• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      Bicyclic Graphs with Extremal Multiplicative Degree-Kirchhoff Index

      2017-06-28 16:23:32,,,
      關鍵詞:基爾霍夫圖論中南

      , , ,

      (College of Mathematics and Statistics,South-Central University for Nationalities,Wuhan 430074,China)

      Bicyclic Graphs with Extremal Multiplicative Degree-Kirchhoff Index

      ZhuZhongxun,HongYunchao*,LuoAmu,WangWeifeng

      (College of Mathematics and Statistics,South-Central University for Nationalities,Wuhan 430074,China)

      distance;multiplicativedegree-Kirchhoffindex;bicyclicgraphs

      LetG=(V(G),E(G))beaconnectedsimplegraph.ThedistancedG(x,y)isdefinedasthelengthofashortestpathbetweenverticesxandyinG.SupposethatG1andG2aretwodisjointconnectedgraphswithu1∈V(G1)andu2∈V(G2),let(G1,u1)⊕(G2,u2)bethegraphcreatedbycoalescenceofverticesu1andu2.AgraphGiscalledbicyclicgraphif|E(G)|=|V(G)|+1[1,2].

      Fig.圖1 圖

      Fig.圖2 圖和

      The following lemmas that will be used in the proof of our main results.

      Lemma 1[4]Letube a cut vertex of a connected graphG,xandybe two vertices in different components ofG-u,thenrG(x,y)=rG(x,u)+rG(u,y).

      Lemma 2[7,8]LetPn,CnandSnbe the path,the cycle and the star onnvertices,respectively. Then

      R*(Sn)=(n-1)(2n-3).

      Lemma 3[7,8]LetG1andG2be connected graphs with disjoint vertex sets,withm1andm2edges,respectively. Letu1∈V(G1) andu2∈V(G2). Constructing the graphGby identifying the verticesu1andu2,and denote the so obtained vertex byu. Then

      1 Some Transformations

      Inthissection,wewillgivesometransformationswhichwilldecreaseorincreaseR*(G).

      Transformation1Letu1u2beacut-edgeofbicyclicgraphG,Cp,CqbetheconnectedcomponentsofG-u1u2,whereu1∈V(Cp),u2∈V(Cq) .

      ConstructingthegraphG*fromGbydeletingu1u2andidentifyingtheverticesu1,u2,denotethesoobtainedvertexbyu,addinganpendentedgeuv.

      Lemma4LetG,G*bethegraphsdescribedinTransformation1,thenR*(G)>R*(G*).

      ProofLet|V(Cp)|=p,|V(Cq)|=q,and|E(Cp)|=p,|E(Cq)|=q.LetH=G[V(G)(V(Cq)-u2)],H*=G[V(G*)(V(Cq)-u)].

      ByLemma3,wehave:

      Letβnbe the class of connected graphs onnvertices. By Transformation 1 and Lemma 4,we have the following result.

      Corollary 1 LetG0be a graph with the smallest multiplicative degree-Kirchhoff index inβn,then all cut-edges are pendent edges.

      Transformation 2 LetGbe a bicyclic graph withV(G)={u,v,v1,v2,…,vs}∪V(Cp)∪V(Cq),for whichvis a vertex of degrees+1 such thatvv1,vv2,…,vvsare pendent edges incident withv,anduis the neighbor ofvdistinct fromvithat is on the cycleCq. The other cycleCponly has one common vertexwwithCq. We form a graphG′=σ(G,v) by deleting the edgesvv1,vv2,…,vvsand adding new edgesuv1,uv2,…,uvs. We say thatG′ is aσ-transform of the graphG.

      Lemma 5 LetGandG′ be the graphs defined in Transformation 2. ThenR*(G)>R*(G′).

      Proof LetT=G[{v,v1,v2,…,vs}],H=G[V(G)V(T)],then

      dG(u)dG(v)rG(u,v).

      dG′(u)dG′(v)rG′(u,v).

      Lemma 6 LetG0be a bicyclic graphGwithV(G)={v1,v2,…,vs}∪V(Cp)∪V(Cq),for whichuis a vertex of degrees+2 in the cycleCqof the bicyclic graphG0,anduv1,uv2,…,uvsare pendent edges incident withu,and the other cycleCponly has one common vertexwwithCq. Let graphG1delete the edgesuv1,uv2,…,uvs,and add new edgeswv1,wv2,…,wvs. ThenR*(G0)>R*(G1).

      Proof LetG=G0[V(Cp)∪V(Cq)],H0=G[V(G0)(V(G)-u)],andH1=G[V(G1)(V(G)-w)],thenH0?H1?K1,s. By Lemma 3,we have:

      R*(G1)=R*(G)+R*(K1,s)+

      Hence we get:

      Then we haveR*(G0)>R*(G1).

