg,Co 15 mg,Mn 556.5 mg,Cu 343.75 mg。2)非纖維碳水化合物(%)=100-中性洗滌纖維(%)-粗蛋白質(zhì)(%)-粗脂肪-粗灰分(%)。Non-fiber carbohydrate (%)=100-NDF(%)-CP(%)-EE(%)-Ash(%).3)根據(jù)中國(guó)農(nóng)業(yè)部標(biāo)準(zhǔn)方法計(jì)算。Calculated based on Ministry of Agriculture of P. R. China recommendations.
1.2 采樣及分析
在12周采樣期中,選取第6周和第10周連續(xù)3 d進(jìn)行飼料樣和奶樣采集,并進(jìn)行采食量和奶產(chǎn)量記錄。奶樣按照早、中、晚4∶3∶3的比例取,確保每天50 mL左右的取樣量。奶樣添加萬(wàn)分之六重鉻酸鉀用作防腐劑,4 ℃保存,利用紅外線法來(lái)測(cè)定牛奶中的乳蛋白和奶氮含量[10]。
在采樣期的第6周和第10周選取1 d,早、中、晚飼喂前采集糞樣(300 g)和尿樣(15 mL),所有飼料樣品及糞樣在65 ℃烘干,然后先通過(guò)2 mm篩子,再通過(guò)1 mm篩子粉碎,4 ℃保存。收集的尿樣與0.036 mol/L的H2SO4按1∶4比例混合后置于-20 ℃保存。對(duì)飼糧的檢測(cè)按AOAC(1990)[11]方法測(cè)定試驗(yàn)飼糧干物質(zhì)(105 ℃ 烘5 h)、粗灰分(碳化后放置于馬弗爐550 ℃灰化2 h)、粗蛋白質(zhì)(凱氏定氮法,福斯凱氏定氮儀Kjeltec 8400,丹麥)、酸性洗滌纖維(ADF)和中性洗滌纖維(NDF)(范式纖維法,ANKOM A2000i全自動(dòng)纖維儀,美國(guó))含量。糞和尿中總氮的含量也參考AOAC(1990)[11]中凱氏定氮法進(jìn)行測(cè)定。
利用飼糧中不可降解NDF(indigestible NDF)作為內(nèi)源標(biāo)記物來(lái)估測(cè)奶牛日排糞量[12]。將過(guò)1 mm篩的飼糧或糞樣稱取約3 g于25 μm的透析袋,放置于瘤胃中12 d后測(cè)定殘留量,據(jù)此計(jì)算不可降解NDF。
排糞量=不可降解NDF攝入量/
糞中不可降解NDF含量。
利用尿中肌酸酐含量來(lái)估測(cè)排尿量:
排尿量(L/d)=體重×29/肌酸酐含量(mg/L)[7]。
在采樣期的第3、6、9、12周第5天晨飼后3 h對(duì)奶牛進(jìn)行頸靜脈采血,利用10 mL真空促凝采血管采集。3 000×g離心15 min制備血清,利用全自動(dòng)血液生化分析儀測(cè)定相關(guān)血清生理生化指標(biāo),試劑盒購(gòu)自南京建成生物工程研究所。血液生理生化指標(biāo)主要有:葡萄糖(比色法)、總蛋白(TP,比色法)、尿素氮(脲酶法)、甘油三酯(TG,比色法)、游離脂肪酸(NEFA,比色法)、β-羥丁酸(BHBA,比色法)、白蛋白(ALB,比色法)、球蛋白(GLB,比色法)、總膽固醇(TCH,甘油三酯酶法)、堿性磷酸酶(ALP,比色法)、谷丙轉(zhuǎn)氨酶(ALT,比色法)、谷草轉(zhuǎn)氨酶(AST,比色法)、總膽紅素(T-BIL,比色法)、肌酸酐(比色法)。
