• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      不同齡組華北落葉松人工林徑向生長(zhǎng)模型構(gòu)建

      2017-06-24 13:45:10張冬燕王冬至張志東黃選瑞
      關(guān)鍵詞:立木同齡落葉松

      張冬燕,王冬至,張志東,黃選瑞

      1.河北農(nóng)業(yè)大學(xué) 商學(xué)院,河北 保定 071000 2.河北農(nóng)業(yè)大學(xué) 林學(xué)院,河北 保定 071000

      不同齡組華北落葉松人工林徑向生長(zhǎng)模型構(gòu)建

      張冬燕1,2,王冬至2*,張志東2,黃選瑞2

      1.河北農(nóng)業(yè)大學(xué) 商學(xué)院,河北 保定 071000 2.河北農(nóng)業(yè)大學(xué) 林學(xué)院,河北 保定 071000

      本文以塞罕壩不同齡組華北落葉松人工林為研究對(duì)象,以非線性單木胸徑生長(zhǎng)模型為基礎(chǔ)模型,考慮主要立地因子及林分密度對(duì)不同發(fā)育階段華北落葉松胸徑生長(zhǎng)量的影響,利用啞變量方法構(gòu)建包含不同齡組林分競(jìng)爭(zhēng)指數(shù)及主要立地因子的非線性混合效應(yīng)胸徑生長(zhǎng)模型。結(jié)果表明:由立地因子與立木胸徑生長(zhǎng)量進(jìn)行相關(guān)性分析,確定每公頃株數(shù)、海拔、坡向、土層厚度是影響華北落葉松人工林胸徑生長(zhǎng)主要限制性因子,相關(guān)系數(shù)分別為:0.67、0.51、0.54、0.38;在不同齡組由于經(jīng)營(yíng)水平和作業(yè)方式不同,林分平均競(jìng)爭(zhēng)指數(shù)與齡組呈負(fù)相關(guān)關(guān)系,不同齡組林分平均競(jìng)爭(zhēng)指數(shù)分別為:6.26、2.17、0.61;以不同齡組林分平均競(jìng)爭(zhēng)指數(shù)為啞變量,構(gòu)建了包含影響立木胸徑生長(zhǎng)主要因子的非線性混合效應(yīng)模型,不同齡組模型BIC值分別為-142.3、-109.4、-94.7;AIC值分別為:-145.8、-129.5、-113.6;-2 Log Likelihood值分別為:-463.8、-147.5、-131.6。在不同立地條件下,混合效應(yīng)模型中固定效應(yīng)參數(shù)能夠反映大多數(shù)立木胸徑生長(zhǎng)量隨年齡的變化總趨勢(shì),隨機(jī)效應(yīng)參數(shù)能解釋不同立木年齡和胸徑生長(zhǎng)曲線的變異。因此,非線性混合效應(yīng)模型提高了對(duì)胸徑生長(zhǎng)量的預(yù)測(cè)精度及適用范圍。

      華北落葉松;人工林;立地因子;非線性混合效應(yīng)模型;胸徑

      在森林經(jīng)營(yíng)管理與規(guī)劃中,林分生長(zhǎng)和產(chǎn)量模型經(jīng)常被用來模擬和預(yù)測(cè)林分生產(chǎn)力及空間結(jié)構(gòu)變化[1],其中林分生長(zhǎng)是開展森林各項(xiàng)研究工作的基礎(chǔ),如氣候?qū)ιL(zhǎng)的影響[2]、林分生長(zhǎng)對(duì)干擾的響應(yīng)[3]、生長(zhǎng)模型的建立[4]及預(yù)測(cè)林分產(chǎn)量[5]等。因此,從生態(tài)學(xué)和森林經(jīng)理學(xué)的角度來講,了解胸徑生長(zhǎng)過程具有重要意義。到目前為止,已有許多經(jīng)驗(yàn)生長(zhǎng)模型得到了發(fā)展與應(yīng)用,如地位指數(shù)模型[6,7]、樹高-胸徑模型[8]、立地因子與樹高關(guān)系模型[6]、斷面積和林分密度模型[5]。然而,目前對(duì)立木胸徑-年齡生長(zhǎng)模型研究較少,對(duì)樹高研究較多,主要是由于樹高能夠反映林分潛在立地生產(chǎn)力[6],而胸徑生長(zhǎng)模型作為森林生長(zhǎng)和產(chǎn)量模型的一個(gè)重要組成部分,其分布不僅可以用來推斷林分的演替階段[9]及預(yù)測(cè)林分徑階分布動(dòng)態(tài)變化[10],還是森林經(jīng)營(yíng)活動(dòng)中各種經(jīng)營(yíng)技術(shù)的評(píng)價(jià)指標(biāo)[11],此外在實(shí)際調(diào)查中胸徑比樹高更容易觀測(cè)。因此,對(duì)胸徑-年齡生長(zhǎng)模型的研究更具有實(shí)用性。