      Transformation 3 LetGbe a bicyclic graph withV(G)={u,v,v1,v2,…,vs}∪V(Cp)∪V(Cq),for whichvis a vertex of degrees+1 such thatvv1,vv2,…,vvsare pendent edges incident withv,anduis the neighbor ofvdistinct fromvithat is on the cycleCq. The other cycleCponly has one common vertexwwithCq. We form a graphG″=π(G,v) by deleting the edgesvv1,vv2,…,vvsand connectingviand all the isolated vertices into a pathvv1v2…vs.

      We say thatG″ is aπ-transform of the graphG.

      Lemma 7 LetGandG″ be the graphs defined in Transformation 3. ThenR*(G)

      Proof LetT=G[{v,v1,v2,…,vs}],H=G[V(G)V(T)],R*(G) is defined in Lemma5,then

      dG″(u)dG″(v)rG″(u,v).

      Hence we have:

      Lemma 8 LetG0be a bicyclic graph with the vertex setV(Cp)∪V(Cq)∪V(Ps+1), in whichV(Cp)∩V(Ps+1)={v} andV(Cq)∩V(Ps+1)={w}. Forwa∈E(Ps+1), andu∈V(Cq), letG1=(G0-{aw})∪{ua},thenR*(G0)>R*(G1).

      Proof LetH,H0andH1be the graphs as shown in Fig.3,then we have

      G0=(H,vs-1)⊕(H0,a),

      G1=(H,vs-1)⊕(H1,w).

      By Lemma 3,we have:

      R*(G0)=R*(H)+R*(H0)+2(q+1)·

      R*(G1)=R*(H)+R*(H1)+2(q+1)·

      HenceR*(G0)-R*(G1)=4(p+s-1)[q-rCq(w,u)]≥0. Ifq=rCq(w,u),thenwanducoincidence,G0andG1is isomorphic. SinceG0andG1is not isomorphic,therefore we getR*(G0)-R*(G1)>0. This completes the proof.

      Fig.3 Graphs H,H0 and H1圖3 圖H,H0和H1

      2 Main results

      In this section,we will characterizen-vertex bicyclic graphs with exactly two cycles having the minimum and maximum multiplicative degree-Kirchhoff index.

      (1) In Fig.1,Tvi,TujandTwkare all stars with their centers atvi,ujandwkfor eachi,jandk.

      Without loss of generality,suppose that treeTviis not a star. LetG1be constructed fromG0by deleting all the edges ofTviand connecting all the isolated vertices tovi. By Lemma 5,we haveR*(G0)>R*(G1),which contradicts the choice ofG0. Hence (1) holds.

      (2) The length of the path connects the two cycles inG0is zero.

      Suppose that there exist the length of path isk(k≥1) inG0. Assume thatv1=w0,u1=wk. Lete=wiwi+1be an edge of path. LetG2be the graph obtained fromG0by first contractingeand then attaching a pendent edgewiatowi. Assume thatG01andG02are two components ofG0-eandG21andG22are copies ofG01andG02inG2,respectively. See Fig.4.

      Fig.4 Graphs G0 and G2圖4 圖G0和G2

      By Lemma 4 and Corollary 1,we haveR*(G0)>R*(G2). This contradicts the hypothesis. Hence (2) holds.

      (3) In Fig.1,ifp+q≤n,then onlyTv1(Tv1=Tu1) is nontrivial.

      Without loss of generality,suppose to the contrary that treeTui(i≠1) is nontrivial. By Lemma 6,we getR*(G0)>R*(G1), which contradicts the choice ofG0. Hence (3) holds .

      According to (1)-(3),we get Theorem 1 .

      (1) In Fig.1,Tvi,TujandTwkare all paths with their centers atvi,ujandwkfor eachi,jandk.

      Without loss of generality,suppose that treeTviis not a path. LetG1be constructed fromG0by deleting all the edges ofTviand connecting all the isolated vertices into a path. By Lemma 7,we haveR*(G1)>R*(G0),which contradicts the choice ofG0. Hence (1) holds.

      (2) Assume thatTw0=Tv1andTwm=Tu1,thenTwiis trivial 0≤i≤m).

      If not,without loss of generality,suppose that there is nontrivialTwj. By (1),we know thatTwjis a path withwjas its end vertex and assume thatuis the other end vertex. LetG2=G0-wjwj+1+uwj+1(ifj=m,G2=G0-wj-1wj+uwj-1). Assume thatG01andG02are two components ofG0-wjwj+1andG21andG22are two components ofG2-uwj+1. See Fig.5.

      In the following,we proveR*(G2)>R*(G0).

      LetH0=G02+wjwj+1,H2=G22+uwj+1,rG(wj,u)=s, then by Lemma 3,we get:

      Ifs=0,thenG0andG2isisomorphic.SinceG0andG2isnon-isomorphic.ThereforeweobtainR*(G2)>R*(G0).

      Thiscontradictsthehypothesis.Hence(2)holds.

      (3)InFig.1,ifp+q≤n,thenTviandTujaretrivialforeachiandj.