飼養(yǎng)試驗(yàn)結(jié)束后,每組選取6頭奶牛,晨飼前07:30左右,連續(xù)3 d在杭州富陽(yáng)動(dòng)物處置基地進(jìn)行屠宰試驗(yàn)。按正常屠宰程序處死動(dòng)物,盡快切取肝臟及腎臟器官,實(shí)質(zhì)性器官修切成2 cm×2 cm×1 cm大小,中空器官修剪成長(zhǎng)2 cm、寬1 cm的小塊組織,立即投入4%甲醛溶液中預(yù)固定18 h,修塊后換固定液再固定18~24 h備用。固定的組織繼續(xù)在流水下沖洗6~12 h,然后依次在70%、80%、85%、90%、95%、100%(Ⅰ)和100%(Ⅱ)上行梯度酒精中分別脫水2 h,然后在二甲苯中透明0.5 h,重復(fù)1遍,最后在石蠟(Ⅰ)和石蠟(Ⅱ)各2 h,以上過(guò)程在脫水機(jī)中編程進(jìn)行。包埋好的組織塊切片厚8 μm,在60 ℃的恒溫箱內(nèi)干燥8~12 h,進(jìn)行常規(guī)蘇木精-伊紅(HE)染色,二甲苯透明,中性樹膠封片。
1.3 數(shù)據(jù)分析與處理
氮代謝與血清生理生化指標(biāo)采用SAS 8.1軟件中的PROC MIXED模型進(jìn)行分析[13],按照重復(fù)方差分析的完全隨機(jī)區(qū)組設(shè)計(jì)。時(shí)間、飼糧及飼糧與時(shí)間的交互作用作為固定效應(yīng),奶牛作為隨機(jī)效應(yīng),用最小Akaike信息標(biāo)準(zhǔn)用來(lái)重復(fù)測(cè)定的協(xié)方差分析。結(jié)果用最小二重均值表示。組織切片結(jié)果在中倍鏡(5×)下進(jìn)行顯微攝影,每個(gè)樣品選取1張切片。P≤0.05為差異顯著,0.05
2.1 稻草或玉米秸稈替代苜蓿對(duì)奶牛氮代謝的影響
各組奶牛的氮代謝結(jié)果見(jiàn)表2。AH組奶牛的氮攝入量顯著高于RS組(P<0.05),而CS組與AH組和RS組間差異不顯著(P>0.05)。CS組和RS組奶牛的糞氮排泄量及糞氮占氮攝入量的比例顯著高于AH組(P<0.05)。RS組奶牛的尿氮排泄量及尿氮占氮攝入量的比例顯著高于AH組和CS組(P<0.05),而AH組與CS組之間無(wú)顯著差異(P>0.05)。AH組奶牛的奶氮含量顯著高于CS組和RS組(P<0.05)。AH組和CS組奶牛的沉積氮顯著高于RS組(P<0.05)。氮攝入量、糞氮排泄量、尿氮排泄量和奶氮含量都有顯著的時(shí)間效應(yīng)(P<0.05)。糞氮排泄量及糞氮占氮攝入量的比例都有顯著的時(shí)間和飼糧的交互作用(P<0.05)。
表2 稻草或玉米秸稈替代苜蓿對(duì)奶牛氮代謝的影響Table 2 Effects of alfalfa replacement by rice straw or corn stover on nitrogen metabolism of dairy cows
同行數(shù)據(jù)肩標(biāo)不同小寫字母表示差異顯著(P<0.05),相同或無(wú)字母表示差異不顯著(P>0.05)。下表同。
In the same row, values with different small letter superscripts mean significant difference (P<0.05), while with the same or no letter superscripts mean no significant difference (P>0.05). The same as below.
