陳洪凱,秦 鑫,唐紅梅
(重慶交通大學(xué) 巖土工程研究所,重慶 400074)
?
危巖帶扶壁式攔石網(wǎng)計算方法及應(yīng)用
陳洪凱,秦 鑫,唐紅梅
(重慶交通大學(xué) 巖土工程研究所,重慶 400074)
山區(qū)道路危巖減災(zāi)成為保障山區(qū)道路工程建設(shè)和山區(qū)交通安全的重要問題。攔石網(wǎng)是近年來應(yīng)用于山區(qū)公路危巖帶治理的柔性防護系統(tǒng),但缺乏完備的治理工程計算方法。將扶壁式攔石網(wǎng)的計算模型概化為失穩(wěn)危巖只引起一個網(wǎng)格的4根錨桿產(chǎn)生拉力?;谄睦炷P秃拖到y(tǒng)宏觀等效機制推導(dǎo)扶壁式攔石網(wǎng)計算方法,獲得扶壁式攔石網(wǎng)錨桿在該模型下拉力計算公式。選取重慶萬州首立山危巖W26進行工程算例分析,驗證該計算方法的工程實用性。
道路工程;危巖帶;扶壁式攔石網(wǎng);設(shè)計方法及應(yīng)用
我國是一個多山之國,山區(qū)地質(zhì)地貌條件復(fù)雜,山區(qū)道路沿線危巖崩塌廣泛發(fā)育,災(zāi)情嚴(yán)峻,對交通安全產(chǎn)生巨大威脅,嚴(yán)重遏制山區(qū)經(jīng)濟的發(fā)展[1- 4]。自20世紀(jì)中期以來,廣大工程技術(shù)人員根據(jù)危巖的特性建立了以護、頂、錨噴、攔、清除、嵌補等工程防治措施[5-9]。傳統(tǒng)的防治方法和設(shè)計理念都是在能通過勘察確定危巖體失穩(wěn)機制,施工條件允許等前提下進行工程防治。危巖發(fā)育機制復(fù)雜,通常以危巖帶的形式存在于高陡巖質(zhì)邊坡上,危巖體個體不易區(qū)分,類型不易判別,此時扶壁式攔石網(wǎng)是一種最有效的治理方法。扶壁式攔石網(wǎng)由柔性防護網(wǎng)、受荷錨桿和構(gòu)造錨桿組成,荷載由網(wǎng)內(nèi)某危巖體破壞失穩(wěn)所產(chǎn)生,通過網(wǎng)傳遞給受荷錨桿,構(gòu)造錨桿則用于固定網(wǎng)。現(xiàn)行危巖帶的治理方法以被動防護為主,葉四橋等[10]針對危巖落石的路徑提出了被動攔石網(wǎng)的設(shè)計方法;李晉文等[11]對公路沿線崩塌災(zāi)害動力特性行了研究;曾詩雅[12]對柔性防護網(wǎng)的性能進行了分析;國外學(xué)者針對落石的路徑、形體、落石高度和攔石網(wǎng)地材質(zhì)等基于一定的現(xiàn)場試驗做了一系列的有限元分析與效應(yīng)假設(shè)[13-16]。近年來柔性防護系統(tǒng)被大量的應(yīng)用于工程實踐中[17-19];S.SHU等[20]研究了主動防護網(wǎng)的性能并分析了網(wǎng)內(nèi)坡積物對防護網(wǎng)的影響。攔石網(wǎng)具有好的工程實用價值,但現(xiàn)行攔石網(wǎng)設(shè)計主要靠實證、工程經(jīng)驗、經(jīng)驗設(shè)計,設(shè)計過多或者某些因素并未考慮到,缺少對荷載的加載和能量傳遞方面的理解。因此發(fā)展一種廣泛實用的設(shè)計方法對學(xué)術(shù)界和工程界都具有重要意義。鑒于迄今為止國內(nèi)外尚未有針對危巖帶扶壁式攔石網(wǎng)計算方法研究的相關(guān)報道,筆者推導(dǎo)了護壁式攔石網(wǎng)治理危巖帶的設(shè)計計算方法。
將扶壁式攔石網(wǎng)的計算模型概化為失穩(wěn)危巖僅引起一個網(wǎng)格的錨桿產(chǎn)生拉力的簡單力學(xué)模型?;谄睦炷P秃拖到y(tǒng)宏觀等效機制提出了扶壁式攔石網(wǎng)計算方法,獲得了扶壁式攔石網(wǎng)錨桿在該模型下拉力計算公式,并選取重慶萬州首立山危巖W26進行了本計算方法的工程算例分析。研究成果可為柔性防護技術(shù)應(yīng)用于危巖帶的防治工作提供了理論基礎(chǔ)。
整個支護系統(tǒng)力傳遞過程為危巖體失穩(wěn)導(dǎo)致網(wǎng)產(chǎn)生形變,力通過網(wǎng)傳遞給受荷錨桿。以危巖體為研究對象通過極限平衡原理求解受荷錨桿所承受的力。根據(jù)危巖體失穩(wěn)類型分類可分為滑塌式危巖、墜落式危巖、傾倒式危巖[21],于此筆者分別將討論扶壁式攔石網(wǎng)在以上3類危巖中錨桿的受力情況。
1.1 滑塌式危巖扶壁式攔石網(wǎng)計算方法
滑塌式危巖地質(zhì)模型見圖1,其主控結(jié)構(gòu)面傾角為β(°),危巖體與裂隙面之間的摩擦因數(shù)為φ。假設(shè)危巖體為完全剛體,以危巖體為研究對象進行受力分析如圖2。
圖1 滑塌式危巖扶壁式攔石網(wǎng)物理模型Fig. 1 Physical model of counterforted rock-fall barrier of sliding unstable rock
圖2 滑塌式危巖體受力Fig. 2 Force diagram of sliding unstable rock