      Fig.5 Graphs G0 and G2 圖5 圖G0和G2

      Without loss of generality,suppose to the contrary that treeTvi(i≠1) is nontrivial. By Lemma 8,we getR*(G0)>R*(G1), which contradicts the choice ofG0. Hence (3) holds.

      According to (1)-(3),we get Theorem 2.

      3 Bicyclic graphs with extremal multiplicative degree-Kirchhoff index

      Proof Letu1,u2,wbe three successive vertices lying on theCpof the bicyclic graphG1. The other cycleCqonly has one common vertexwwithCp. Andwv1,wv2,…,wvsare pendent edges incident withw.

      Let the graphG2is obtained by deleting the edgesu1u2and adding the edgewu2. ThenR*(G2)<

      R*(G1).

      LetH1=G[V(G1)(V(Cq)-w)],H2=G[V(G2)(V(Cq)-w)],then

      ProofLetu1,w,u2bethreesuccessiveverticeslyingontheCpofthebicyclicgraphG3.ThecycleCpandCqarelinkedwithtwoendverticesvandwofPs+1.LetthegraphG4isobtainedbydeletingtheedgewu2andaddingtheedgeu1u2.ThenR*(G4)>R*(G3).

      LetH3=G[V(G3)(V(Cp)-w)],H4=

      G[V(G4)(V(H3)-w)].Then

      Similarly,bydirectcalculation,wehave:

      [1]BondyJA,MurtyUSR.Graphtheorywithapplications[M].NewYork:Macmillan,1976: 16-93.

      [2] Liu J B,Zhang S Q,Pan X F,et al. Bicyclic graphs with extremal degree resistance distance [EB/OL].(2016-01-03)[2016-12-28].http://www.arXiv:1606.01281v1.com/2016/01/03/bicyclic-graphs-with-extremal-degree-resistance-distance/.

      [3] Bonchev D,Balaban A T,Liu X,et al. Molecular cyclicity and centricity of polyclic graphs I cyclicity based on resistance distances or reciprocal distances [J]. Int J Quantum Chem,1994,50: 1-20.

      [4] Klein D J,Randic M. Resistance distance [J]. J Math Chem,1993,12: 81-95.

      [5] Gutman I,Feng L. Degree resistance distance of unicyclic graphs [J]. Trans Comb 1,2012,1: 27-40.

      [6] Chen H Y,Zhang F J. Resistance distance and the normalized Laplacian spectrum [J]. Discr Appl Math,2007,155: 654-661.

      [7] Palacios J L,Renom J M. Another look at the degree-Kirchhoff index [J]. Int J Quantum Chem,2011,111:3453-3455.

      [8] Palacios J L. Upper and lower bounds for the additive degree-Kirchhoff index [J]. Match Commun Math Comput Chem,2013,70:651-655.

      2016-11-17 *通訊作者 洪運朝,研究方向:圖論;E-mail:331963706@qq.com

      朱忠熏(1973-),男,副教授,博士,研究方向:圖論;E-mail:zzxun73@mail.scuec.edu.cn

      國家自然科學基金資助項目(61070197);中南民族大學中央高?;究蒲袠I(yè)務費專項資金資助項目(CZQ10007)

      O

      A

      1672-4321(2017)02-0148-07

      具有乘積度-基爾霍夫指標極值的雙圈圖

      朱忠熏,洪運朝*,羅阿木,王維峰

      (中南民族大學 數(shù)學與統(tǒng)計學學院,武漢430074)

      距離;乘積度-基爾霍夫指標;雙圈圖

      猜你喜歡
      基爾霍夫圖論中南
      圖的電阻距離和基爾霍夫指標綜述
      正則圖的Q-圖的(度)基爾霍夫指標
      基于FSM和圖論的繼電電路仿真算法研究
      基爾霍夫定律與初中電學知識的聯(lián)系與應用
      活力(2019年15期)2019-09-25 07:22:40
      如何做好基爾霍夫定律的教學設計
      構(gòu)造圖論模型解競賽題
      《中南醫(yī)學科學雜志》稿約
      中南醫(yī)學科學雜志
      點亮兵書——《籌海圖編》《海防圖論》
      孫子研究(2016年4期)2016-10-20 02:38:06
      圖論在變電站風險評估中的應用
      電測與儀表(2015年3期)2015-04-09 11:37:54
      郓城县| 井冈山市| 北碚区| 安丘市| 黄冈市| 都匀市| 怀宁县| 江川县| 富阳市| 寻乌县| 沽源县| 沾化县| 贞丰县| 平凉市| 台江县| 兴国县| 台北市| 尼玛县| 兴山县| 甘谷县| 石渠县| 广宁县| 噶尔县| 盐源县| 抚顺县| 西华县| 辉南县| 钦州市| 固安县| 池州市| 扎兰屯市| 云龙县| 金平| 汝南县| 钟山县| 五指山市| 富民县| 梁河县| 安顺市| 民县| 广平县|