2.2 稻草或玉米秸稈替代苜蓿對(duì)奶牛血清生理生化指標(biāo)的影響
各組奶牛的血清生理生化指標(biāo)結(jié)果見(jiàn)表3。各間血清葡萄糖含量無(wú)顯著差異(P>0.05)。AH組血清總蛋白含量最高,但各組間無(wú)顯著差異(P>0.05)。RS組血清尿素氮含量顯著高于AH組(P<0.05)。CS組血清甘油三酯含量顯著高于RS組(P<0.05),而各組間血清游離脂肪酸和β-羥丁酸含量無(wú)顯著差異(P>0.05)。RS組血清總膽固醇含量顯著高于AH組和CS組(P<0.05)。CS組血清谷丙轉(zhuǎn)氨酶活性顯著高于AH組(P<0.05),血清谷草轉(zhuǎn)氨酶活性顯著高于AH組和RS組(P<0.05)。CS組血清總膽紅素含量顯著高于RS組(P<0.05)。RS組血清肌酸酐含量顯著高于AH組(P<0.05)。除了白蛋白/球蛋白,其他所有檢測(cè)指標(biāo)都有顯著的時(shí)間效應(yīng)(P<0.05)。血清尿素氮、甘油三酯、游離脂肪酸、β-羥丁酸和總膽固醇含量都有顯著的時(shí)間和飼糧的交互作用(P<0.05)。
2.3 稻草或玉米秸稈替代苜蓿對(duì)奶牛肝臟和腎臟組織形態(tài)的影響
肝臟組織形態(tài)結(jié)構(gòu)結(jié)果見(jiàn)圖1,從圖中可以看出,3個(gè)組的肝臟結(jié)構(gòu)清晰,未見(jiàn)明顯異常,肝小葉邊界清晰,肝細(xì)胞板結(jié)構(gòu)正常,肝血竇界限清晰,巨噬細(xì)胞數(shù)量未見(jiàn)異常,門管區(qū)內(nèi)小葉間動(dòng)脈、小葉間靜脈、小葉間膽管結(jié)構(gòu)基本正常。肝細(xì)胞結(jié)構(gòu)基本正常。
腎臟組織形態(tài)結(jié)構(gòu)結(jié)果見(jiàn)圖2,從圖中可以看出,3個(gè)組的腎臟結(jié)構(gòu)未見(jiàn)異常,皮質(zhì)內(nèi)腎小球,近曲小管、遠(yuǎn)曲小管結(jié)構(gòu)正常,髓質(zhì)集合小管界限清晰,間質(zhì)結(jié)締組織數(shù)量正常。
3.1 稻草或玉米秸稈替代苜蓿對(duì)奶牛氮代謝的影響
前期的試驗(yàn)研究表明,飼喂秸稈飼糧奶牛的奶產(chǎn)量以及乳蛋白產(chǎn)量較低,并且飼喂稻草飼糧的奶牛乳蛋白含量也顯著降低,導(dǎo)致飼喂玉米秸稈和稻草飼糧的奶牛的氮用于產(chǎn)奶的效率降低[7]。因此,本試驗(yàn)進(jìn)一步研究奶牛在不同飼糧下的氮代謝規(guī)律,發(fā)現(xiàn)飼喂玉米秸稈和稻草飼糧的奶牛的糞氮排泄量及飼喂稻草飼糧的奶牛的尿氮排泄量都顯著高于飼喂苜蓿飼糧的奶牛。有報(bào)道稱過(guò)多廢物氮的排放不僅會(huì)對(duì)環(huán)境產(chǎn)生不利影響,其對(duì)奶牛自身健康也會(huì)相應(yīng)的產(chǎn)生不利影響[14]。Wang等[7]試驗(yàn)表明,2個(gè)秸稈組奶牛糞氮排泄量與其粗蛋白質(zhì)的表觀消化率一致,因此,糞氮排泄量的升高主要是由于氮消化率低下導(dǎo)致。而稻草組奶牛尿氮排泄量的升高,與血清中尿素氮的含量一致,并且,在前期報(bào)道中發(fā)現(xiàn)飼喂稻草飼糧可以顯著提高奶牛瘤胃氨態(tài)氮的含量以及乳中尿素氮含量[7]。另外也有研究發(fā)現(xiàn),尿氮排泄量與乳中尿素氮的含量呈現(xiàn)一致性[15],瘤胃氨態(tài)氮含量以及血清中尿素氮含量可以反映出奶牛對(duì)氮的利用水平并進(jìn)而影響乳蛋白的合成[7,16-17]。因此,奶牛飼喂稻草后導(dǎo)致尿氮排泄量升高的主
要原因可能是瘤胃氨態(tài)氮不能有效的被微生物所利用,進(jìn)而過(guò)多的氮進(jìn)入尿素循環(huán),導(dǎo)致血清尿素氮含量升高,經(jīng)過(guò)血液循環(huán)進(jìn)入腎臟排出體外。RS組和CS組飼糧氮用于泌乳的效率無(wú)差異,但由于RS組的尿氮排泄量顯著高于CS組,因此CS組的氮沉積顯著高于RS組。
表3 稻草或玉米秸稈替代苜蓿對(duì)奶牛血清生理生化指標(biāo)的影響Table 3 Effects of alfalfa replacement by rice straw or corn stover on serum physiological-biochemical indices of dairy cows