W為危巖體的自重(kN),P為水平地震力(kN),Q為裂隙水壓力(kN),方向垂直于裂隙面,暴雨工況下考慮,q為扶壁式攔石網(wǎng)提供的抗力(kN),f為危巖體受到的靜摩擦力,方向平行于裂隙面向上。N為穩(wěn)定巖體給危巖的力(kN),方向垂直于潛在破裂面。O1為危巖體重心。
考慮攔石網(wǎng)的柔性特征和系統(tǒng)宏觀效應(yīng)可將力q的合效應(yīng)用力F替代,F(xiàn)與水平面的夾角為θ。將危巖體視為剛體,圖2(a)可簡化為圖2(b)。
設(shè)滑塌式危巖安全系數(shù)為Fs,根據(jù)滑塌式危巖穩(wěn)定系數(shù)計算方法[21]可得
(1)
攔石網(wǎng)對危巖的力可以分解為垂直于主控結(jié)構(gòu)面方向的力和沿主控結(jié)構(gòu)面向上的力。假設(shè)危巖體對攔石網(wǎng)產(chǎn)生的應(yīng)力均勻分布則攔石網(wǎng)變形后的曲面受力模式可等效為薄膜結(jié)構(gòu)在均布荷載的受力模式。鑒于隨著主控結(jié)構(gòu)面裂隙的擴展危巖體失穩(wěn)后的運動方式主要表現(xiàn)為水平向外突出的位移,為了簡化分析假設(shè)θ=0°。此時力F滿足攔石網(wǎng)對危巖防護效應(yīng),符合薄膜結(jié)構(gòu)受力主要特性。
(2)
1.2 傾倒式危巖扶壁式攔石網(wǎng)計算方法
圖3 傾倒式危巖扶壁式攔石網(wǎng)物理模型Fig. 3 Physical model of counterforted rock-fall barrier of dumping unstable rock
傾倒式危巖的破壞模式?jīng)Q定了失穩(wěn)后的危巖體仍以傾倒方式控制整個系統(tǒng)的穩(wěn)定性。以危巖體為研究對象并假設(shè)危巖體為完全剛性塊體,其受力計算模型可等效為圖4。
圖4 傾倒式危巖扶壁式攔石網(wǎng)計算模型Fig. 4 Calculation model of counterforted rock-fall barrier of dumping unstable rock
圖中Q為空隙水壓力(暴雨工況),P為地震力水平分力,W為為巖體自重,F(xiàn)為扶壁式攔石網(wǎng)系統(tǒng)提供給為巖體的力,夾角為θ,B為傾覆點,H為為巖體重心到B點的垂直距離,a為重心到B點的水平距離,c為B點到破裂面的水平距離,β為結(jié)構(gòu)面夾角。將危巖體視為完全剛體,以危巖體為研究對象,以B點為傾覆點。
M傾覆=PH+Wa+QHsinβ
(3)
M抗傾=Fasinθ+FHcosθ+0.5[σt]c2+
Qacosβ
(4)
(5)
式中:[σt] 為巖石允許抗拉強度,F(xiàn)s為安全系數(shù)。隨著主控結(jié)構(gòu)面裂隙的擴展,危巖體失穩(wěn)后的運動方式主要表現(xiàn)為水平向外突出的位移,為了簡化分析假設(shè)θ=0°,可得
(6)
θ=0°
(7)
1.3 墜落式危巖扶壁式攔石網(wǎng)計算方法
該類危巖主控結(jié)構(gòu)面在受荷初期表現(xiàn)為拉剪聯(lián)破壞,當(dāng)主控結(jié)構(gòu)擴展到距離危巖底部一定距離后表現(xiàn)為剪切破壞[22]。假設(shè)危巖體為完全剛性塊體,以危巖體為研究對象,根據(jù)極限平衡原理計算危巖體的穩(wěn)定性[21]。墜落式危巖扶壁式攔石網(wǎng)計算模型如圖5。
圖5 墜落式危巖扶壁式攔石網(wǎng)計算模型Fig. 5 Calculation model of counterforted rock-fall barrier of falling unstable rock
(8)
(9)
θ=0°
式(8)~式(9)中:各變量的意義同前。
1.4 錨桿受力計算
以攔石網(wǎng)為研究對象,根據(jù)牛頓第三定律,扶壁式攔石網(wǎng)受到了等值反向的力q,以及錨桿提供的拉力Fi,i為錨桿編號,如圖6。
危巖失穩(wěn)導(dǎo)致網(wǎng)發(fā)生形變,網(wǎng)變形受力使整個系統(tǒng)達到靜態(tài)平衡。根據(jù)力的簡化原則以及剛化原理且不考慮網(wǎng)的重力和危巖體的旋轉(zhuǎn),則攔石網(wǎng)的受力情況可以簡化為圖7。
根據(jù)上述假設(shè)F為巖體給攔石網(wǎng)的等效荷載,作用于支保結(jié)構(gòu)重心。
圖6 攔石網(wǎng)受力Fig. 6 Force diagram of rock-fall barrier
圖7 扶壁式攔石網(wǎng)受力Fig. 7 Force diagram of counterforted rock-fall barrier
1.4.1 計算模型
計算受荷錨桿拉力時,據(jù)剛化原理以攔石網(wǎng)為研究對象,其受力模型可簡化為圖8。
圖8 錨桿力學(xué)計算模型Fig. 8 The mechanical calculation model of bolt