      單木生長(zhǎng)模型能夠精確描述林分結(jié)構(gòu)和動(dòng)態(tài)變化規(guī)律[11-13],在應(yīng)用過程中具有更高的靈活性和精確性[14],并可以用來對(duì)林分不同培育措施和經(jīng)營(yíng)方法進(jìn)行模擬和比較[15]。目前大多數(shù)單木胸徑生長(zhǎng)模型都是線性的,模型中都不包括立地因子[16,17],立木在生長(zhǎng)過程中由于受到立地條件及經(jīng)營(yíng)模式等多種因素的影響,造成立木間生長(zhǎng)差異較大[20]。已有研究[18,19]表明即使在很小范圍內(nèi),影響立木胸徑生長(zhǎng)的異質(zhì)性仍然存在,這限制了模型預(yù)測(cè)精度及應(yīng)用范圍,而非線性混合效應(yīng)模型通過隨機(jī)效應(yīng)參數(shù)能夠有效解決此類問題[21]。從現(xiàn)有研究來看,胸徑-年齡單木生長(zhǎng)模型大都為線性模型或線性混合效應(yīng)模型,而對(duì)不同發(fā)育階段且包括主要立地因子的非線性混合效應(yīng)模型研究還未見報(bào)道。因此,單木胸徑生長(zhǎng)模型還需深入研究。

      本文以華北暖溫帶華北落葉松人工林為研究對(duì)象,首先確定影響立木胸徑生長(zhǎng)的主要因子;其次基于主要限制性因子,建立華北落葉松人工林不同齡組單木胸徑生長(zhǎng)的非線性混合效應(yīng)模型,以提高胸徑生長(zhǎng)模型的預(yù)測(cè)精度及適用性。

      1 研究區(qū)概況

      研究區(qū)位于河北省最北部的塞罕壩機(jī)械林場(chǎng),地理位置為116°41′13″~118°31′43″E,41°16′24″~42°52′18″N,為典型的山地地形,屬寒溫性大陸季風(fēng)氣候,海拔在1021 m~1880 m的范圍內(nèi),平均坡度15°;年均氣溫為-1.2℃,極端最高氣溫為33.4℃,極端最低氣溫-43.3℃;年均降水量約45 2 mm,主要集中于7~8月,占年降水量的67.6%;土壤類型主要有灰色森林土、棕壤土、風(fēng)沙土、沼澤土、礫石土、草甸土等。研究區(qū)主要喬木樹種有華北落葉松(Larix principis-rupprechtii)、白樺(Betula platyphylla)、云杉(Picea asperata)、樟子松(Picea Mongolica)、山楊(Populus davidiana)、蒙古櫟(Quercus mongolica)等;主要灌木樹種有繡線菊(Spiraea salicifolia)、細(xì)葉小檗(Berberi s poiretii)、黃刺玫(Rosa xanthina)、庫頁懸鉤子(Rubus sachalinensis)、紅瑞木(Cornus alba)等;主要草本植物有蒲公英(Herba taraxaci)、并頭黃芩(Scutellaria scordifolia)、苔草(Carex tr istachya)、桔梗(Platycodon grandiflorus)、地榆(Sanguisorba officinalis)、照山白(Rhododendron micranthum)等。

      2 研究方法

      2.1 數(shù)據(jù)來源

      表1 建模數(shù)據(jù)和檢驗(yàn)數(shù)據(jù)統(tǒng)計(jì)Table 1 Statistics for modeling and testing data