圖1 稻草或玉米秸稈替代苜蓿對(duì)奶牛肝臟組織形態(tài)的影響Fig.1 Effects of alfalfa replacement by rice straw or corn stover on liver histomorphology of dairy cows
3.2 稻草或玉米秸稈替代苜蓿對(duì)奶牛血清生理生化指標(biāo)的影響
在前期研究中,我們發(fā)現(xiàn)飼喂稻草飼糧的奶??梢燥@著降低奶牛尾根動(dòng)脈以及乳靜脈血液中氨基酸以及葡萄糖含量[9],但是本試驗(yàn)發(fā)現(xiàn),頸靜脈中血清葡萄糖含量無(wú)顯著差異,而導(dǎo)致此差異主要原因可能是由于不同類型、部位以及采集時(shí)間點(diǎn)所導(dǎo)致的差異[18],而也有研究發(fā)現(xiàn)血清葡萄糖含量并不是一個(gè)能夠敏感反映機(jī)體能量代謝的標(biāo)記物,主要是由于動(dòng)物機(jī)體自身穩(wěn)態(tài)的調(diào)整作用[19-20]。血清中谷草轉(zhuǎn)氨酶、谷丙轉(zhuǎn)氨酶、堿性磷酸酶活性及總膽固醇及總膽紅素含量是作為肝臟代謝異常的重要指標(biāo)[21-23]。另外,在飼糧中補(bǔ)充脂肪時(shí)會(huì)導(dǎo)致血清總膽固醇含量的升高,因此,血清總膽固醇含量也是機(jī)體脂肪代謝的一項(xiàng)指標(biāo)[24],但是研究發(fā)現(xiàn)飼喂稻草飼糧能量不足,而在奶牛圍產(chǎn)期,由于采食量的不足容易導(dǎo)致奶牛體脂動(dòng)員,易導(dǎo)致血清總膽固醇含量升高[25]。另外有報(bào)道稱當(dāng)奶牛發(fā)生酮病時(shí)常常伴隨血清總膽紅素含量的降低[26]。因此,飼喂稻草飼糧的奶牛血清總膽固醇含量升高且總膽紅素含量顯著降低,則可能表明由于稻草飼糧能量較低,易導(dǎo)致奶牛自身出現(xiàn)體脂動(dòng)員來(lái)供能,進(jìn)而易造成酮病的發(fā)生。此外,奶牛飼喂玉米秸稈飼糧可以升高血清中谷草轉(zhuǎn)氨酶活性,而奶牛飼喂稻草飼糧可以引起血清中總膽固醇含量升高,這都表明飼喂玉米秸稈和稻草飼糧的奶??赡芤鸶闻K出現(xiàn)一定程度的免疫應(yīng)激[26-27],而這種潛在的免疫應(yīng)激反應(yīng)可能對(duì)奶牛肝臟營(yíng)養(yǎng)物質(zhì)代謝產(chǎn)生不利影響,最終導(dǎo)致肝臟糖異生作用減弱[9]。肌酸酐作為一個(gè)重要蛋白質(zhì)代謝通路中的中間產(chǎn)物,可以間接參與機(jī)體尿素循環(huán)[28],而血清肌酸酐含量也可以作為腎臟功能異常的重要標(biāo)記物[29],飼喂稻草飼糧的奶牛血清肌酸酐含量較高,且3組飼糧間血液肌酸酐含量差異趨勢(shì)與血清尿素氮含量一致,因此,從氮代謝角度,我們推測(cè)飼喂稻草飼糧的奶牛導(dǎo)致血清尿素氮含量升高進(jìn)而增加腎臟代謝尿素氮的負(fù)擔(dān),因此可能使腎臟功能出現(xiàn)一定異常[30-31]。因此,通過(guò)血清生理生化指標(biāo)我們發(fā)現(xiàn),在保證奶牛飼糧常規(guī)精粗比條件下用秸稈替代苜蓿飼喂奶??赡苡绊懩膛5鞍踪|(zhì)、脂肪以及葡萄糖在肝臟以及腎臟中的代謝,進(jìn)而引起肝臟腎臟功能出現(xiàn)一定紊亂,降低葡萄糖和氨基酸的供應(yīng)以及氮利用效率[8-9]。
圖2 稻草或玉米秸稈替代苜蓿對(duì)奶牛腎臟組織形態(tài)的影響Fig.2 Effects of alfalfa replacement by rice straw or corn stover on kidney histomorphology of dairy cows
3.3 稻草或玉米秸稈替代苜蓿對(duì)奶牛肝臟和腎臟組織形態(tài)的影響