圖9中O2為危巖體的重心在受荷錨桿平面的投影,O1為受荷錨桿平面的形心,h為受荷錨桿平面的長(m),a為受荷錨桿平面的寬(m),lz為O2到y(tǒng)軸的距離,ly為O2到z軸的距離。
圖9 偏心拉伸力學(xué)模型Fig. 9 The mechanical model of eccentric tension
圖10中,y和z是形心主軸,力FN作用于(-lz,-ly),應(yīng)用應(yīng)力疊加法,把力FN平移到形心。并添加上附加力偶矩Mz=Fly及My=Flz。在Mz作用下平面正y部分受壓,在My作用下平面正z部分受壓,受荷錨桿應(yīng)力為
(10)
由式(10)可知,應(yīng)力在截面上成線性分布,如圖10。
圖10 應(yīng)力疊加Fig. 10 The diagram of stress superposition
截面4根受荷錨桿的正應(yīng)力為
(11)
(12)
(13)
(14)
每根受荷錨桿所受的拉(壓)力為
Ft=σiA(i=1~4)
剪力計算
Fs=Fcosβ
假設(shè)4根錨桿所受剪力相同則錨桿所受剪力
重慶萬州首立山危巖W26破壞方式為滑移(圖11),危巖厚度為3 m,底寬為1 m,頂寬1 m,高4 m,在暴雨加自重工況下重度為25.3 kN/m3,裂隙深度3 m,裂隙充水高度1 m,水壓Q=5 kPa,后緣裂隙傾角β=67°,結(jié)構(gòu)面等效抗剪強度參數(shù)c=20 kPa,φ=16°,工程要求安全系數(shù)為1.3。帶入式(2)得F=286.11 kN。根據(jù)地勘資料可得圖12中O1為錨桿平面重心,O2為危巖體重心在錨桿平面的投影,O1O2之間的距離為ly=0.59 m,a=4.0 m,h=4.5 m,Iz=30.375 m4。
(15)
(16)
圖11 首立山危巖W26Fig. 11 W26 unstable rock of Shouli Mountain
圖12 首立山危巖W26立面Fig. 12 Elevation view of W26 unstable rock of Shouli Mountain
設(shè)計選用鋼筋為HRB235φ28,1根1束,根據(jù)上述計算公式可得σ1,2=106.99 MPa,σ3,4=106.97 MPa,因為1.3σ1,2=139.10 MPa 1.3τi=55.04 MPa<120 MPa 選用M30水泥砂漿,根據(jù)GB 50330—2013《建筑邊坡工程技術(shù)規(guī)范》鋼筋與錨固砂漿之間的錨固長度應(yīng)滿足 676.12 mm 據(jù)規(guī)范要求,巖石錨桿的錨固長度不應(yīng)小于3 m,綜上設(shè)計錨桿的錨固長度為3 m,錨桿水平傾角為90°-β。 我國山區(qū)地質(zhì)條件復(fù)雜,山區(qū)道路沿線危巖崩塌災(zāi)害頻發(fā)。山區(qū)道路危巖減災(zāi)成為保障山區(qū)道路工程建設(shè)和山區(qū)交通安全的重要問題。攔石網(wǎng)因其具有便于施工、工廠化、經(jīng)濟等優(yōu)勢,近年來被廣泛用于山區(qū)道路危巖崩塌防護,但缺乏完備的治理工程計算方法。將扶壁式攔石網(wǎng)的計算模型概化為失穩(wěn)危巖只引起一個網(wǎng)格的4根錨桿產(chǎn)生拉力。根據(jù)危巖體破壞機制,基于偏心拉伸模型和系統(tǒng)宏觀等效機制推導(dǎo)了3類危巖體扶壁式攔石網(wǎng)計算方法,獲得了扶壁式攔石網(wǎng)錨桿在該模型下拉力計算公式。通過對重慶萬州首立山危巖W26的算例分析,驗算了本計算方法的合理性和工程實用性。筆者推導(dǎo)的扶壁式攔石網(wǎng)簡化模型計算公式,可為柔性防護技術(shù)應(yīng)用于山區(qū)道路危巖帶的防治設(shè)計工作提供理論基礎(chǔ)。 [1] 崔鵬,林勇明,蔣忠信.山區(qū)道路泥石流滑坡活動特征與分布規(guī)律[J].公路,2007(6):77-82. CUI Peng,LING Yongming,JIANG Zhongxin.Activity characters and distribution rule of debris flow and landslide along mountain roads[J].Highway,2007(6):77-82. [2] 裴來政,葛永剛,周小軍,等.震后次生山地災(zāi)害對山區(qū)道路的危害及防治體系[J].西南科技大學(xué)學(xué)報,2010,25(4):44- 48. PEI Laizheng,GE Yonggang,ZHOU Xiaojun,et al.The damage of mountain disasters to mountain roads and the prevention system of mountain in roads to mountain disasters after the Wenchuan earthquake[J].JournalofSouthwestUniversityofScienceandTechnology,2010,25(4):44- 48. [3] 王元勛,姚令侃,崔鵬.