      數(shù)據(jù)來源于2012年7~8月、2013年7~8月在塞罕壩機(jī)械林場(chǎng)下屬的北曼店林場(chǎng)、千層板林場(chǎng)、大喚起林場(chǎng)、陰河林場(chǎng),共設(shè)置不同齡組(11~20 a、21~30 a、31~40 a)華北落葉松人工林樣地171塊,其中臨時(shí)樣地(30 m×30 m)150塊,固定樣地(50 m×50 m)21塊。觀測(cè)并記錄樣地主要立地因子(海拔、坡度、坡向、坡位、土層厚度等),對(duì)所有樣地內(nèi)胸徑大于5 cm的立木進(jìn)行每木檢尺,共觀測(cè)立木20947株,在固定樣地中以平面坐標(biāo)形式記錄立木在固定樣地內(nèi)的相對(duì)位置,此外在每塊樣地內(nèi)選取2株優(yōu)勢(shì)木進(jìn)行樹干解析,解析木共342株,以確定立木年齡及年徑向生長(zhǎng)量。

      2.2 基礎(chǔ)模型選擇

      目前大部分學(xué)者使用[11-13]單木線性胸徑生長(zhǎng)模型來預(yù)測(cè)立木自然生長(zhǎng)過程,Martin-Benito[2]認(rèn)為線性生長(zhǎng)模型限制了其應(yīng)用范圍及預(yù)測(cè)精度。近幾年非線性建模方法引起了人們的關(guān)注[15,16],并采用非線性混合效應(yīng)模型來解決樣本誤差[6,22,23]。當(dāng)通過最佳線性無偏估計(jì)法來預(yù)測(cè)立木水平及樣地水平的隨機(jī)效應(yīng)并進(jìn)行校準(zhǔn)后[8],混合效應(yīng)模型可以提高模型預(yù)測(cè)精度[24]。在初步分析了幾種線性模型[5]和非線性胸徑-年齡生長(zhǎng)模型(Chapman-Richards模型、分位數(shù)模型[6])的基礎(chǔ)上,本研究確定使用Lee[25]等開發(fā)的非線性胸徑-年齡生長(zhǎng)模型作為構(gòu)建混合效應(yīng)模型的基礎(chǔ)模型進(jìn)行研究,其非線性胸徑-年齡生長(zhǎng)模型表達(dá)式為:

      Δrtj為第j株樹第t年生長(zhǎng)量(cm),A立木年齡,D為胸徑(cm),SQt為立地因子組合,CI為競(jìng)爭(zhēng)指數(shù),di參照樹胸徑(cm),dj競(jìng)爭(zhēng)樹胸徑(cm),Distij參照樹和競(jìng)爭(zhēng)樹距離(m)。

      第n年胸徑生長(zhǎng)量(Dt+nj)可用包含當(dāng)前觀測(cè)胸徑(Dtj)、年齡及競(jìng)爭(zhēng)指數(shù)的函數(shù)進(jìn)行計(jì)算,如公式所示:

      2.3 模型檢驗(yàn)

      基于常見統(tǒng)計(jì)量對(duì)模型擬合精度進(jìn)行評(píng)價(jià):絕對(duì)誤差(Bias)、均方根誤差(RMSE)及確定系數(shù)(R2)對(duì)擬合模型進(jìn)行評(píng)價(jià)與檢驗(yàn)。

      Dij為第i個(gè)樣地第j株樹的胸徑觀測(cè)值(cm);為第i個(gè)樣地第j株樹的胸徑預(yù)測(cè)值(cm);為林分胸徑(cm);n為觀測(cè)樣木株數(shù);m為樣地?cái)?shù);p為模型參數(shù)個(gè)數(shù)。

      2.4 統(tǒng)計(jì)處理

      采用SPSS21.0統(tǒng)計(jì)分析軟件中的相關(guān)性分析,確定影響立木胸徑生長(zhǎng)主要因子及林分平均競(jìng)爭(zhēng)指數(shù)(CI),模型建立采用ForStat2.1統(tǒng)計(jì)軟件和SAS9.2軟件中PROC NLMIXED完成。

      3 研究結(jié)果

      3.1 影響因子篩選

      華北落葉松人工林近胸徑平均年生長(zhǎng)量與不同立地因子相關(guān)性分析如圖1所示,其中每公頃株數(shù)、海拔、坡向、土層厚度是影響華北落葉松人工林胸徑生長(zhǎng)相關(guān)性較大,其相關(guān)系數(shù)分別為0.67、0.51、0.54、0.38。因此,確定每公頃株數(shù)、海拔、坡向、土層厚度是影響華北落葉松人工林胸徑生長(zhǎng)的主要因子。