通過(guò)組織切片進(jìn)行肝臟和腎臟的組織形態(tài)進(jìn)行觀察發(fā)現(xiàn),稻草和玉米秸稈飼糧以及苜蓿飼糧都表現(xiàn)出正常的組織形態(tài)學(xué)。這表明在本試驗(yàn)12周的飼喂條件下,稻草和玉米秸稈雖然為低質(zhì)粗飼料,并不會(huì)對(duì)奶牛肝臟和腎臟組織產(chǎn)生直接的危害,但血清中谷胱甘肽代謝酶(谷草轉(zhuǎn)氨酶和谷丙轉(zhuǎn)氨酶)活性的變化可能預(yù)示著奶牛奶牛機(jī)體出現(xiàn)一定程度的氧化應(yīng)激狀態(tài)[32]。并且我們發(fā)現(xiàn),隨著飼喂時(shí)間延長(zhǎng),飼喂秸稈飼糧的奶牛與飼喂苜蓿飼糧的奶牛相比,肝臟、腎臟功能代謝相關(guān)指標(biāo)的差異性就越大。因此,給泌乳奶牛飼喂秸稈特別是稻草是否對(duì)奶牛產(chǎn)生健康影響需要更長(zhǎng)
時(shí)間試驗(yàn)進(jìn)行研究。另外,由于秸稈飼糧氮利用效率低下導(dǎo)致過(guò)多的氮以尿素氮形式排出,可以考慮補(bǔ)充必需氨基酸等營(yíng)養(yǎng)物質(zhì),以提高秸稈飼糧的氮利用效率[33-34]。
① 玉米秸稈或稻草替代苜蓿飼喂奶牛,可顯著增加糞氮和尿氮的排泄量,進(jìn)而降低氮的有效利用率。
② 玉米秸稈或稻草替代苜蓿飼喂奶牛,可顯著升高奶牛血清中尿素氮、谷草轉(zhuǎn)氨酶、谷丙轉(zhuǎn)氨酶以及肌酸酐等反映肝臟腎臟功能的指標(biāo)的含量或活性,但在本試驗(yàn)期內(nèi)未對(duì)奶牛肝臟和腎臟造成損傷。
致謝:
感謝浙江大學(xué)奶業(yè)科學(xué)研究所全體師生對(duì)本試驗(yàn)所提供的幫助。
[1] 王炳.飼喂秸稈日糧奶牛泌乳性能低下的消化吸收與代謝機(jī)制研究[D].博士學(xué)位論文.杭州:浙江大學(xué),2016:11-12.
[2] 鐘華平,岳燕珍,樊江文.中國(guó)作物秸稈資源及其利用[J].資源科學(xué),2003,25(4):62-67.
[3] PANG Y Z,LIU Y P,LI X J,et al.Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment[J].Energy & Fuels,2008,22(4):2761-2766.
[4] 畢于運(yùn),高春雨,王亞靜,等.中國(guó)秸稈資源數(shù)量估算[J].農(nóng)業(yè)工程學(xué)報(bào),2009,25(12):211-217.
[5] KEBEDE G.Effect of urea-treatment and Leucaena (Leucaenaleucocephala) supplementation on the utilization of wheat straw as feed for sheep[D].Master’s Thesis.Haramaya,Ethiopia:Haramaya University,2006:66.
[6] ZHAO T Z,LI H Y.Study on ruminal degradation of mainly protein and fiber sources in dairy diets[J].Contemporary Animal Husbandary,2009,11:29-32.
[7] WANG B,MAO S Y,YANG H J,et al.Effects of alfalfa and cereal straw as a forage source on nutrient digestibility and lactation performance in lactating dairy cows[J].Journal of Dairy Science,2014,97(12):7706-7715.
[8] WANG B,SUN H Z,XU N N,et al.Amino acid utilization of lactating dairy cows when diets are changed from an alfalfa-based diet to cereal straw-based diets[J].Animal Feed Science and Technology,2016,217:56-66.
[9] WANG B,ZHAO F Q,ZHANG B X,et al.An insufficient glucose supply causes reduced lactose synthesis in lactating dairy cows fed rice straw instead of alfalfa hay[J].Journal of Animal Science,2016,94(11):4771-4780.