脆弱西部山區(qū)環(huán)境下道路工程建設(shè)的可持續(xù)發(fā)展[J].路基工程,2004(3):1- 4. WANG Yuanxun,YAO Lingkan,CUI Peng.Weak sustainable development of road engineering construction environment in western mountain area under[J].SubgradeEngineering, 2004(3):1- 4. [4] 田強春,朱洪洲,王慶珍,等.西南山區(qū)干線公路阻斷狀況研究[J].重慶交通大學(xué)學(xué)報(自然科學(xué)版),2014,33(3):41- 44,57. TIAN Qiangchun,ZHU Hongzhou,WANG Qingzhen,et al.Blockade of trunk highway in southwest mountains areas[J].JournalofChongqingJiaotongUniversity(NaturalScience), 2014,33(3):41- 44,57. [5] 廖云平,王小委.重慶萬盛區(qū)刀子巖危巖穩(wěn)定性分析及防治[J].重慶交通大學(xué)學(xué)報(自然科學(xué)版),2014,33(3):92-97. LIAO Yunping,WANG Xiaowei.Stability evaluation and control strategy for Daoziyan unstable rock in Wansheng district of Chongqing[J].JournalofChongqingJiaotongUniversity(NaturalScience),2014,33(3):92-97. [6] 陳洪凱,唐紅梅,胡明,等.危巖錨固計算方法研究[J].巖石力學(xué)與工程學(xué)報,2005,24(8):1321-1327. CHEN Hongkai,TANG Hongmei,HU Ming,et al.Research on anchorage calculation method for unstable rock[J].ChineseJournalofRockMechanicsandEngineering, 2005,24(8):1321-1327. [7] ABD-ALLAH A M A,EL-SAWY E K,SEIF E S S A,et al.Rock slope stability and design in Arafat-Muzdalifa area,Saudi Arabia[J].ArabianJournalofGeosciences,2014,7(10):4029- 4042. [8] 潘亞南,呂漢川.窗簾式柔性防護網(wǎng)的設(shè)計與應(yīng)用[J].路基工程,2014(2):206-209. PAN Yanan,LV Hanchuan.The design and application of curtain type flexible protecting mesh[J].SubgradeEngineering,2014(2):206-209. [9] MOON T,OH J,MUN B.Practical design of rockfall catchfence at urban area from a numerical analysis approach[J].EngineeringGeology,2014,172(5):41-56. [10] 葉四橋,唐紅梅,祝輝.基于落石運動特性分析的攔石網(wǎng)設(shè)計理念[J].巖土工程學(xué)報,2007,29(4):566-571. YE Siqiao,TANG Hongmei,ZHU Hui.Design concept of safe net system based on analysis of motion trace of rockfall[J].ChineseJournalofGeotechnicalEngineering,2007,29(4):566-571. [11] 李晉文,王海城.公路沿線崩塌災(zāi)害動力特性研究[J].中外公路,2012,32(5):65-68. LI Jinwen,WANG Haicheng.Study on the dynamic characteristics of landslides along the highway[J].JournalofChina&ForeignHighway,2012,32(5):65-68. [12] 曾詩雅.公路邊坡被動柔性防護網(wǎng)性能分析研究[D].