      圖1 立地因子與胸徑生長(zhǎng)量相關(guān)性分析Fig.1Analysis on the correlation between annual radial growth and site factors

      3.2 立木競(jìng)爭(zhēng)

      不同齡組華北落葉松人工林胸徑分布格局如圖2所示,幼齡林競(jìng)爭(zhēng)指數(shù)為6.26,中齡林競(jìng)爭(zhēng)指數(shù)為2.17,近熟林競(jìng)爭(zhēng)指數(shù)為0.61。在人工林中由于受到經(jīng)營(yíng)水平及經(jīng)營(yíng)方式的影響,林分平均競(jìng)爭(zhēng)指數(shù)隨著林齡的增加而逐漸減小,林分競(jìng)爭(zhēng)指數(shù)能夠揭示密度對(duì)立木徑向生長(zhǎng)的影響。

      3.3 混合效應(yīng)模型構(gòu)建

      圖2 華北落葉松不同發(fā)育階段分布格局Fig.2 Distribution pattern of Larix principis-rupprechtii in different age groups

      建立包含主要立地因子非線性混合效應(yīng)模型來解決主要立地因子對(duì)立木徑向生長(zhǎng)量的影響,并將不同齡組林分競(jìng)爭(zhēng)指數(shù)作為啞變量來解決不同齡組林分密度對(duì)立木胸徑生長(zhǎng)的影響,那么不同齡組華北落葉松人工林立木胸徑生長(zhǎng)模型可表示為:

      Δrt,j為第j株樹第t年生長(zhǎng)量(cm),a0、a1、a2、b、c1、c2、c3為固定效應(yīng)參數(shù),μ為樣地隨機(jī)效應(yīng)參數(shù),CI10.5…CIn0.5為人工林第n個(gè)齡組林分競(jìng)爭(zhēng)指數(shù)啞變量;A為立木年齡(a),D為胸徑(cm);CI為林分競(jìng)爭(zhēng)指數(shù),m為樣地立木株數(shù),di為參照樹胸徑(cm),dj為競(jìng)爭(zhēng)樹胸徑(cm),Distij為參照樹和競(jìng)爭(zhēng)樹距離(m);SQt為立地因子組合,EI為海拔(m)、AI為坡向、ST為土層厚度(cm)。

      3.4 參數(shù)估計(jì)及檢驗(yàn)

      對(duì)不同齡組華北落葉松人工林胸徑生長(zhǎng)非線性混合效應(yīng)模型進(jìn)行了參數(shù)擬合,模型參數(shù)估計(jì)值、確定系數(shù)(R2)、絕對(duì)誤差(Bias)及均方根誤差(RMSE)如表2所示。不同齡組模型BIC值分別為-142.3、-109.4、-94.7;AIC值分別為:-145.8、-129.5、-113.6;-2 Log Likelihood值分別為:-463.8、-147.5、-131.6。運(yùn)用擬合模型對(duì)不同齡組華北落葉松人工林胸徑生長(zhǎng)量進(jìn)行了預(yù)測(cè),不同齡組華北落葉松人工林徑向生長(zhǎng)量殘差分布如圖3所示。

      表2 不同齡組華北落葉松非線性混合模型參數(shù)估計(jì)及統(tǒng)計(jì)檢驗(yàn)Table 2 Parameter estimations and statistics of nolinear mixed models of Larix principis-rupprechtii in different ages

      圖3 不同林齡胸徑生長(zhǎng)殘差分布Fig.3 The residual distribution of DBH growth in different ages

      4 討論

      立木胸徑生長(zhǎng)量預(yù)測(cè)模型通常為一個(gè)復(fù)合模型,會(huì)受到林分密度、年齡及立地因子等多種因素的影響[11,21]。本文以不同齡組華北落葉松人工林為研究對(duì)象,構(gòu)建包含啞變量不同齡組單木胸徑生長(zhǎng)量的非線性混合效應(yīng)生長(zhǎng)模型。通過對(duì)所選擇的6個(gè)因子與胸徑生長(zhǎng)量進(jìn)行相關(guān)分析,確定密度、海拔、坡向、土層厚度與華北落葉松人工林立木胸徑生長(zhǎng)量相關(guān)性較強(qiáng),這與Hannu[26]研究環(huán)境因子對(duì)美洲落葉松(Larix laricina)胸徑生長(zhǎng)量影響的結(jié)論一致。在人工林中立木胸徑生長(zhǎng)量受立木年齡和林分密度影響較大,隨著年齡增加立木徑向生長(zhǎng)量逐漸降低,并呈現(xiàn)出倒J字形增長(zhǎng)趨勢(shì),從模型擬合結(jié)果來看,當(dāng)其它立地因子保持不變時(shí),胸徑生長(zhǎng)量與參數(shù)a0和a1關(guān)系最為密切,其中a1在不同齡組對(duì)立木胸徑生長(zhǎng)影響不同,在幼齡林和中齡林階段表現(xiàn)為正相關(guān)性,進(jìn)入成熟林階段后隨著年齡的增加呈負(fù)相關(guān)性,這與Lhotka[27]和John[28]研究橡樹(Quercus palustris)和短葉松(Pinus spp.)的結(jié)果一致。