[10] LAPORTE M F,PAQUIN P.Near-infrared analysis of fat,protein,and casein in cow’s milk[J].Journal of Agricultural and Food Chemistry,1999,47(7):2600-2605.
[11] AOAC.Official methods of analysis[J].14th ed.Arlington,VA:Association of Official Analytical Chemists,1990.
[12] LEE C,HRISTOV A N.Shortcommunication:evaluation of acid-insoluble ash and indigestible neutral detergent fiber as total-tract digestibility markers in dairy cows fed corn silage-based diets[J].Journal of Dairy Science,2013,96(8):5295-5299.
[14] WOLFE A H,PATZ J A.Reactive nitrogen and human health:acute and long-term implications[J].AMBIO:A Journal of the Human Environment,2002,31(2):120-125.
[15] KAUFFMAN A J,ST-PIERRE N R.The relationship of milk urea nitrogen to urine nitrogen excretion in Holstein and Jersey cows[J].Journal of Dairy Science,2001,84(10):2284-2294.
[16] ZHU W,FU Y,WANG B,et al.Effects of dietary forage sources on rumen microbial protein synthesis and milk performance in early lactating dairy cows[J].Journal of Dairy Science,2013,96(3):1727-1734.
[17] HUHTANEN P,CABEZAS-GARCIA E H,KRIZSAN S J,et al.Evaluation of between-cow variation in milk urea and rumen ammonia nitrogen concentrations and the association with nitrogen utilization and diet digestibility in lactating cows[J].Journal of Dairy Science,2015,98(5):3182-3196.
[18] MAHRT A,BURFEIND O,HEUWIESER W.Effects of time and sampling location on concentrations of β-hydroxybutyric acid in dairy cows[J].Journal of Dairy Science,2014,97(1):291-298.
[19] GRüNWALDT E G,GUEVARA J C,ESTéVEZ O R,et al.Biochemical and haematological measurements in beef cattle in Mendoza plain rangelands (Argentina)[J].Tropical Animal Health and Production,2005,37(6):527-540.
[20] COZZI G,RAVAROTTO L,GOTTARDO F,et al.Shortcommunication:reference values for blood parameters in Holstein dairy cows:effects of parity,stage of lactation,and season of production[J].Journal of Dairy Science,2011,94(8):3895-3901.
[21] MILLER N E,HAMMETT F,SALTISSI S,et al.Relation of angiographically defined coronary artery disease to plasma lipoprotein subfractions and apolipoproteins[J].British Medical Journal,1981,282(6278):1741-1744.
[23] BERTONI G,TREVISI E.Use of the liver activity index and other metabolic variables in the assessment of metabolic health in dairy herds[J].The Veterinary Clinics of North America:Food Animal Practice,2013,29(2):413-431.
[24] ABDELQADER M M,HIPPEN A R,KALSCHEUR K F,et al.Isolipidic additions of fat from corn germ,corn distillers grains,or corn oil in dairy cow diets[J].Journal of Dairy Science,2009,92(11):5523-5533.
[25] SORDILLO L M,RAPHAEL W.Significance of metabolic stress,lipid mobilization,and inflammation on transition cow disorders[J].Veterinary Clinics of North America:Food Animal Practice,2013,29(2):267-278.
[26] GRAUGNARD D E,MOYES K M,TREVISI E,et al.Liver lipid content and inflammometabolic indices in peripartal dairy cows are altered in response to prepartal energy intake and postpartal intramammary inflammatory challenge[J].Journal of Dairy Science,2013,96(2):918-935.
[27] MILES E D,MCBRIDE B W,JIA Y,et al.Glutamine synthetase and alanine transaminase expression are decreased in livers of aged vs. young beef cows and GS can be upregulated by 17β-estradiol implants[J].Journal of Animal Science,2015,93(9):4500-4509.
[28] ARIAS A,GARCIA-VILLORIA J,RIBES A.Guanidinoacetate and creatine/creatinine levels in controls and patients with urea cycle defects[J].Molecular Genetics and Metabolism,2004,82(3):220-223.
[29] NUDDA A,CORREDDU F,MARZANO A,et al.Effects of diets containing grape seed,linseed,or both on milk production traits,liver and kidney activities,and immunity of lactating dairy ewes[J].Journal of Dairy Science,2015,98(2):1157-1166.