重慶:重慶交通大學(xué),2014. ZENG Shiya.StudyonPerformanceAnalysisofPassiveFlexibleProtectionNetworkforHighwaySlope[D].Chongqing:Chongqing Jiaotong University, 2014. [13] SPADARI M,GIACOMINI A,BUZZI O,et al.Prediction of the bullet effect for rockfall barriers:a scaling approach[J].RockMechanicsandRockEngineering, 2012,45(2):131-144. [14] TRAN P V,MAEGAWA K,F(xiàn)UKADA S.Prototype of a wire-rope rockfall protective fence developed with three-dimensional numerical modeling[J].Computers&Geotechnics,2013,54(10):84-93. [15] SASIHARAN N,MUHUNTHAN B,BADGER T C,et al.Numerical analysis of the performance of wire mesh and cable net rockfall protection systems[J].EngineeringGeology,2006,88(1):121-132. [16] SHU S,MUHUNTHAN B,BADGER T C,et al.Load testing of anchors for wire mesh and cable net rockfall slope protection systems[J].EngineeringGeology,2005,79(3):162-176. [17] 胡釗光.巖質(zhì)高邊坡 SNS 柔性防護網(wǎng)及其工程應(yīng)用[J].華北水利水電學(xué)院學(xué)報,2011,32(1):91-93. HU Zhaoguang.The SNS flexible safety net of high rock slope and its application[J].JournalofNorthChinaInstituteofWaterConservancyandHydroelectricPower,2011,32(1):91-93. [18] 羅敏敏,徐超.生態(tài)袋+SNS柔性防護網(wǎng)在巖石護坡中的應(yīng)用[J].地下空間與工程學(xué)報,2015,11(增刊1):278-281. LUO Minmin,XU Chao.Application of ecological bags with SNS flexible protection nets in ecological protection for steep rock slopes[J].ChineseJournalofUndergroundSpaceandEngineering, 2015,11 (Sup1):278-281. [19] 黃國彥,錢紅俊.主動柔性防護網(wǎng)在鎖蒙高速公路高邊坡治理中的應(yīng)用[J].公路交通科技 (應(yīng)用技術(shù)版),2013(9):38- 40. HUANG Guoyan,QIAN Hongjun.Application of active flexible protection net in the treatment of high side slope of the Suo Meng highway[J].JournalofHighwayandTransportationResearch(AppliedTechnologyEdition),2013(9):38- 40. [20] SHU S,SASIHARAN N,HATTAMLEH O A,et al.AnalysisandDesignofWireMesh/CableNetSlopeProtection[M].Washington State Department of Transportation,2005. [21] 陳洪凱,唐紅梅,王蓉.三峽庫區(qū)危巖穩(wěn)定性計算方法及應(yīng)用[J].巖石力學(xué)與工程學(xué)報,2004,23(4):614-619. CHEN Hongkai,TANG Hongmei,WANG Rong.Calculation method of stability for unstable rock and application to the Three Gorgers reservoir[J].ChineseJournalofRockMechanicsandEngineering, 2004,23(4):614-619. [22] 陳洪凱,唐紅梅.