      不同發(fā)育階段華北落葉松人工林胸徑參數(shù)均為正值而競(jìng)爭(zhēng)指數(shù)參數(shù)均為負(fù)值,在同齡林中立木胸徑年生長(zhǎng)量受立木競(jìng)爭(zhēng)因素影響最大并與競(jìng)爭(zhēng)指數(shù)呈負(fù)相關(guān)關(guān)系。在人工純林中,Wykoff[29]認(rèn)為立木對(duì)光照、水分和養(yǎng)分的競(jìng)爭(zhēng)是對(duì)稱的,胸徑較大的立木對(duì)水分和養(yǎng)分競(jìng)爭(zhēng)能力強(qiáng)[30],胸徑生長(zhǎng)量就大,反之競(jìng)爭(zhēng)能力就弱,胸徑生長(zhǎng)量就相對(duì)較小。林分競(jìng)爭(zhēng)指數(shù)揭示了立木競(jìng)爭(zhēng)能力,而競(jìng)爭(zhēng)對(duì)立木徑向生長(zhǎng)所產(chǎn)生的消極影響已經(jīng)得到了許多研究的證實(shí)[30-31]。在華北落葉松人工林中競(jìng)爭(zhēng)指數(shù)隨著林齡的增加而減小,主要是受經(jīng)營(yíng)措施的影響,其中幼齡林僅撫育一次,而中齡林和近熟林已經(jīng)過多次撫育,Guilley[32]也認(rèn)為立木徑向生長(zhǎng)變異大都發(fā)生在林分水平上,造林初始密度及經(jīng)營(yíng)措施[8]對(duì)立木胸徑生長(zhǎng)產(chǎn)生影響較大。

      立木胸徑生長(zhǎng)量是林分穩(wěn)定性的重要指標(biāo),并受到多種立地因子影響[33],海拔、坡向及土層厚度是影響華北落葉松人工林徑向生長(zhǎng)量主要因子。海拔在不同發(fā)育階段對(duì)徑向生長(zhǎng)量均表現(xiàn)為負(fù)相關(guān)性,在生長(zhǎng)季內(nèi)適宜的溫度能夠促進(jìn)立木生長(zhǎng)[34],北方山區(qū)低溫限制了林木徑向生長(zhǎng),在生長(zhǎng)季內(nèi)隨著海拔的升高溫度逐漸降低,生長(zhǎng)季就會(huì)縮短,Ellenberg[35]研究表明海拔每升高100 m,生長(zhǎng)季就縮短5~7 d,溫度被普遍認(rèn)為是影響立木胸徑生長(zhǎng)的主要限制因素[36,37],研究區(qū)海拔與不同齡組華北落葉松人工林徑向生長(zhǎng)量呈負(fù)相關(guān)關(guān)系。

      在不同齡組土層厚度和坡向與立木徑向生長(zhǎng)量均表現(xiàn)為正相關(guān)性,水分對(duì)立木徑向生長(zhǎng)具有積極作用[38],陰坡土壤水分含量較高,土壤具有較好的保水能力。因此,陰坡立木胸徑年生長(zhǎng)量大于陽坡年生長(zhǎng)量,這與彭劍峰等[39]研究坡向?qū)ζ钸B圓柏樹(Sabina przewalskii)生長(zhǎng)的結(jié)論相同。在生長(zhǎng)季內(nèi)土層越厚土壤水分含量相對(duì)較高,Linderholm[40]研究表明土壤含水量與土層越厚呈正相關(guān)關(guān)系,較低的土壤含水量限制了立木生長(zhǎng),土層越厚土壤保水能力越強(qiáng),對(duì)立木胸徑年生長(zhǎng)量具有促進(jìn)作用,并與La Pointe-Garant[41]研究蘇格蘭松(Scots pine)胸徑生長(zhǎng)量結(jié)論相同。