[30] ABDEL-WAHHAB M A,NADA S A,KHALIL F A.Physiological and toxicological responses in rats fed aflatoxin-contaminated diet with or without sorbent materials[J].Animal Feed Science and Technology,2002,97(3/4):209-219.
[31] BERNARDINI D,SEGATO S,MARCHESINI G,et al.Changes in the metabolic profile and performance of dairy cows fed two dietary crude protein concentrations[M]//BOITI C,FERLAZZO A,GAITI A,et al.Trends in Veterinary Sciences.Berlin Heidelberg:Springer,2013:125-128.
[32] IQBAL M,SHARMA S D,REZAZADEH H,et al.Glutathione metabolizing enzymes and oxidative stress in ferric nitrilotriacetate mediated hepatic injury[J].Redox Report,1996,2(6):385-391.
[33] WANG C,LIU H Y,WANG Y M,et al.Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows[J].Journal of Dairy Science,2010,93(8):3661-3670.
[34] APELO S I A,KNAPP J R,HANIGAN M D.Invitedreview:current representation and future trends of predicting amino acid utilization in the lactating dairy cow[J].Journal of Dairy Science,2014,97(7):4000-4017.
*Corresponding authors: JIANG Linshu, professor, E-mail: kjxnb@vip.sina.com; LIU Jianxin, professor, E-mail: liujx@zju.edu.cn
(責(zé)任編輯 武海龍)
Effects of Alfalfa Replacement by Rice Straw or Corn Stover on Nitrogen Metabolism, Serum Physiological-Biochemical Indices and Histomorphology of Liver and Kidney of Dairy Cows
WANG Bing1,2JIANG Linshu1*LIU Jianxin2*
(1.KeyLaboratoryforDairyCowNutrition,CollegeofAnimalScienceandTechnology,BeijingUniversityofAgriculture,Beijing102206,China; 2.KeyLaboratoryofMolecularAnimalNutritionofMinistryofEducation,InstituteofDairyScience,ZhejiangUniversity,Hangzhou310058,China)
The aim of this study was to investigate the effects of alfalfa replacement by rice straw or corn stover on nitrogen metabolism, serum physiological-biochemical indices and histomorphology of liver and kidney of dairy cows. Forty-five multiparous Holstein dairy cows were blocked and randomly assigned to 3 groups with 15 cows per group. Cows in the 3 groups were fed with different roughages: alfalfa group (23% alfalfa hay and 7% Chinese wild rye hay, AH group), corn stover group (30% corn stover, CS group) and rice straw group (30% rice straw, RS group), dietary forage to concentrate ratio was 55∶45. The experiment lasted for 12 weeks. The results showed that the fecal nitrogen excretion of cows in CS group and RS group was significanly higher than that in AH group (P<0.05), the urinary nitrogen excretion of cows in RS group was significanly higher than that in AH group and CS group (P<0.05). The serum urea nitrogen and creatinine contents of cows in RS group were significanly higher than those in AH group (P<0.05). The serum total cholesterol content in RS group was significanly higher than that in AH group and CS group (P<0.05). The serum alanine aminotransferase activity in CS group was significanly higher than that in AH (P<0.05), while the serum glutamic oxaloacetic transaminase activity was significanly higher than that in AH group and RS group (P<0.05). The histological structure of liver and kidney in each group was clear, and no obvious abnormality was found. From above, the greater excretion of fecal nitrogen and urinary nitrogen of cows fed rice straw or corn stover resulte lower nitrogen conversion efficiency to milk protein of cows. No apparent morphological changes in liver and kidney are observed. However, the serum indexes responding the healthy function of liver and kidney are increased when cows fed with corn stover or rice straw.[ChineseJournalofAnimalNutrition, 2017, 29(6):1921-1929]
dairy cows; nitrogen metabolism; liver; serum
10.3969/j.issn.1006-267x.2017.06.013
2016-12-07
國(guó)家奶牛產(chǎn)業(yè)技術(shù)體系(CARS-37)
王 炳(1989—),男,河南南陽(yáng)人,博士,研究方向?yàn)槟膛I(yíng)養(yǎng)與生理。E-mail: wbwz0810@126.com
*通信作者:蔣林樹,教授,博士生導(dǎo)師,E-mail: kjxnb@vip.sina.com;劉建新,教授,博士生導(dǎo)師,E-mail: liujx@zju.edu.cn
S823
A
1006-267X(2017)06-1921-09
動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)2017年6期