拉剪型危巖發(fā)育過程的模型試驗[J].重慶大學(xué)學(xué)報(自然科學(xué)版),2006,29(6):115-119. CHEN Hongkai,TANG Hongmei.Testing research on development of perilous rock in tension shear fracture[J].JournalofChongqingUniversity(NaturalScience),2006,29(6):115-119. [23] 重慶市設(shè)計院.建筑邊坡工程技術(shù)規(guī)范:GB 50330—2013[S].北京:中國建筑工業(yè)出版社,2013. Chongqing Architectural Design Institute of China.SlopeEngineeringTechnicalSpecificationofBuilding:GB50330—2013[S].Beijing:Chinese Building Industry Press,2013. (責(zé)任編輯:朱漢容) Calculation Method and Its Application of Counterforted Rock-Fall Barrier of Dangerous Rock Zone CHEN Hongkai,QIN Xin,TANG Hongmei (Institute of Geotechnical Engineering,Chongqing Jiaotong University,Chongqing 400074,P.R.China) The disaster prevention of dangerous rock in mountainous road is an important problem to ensure the road construction and traffic safety in mountainous areas.Rock-fall barrier is a flexible protection system used in the treatmemnt of dangerous rock zone in mountainous roads in recent years,but there is the lack of a complete calculation method of control engineering.The calculation model of counterforted rock-fall barrier was generalized as the dangerous rock instability only caused pulling force of four anchors in a mesh.Based on the eccentric tension model and system equivalent macro mechanism,the calculation method of the counterforted rock-fall barrier was derived and the tension calculation formula of the counterforted rock-fall barrier anchor was also obtained in the proposed model.The engineering practicability of the proposed calculation method was verified by the case study of crag W26 of Shouli Mountain in Wanzhou,Chongqing. highway engineering; dangerous rock zone; counterforted rock-fall barrier; design method and application 2016-06-27; 2016-09-02 國家自然科學(xué)基金項目(51378521);重慶市國土科技項目(CQGT—KJ—2014026);重慶市研究生科研創(chuàng)新項目(CYS15185) 陳洪凱(1964—),男,重慶人,教授,博士生導(dǎo)師,主要研究方向為動力地貌學(xué)、地質(zhì)安全理論及結(jié)構(gòu)健康。E-mail:chk99@163.com。 秦 鑫(1992—),男,重慶人,碩士研究生,主要研究方向為地質(zhì)災(zāi)害機理與防治技術(shù)。E-mail:qinxin_1992@foxmail.com。 10.3969/j.issn.1674-0696.2017.06.09 U416.02 A 1674-0696(2017)06-058-063 結(jié) 語