      在同一樣地的樣本間具有空間相關(guān)性,立木胸徑生長(zhǎng)量殘差并不是相互獨(dú)立的[24],Palahi[42]認(rèn)為可以用氣候來解釋。在生長(zhǎng)季內(nèi)葉面積及碳水化合物會(huì)對(duì)林木徑向生長(zhǎng)產(chǎn)生較大影響,而在本文研究中氣候并不能解釋模型所產(chǎn)生的所有變異,在Calama[30]研究結(jié)論中也獲得了相同的結(jié)果,并表明混合效應(yīng)模型中隨機(jī)效應(yīng)參數(shù)可以很好的解釋這一結(jié)果?;旌闲?yīng)模型中固定效應(yīng)參數(shù)能夠反映大多數(shù)立木胸徑生長(zhǎng)量隨年齡的變化總趨勢(shì),樣地間隨機(jī)效應(yīng)參數(shù)能解釋年齡和胸徑生長(zhǎng)曲線的變異,因此包含啞變量的混合效應(yīng)模型提高了對(duì)不同齡組立木胸徑生長(zhǎng)量預(yù)測(cè)精度及適用范圍。

      [1]Leites LP,Robinson AP,Crookston NL.Accuracy and equivalence testing of crown ratio models and assessment of their impact on diameter growth and basal area increment predictions of two variants of the Forest Vegetation Simulator[J].Candian Journal of Forest Ressearch,2009(3):655-665

      [2]Martin-Benito D,Kint V,Muys B,et al.Growth responses of West-Mediterranean Pinus nigra to climate change are modulated by competition and productivity:past trends and future perspective[J].Forest Ecology and Management, 2011(262):1030-1040

      [3]Black BA,Abrams MD.Use of boundary-line growth patterns as a basis for dendroecological release criteria[J]. Ecological Applications,2003(13):1733-1749

      [4]Bugmann H.A review of forest gap models[J].Clim Change,2001(51):259-305

      [5]Hall DB,Clutter M.Multivariate multilevel nonlinear mixed effects models for timber yield predictions[J].Biometrics, 2004(60):16-24

      [6]Fang Z,Bailey RL.Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments[J].Forest Science,2001(3):287-300

      [7]Nothdurft A,Kublin E,Lappi J.A non-linear hierarchical mixed model to describe tree height growth[J].European Journal of Forest Research,2006(125):281-289

      [8]Adame P,Hynynen J,Canellas I.Individual-tree diameter growth model for rebollo oak(Quercus pyrenaica Willd.) coppice[J].Forest Ecology and Management,2008(255):1011-1022

      [9]Heiri C,Wolf A,Rohrer L,et al.Forty years of natural dynamics in Swiss beech forests:structure,composition,and the influence of former management[J].Ecological Applications,2009(19):1920-1934

      [10]Cao QV.Incorporating whole-stand and individual-tree models in a standtable projection system[J].Forest Science, 2007(53):45-49

      [11]Pokharel B,Froese RE.Representing site productivity in the basal area increment model for FVS-Ontario[J].Forest Ecology and Management,2009(258):657-666

      [12]Zhang L,Peng C,Dang Q.Individual-tree basal area growth models for jack pine and black spruce in northern Ontario[J].Forestry Chronicle,2004(80):366-374

      [13]Lacerte V,Larocque GR,Woods M,et al.Calibration of the forest vegetation simulator(FVS)model for the main forest species of Ontario[J].Candian Journal of Forest Ressearch,2006(199):336-349

      [14]Calama R,Barbeito I,Pardos M,et al.Adapting a model for even-aged Pinus pinea L.stands to complex multi-aged structures[J].Forest Ecology and Management,2008(256):1390-1399

      [15]Crecente-Campo F,Soares P,Tome M,et al.Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations[J].Forest Ecology and Management,2010(11):1965-1974

      [16]Subedi N,Sharma M.Individual-tree diameter growth models for black spruce and jack pine plantations in northern Ontario[J].Forest Ecology and Management,2011(261):2140-2148

      [17]Bohora SB,Cao QV.Prediction of tree diameter growth using quantile regression and mixed-effects models[J].ForestEcology and Management,2014(319):62-66

      [18]Fajardo A,McIntire EJ.Distinguishing microsite and competition processes in tree growth dynamics:an a priori spatial modeling approach[J].American Naturalist,2007(169):647-661

      [19]Fox JC,Bi H,Ades PK.Spatial dependence and individual-tree growth models.I.Characterising spatial dependence[J]. Forest Ecology and Management,2007(245):10-19

      [20]Costa A,Pereira H,Oliveira A.Variability of radial growth in cork oak mature trees under cork production[J].Forest Ecology and Management,2003(175):239-246

      [21]Weiskittel AR,Garber SM,Johnson GP,et al.Annualized diameter and height growth equations for Pacific Northwest plantation-grown Douglas-fir,estern hemlock,and red alder[J].Forest Ecology and Management,2007(250):266-278

      [22]Trincado G,Burkhart HE.A generalized approach for modeling and localizing stem profile curves[J].Forest Science, 2006(52):670-682

      [23]Sharma M,Parton J.Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis[J].Forest Science,2009(55):268-282

      [24]Calama R,Montero G.Interregional nonlinear height–diameter model with random coefficients for stone pine in Spain[J].Candian Journal of Forest Ressearch,2004(34):150-163

      [25]Lee WK,Gadow KV,Chung DJ.DBH growth model for Pinus densiflora and Quercus variabilis mixed forests in central Korea[J].Ecological Modelling,2004(176):187-200

      [26]Hannu H,Hannu S,Erkki A.Effect of temperature and precipitation on the annual diameter growth of Scots pine on drained peatlands and adjacent mineral soil sites in Finland[J].Dendrochronologia,2012(30):157-165

      [27]Lhotka JM,Loewenstein EF.An individual-tree diameter growth model for managed uneven-aged oak-shortleaf pine stands in the Ozark Highlands of Missouri,USA.[J].Forest Ecology and Management,2011(3):770-778

      [28]John M,Edward F,Loewenstein.An individual-tree diameter growth model for managed uneven-aged oak-shortleaf pine stands in the Ozark Highlands of Missouri,USA[J].Forest Ecology and Management,2011(261):770-778

      [29]Wykoff WR.A basal area increment model for individual conifers in the Northern Rocky Mountains[J].Forest Science, 1990(36):1077-1104

      [30]Calama R,Montero G.Multilevel linear mixed model for tree diameter increment in stone pine(Tinus pinea L.):a calibrating approach[J].Silva Fennica,2005(39):37-54

      [31]Monserud RA,Sterba H.A basal area increment model for individual trees growing in even-and uneven-aged forest stands in Austria[J].Forest Ecology and Management,1996(80):57-80

      [32]Guilley E,Herve JC,Nepveu G.The influence of site quality,silviculture and region on wood density mixed model in Quercus petraea Liebl[J].Forest Ecology and Management,2004(189):111-121

      [33]Sonja V,Robert A,Monserud HS.Do individual-tree growth models correctly represent height:diameter ratios of Norway spruce and Scots pine[J].Forest Ecology and Management,2010(260):1735-1753

      [34]Bronson DR,Gower ST,Tanner M,et al.Effect of ecosystem warming on boreal black spruce bud burst and shoot growth[J].Global Change Biology,2009(15):1534-1543

      [35]Ellenberg H,Leuschner C.Vegetation Mitteleuropas mit den Alpen:in?kologischer,dynamischer und historischer Sicht[J].Journal of Ecology,1984,72(2):314-315

      [36]Davi H,Dufrene E,Francois C,et al.Sensitivity of water andcarbon fluxes to climate changes from 1960 to 2100 in Europeanforest ecosystems[J].Agricultural and Forest Meteorology,2006(141):35-56

      [37]Delpierre N,Dufrene E,Soudani K,et al.Modelling inter annual and spatial variability of leaf senescence for three deciduous species in France[J].Agricultural and Forest Meteorology,2009,149(5):938-948

      [38]Zweifel R,Zimmermann L,Zeugin F,et al.Intra annual radial growth and water relations of trees:implications towards a growth mechanism[J].Journal of Experimental Botany,2006(57):1445-1459

      [39]彭劍峰,勾曉華,陳發(fā)虎,等.坡向?qū)0翁荻壬掀钸B圓柏樹木生長(zhǎng)的影響[J].植物生態(tài)學(xué)報(bào),2010,34(5):517-525

      [40]Linderholm HW,Solberg BQ,Lind holm M.Tree-ring records from central Fennoscandia:the relationship between tree growth and climate along a west east transect[J].Holocene,2003(13):887-895

      [41]La Pointe-Garant MP,Huang JG,Gea-Izquierdo G.Use of tree rings to study the effect of climate change on trembilng aspen in Québec[J].Global Change Biology,2010(16):2039-2051

      [42]Palahi M,Pukkala T,Miina J,et al.Individual tree-growth and mortality models for Scots pine(Pinus sylvestris L.)in North-East Spain[J].Annals of Forest Science,2003(60):1-10

      The Diameter at Breast Height and Age Growth Model of Larix principis-rupprechtii Plantations with DifferentAge Groups

      ZHANGDong-yan1,2,WANGDong-zhi2*,ZHANGZhi-dong2,HUANGXuan-rui2
      1.College of Business/Hebei Agricultural University,Baoding 071000,China 2.College of Forestry/Hebei Agricultural University,Baoding 071000,China

      This paper studied the Larix principis-rupprechtii plantations of different age groups and determined the nonlinear single tree diameter growth model as the basic model.Considering the influence of the main site factors and density on diameter growth of Larix principis-rupprechtii at different stages of development,a nonlinear mixed effects model of different age groups was established by using dummy variable method,including the competition index and main site factors of different age groups.The results showed the main limiting factors of the growth were density,elevation,slope and soil thickness by correlation analysis of site factors and tree DBH growth.The correlation coefficients were 0.67,0.51,0.54,0.38; The competition index of the forest was negatively correlated with the age groups due to the difference of operation and management level.The average competition index of the different age groups were 6.26,2.17,0.61;the nonlinear mixed effects model of different age groups including main site factors was established by dummy variables.The BIC value of different age group model were-142.3,-109.4,-94.7 for BIC;-145.8,-129.5,-113.6 for AIC;-463.8,-147.5,-131.6 for-2 Log Likelihood.Under different site conditions,fixed effects parameters can reflect most tree diameter growth with age change trend and the random effect parameters can explain the variation of the growth curve of different tree age.Therefore, the nonlinear mixed effects model improved the prediction accuracy and applicable range of diameter growth.

      Larix principis-rupprechtii;plantation;site factors;nonlinear mixed-effects model;DBH

      S758.5+7

      :A

      :1000-2324(2017)03-0449-07

      2016-10-11

      :2016-12-22

      林業(yè)公益性行業(yè)科研專項(xiàng)(20150430304);國(guó)家自然科學(xué)基金(31370636);結(jié)構(gòu)調(diào)控對(duì)人工林生產(chǎn)力形成的影響機(jī)制(2016YFD060020303)

      張冬燕(1979-),女,在讀博士,講師.主要研究方向?yàn)樯挚沙掷m(xù)經(jīng)營(yíng).E-mail:zhdys@163.com

      *通訊作者:Author for correspondence.E-mail:wangdz@126.com

      猜你喜歡
      立木同齡落葉松
      立木為信
      南門立木
      吉林一號(hào)衛(wèi)星在吉林省中東部松林變色立木監(jiān)測(cè)中的應(yīng)用
      山西落葉松雜交良種逾10萬畝
      長(zhǎng)白落葉松離體再生體系的建立
      神奇的落葉松提取物
      立木電阻斷層成像檢測(cè)激勵(lì)源的改進(jìn)設(shè)計(jì)
      森林工程(2018年3期)2018-06-26 03:41:02
      Let's play!一起玩吧!
      幼兒畫刊(2018年1期)2018-01-04 01:52:56
      高個(gè)子不可怕
      對(duì)我國(guó)男女不同齡退休政策的社會(huì)性別分析
      琼结县| 莱芜市| 延寿县| 无棣县| 灌南县| 前郭尔| 平顺县| 潼关县| 定西市| 禹城市| 杭锦旗| 冕宁县| 南乐县| 博野县| 吐鲁番市| 福州市| 晴隆县| 雷波县| 莲花县| 渭南市| 哈密市| 横峰县| 民勤县| 神池县| 耒阳市| 永宁县| 循化| 宁明县| 延长县| 习水县| 蛟河市| 周宁县| 庆云县| 汤原县| 合肥市| 西峡县| 海丰县| 文昌市| 綦江县| 洛阳市| 嘉善县|