• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photocatalytic Hydrogen Production Based on Cobalt-Thiosemicarbazone Complex with the Xanthene Dye Moiety

    2017-07-05 14:55:49YANGLinLinJINGXuHEChengDUANChunYing
    無機化學學報 2017年6期
    關鍵詞:二苯基產(chǎn)氫光敏劑

    YANG Lin-LinJING XuHE ChengDUAN Chun-Ying

    (State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian,Liaoning 116024,China)

    Photocatalytic Hydrogen Production Based on Cobalt-Thiosemicarbazone Complex with the Xanthene Dye Moiety

    YANG Lin-LinJING XuHE Cheng*DUAN Chun-Ying

    (State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian,Liaoning 116024,China)

    Two cobalt complexes containing NSP(nitrogen-sulphur-phosphor)chelator prepared from thiosemicarbazone ligands with different terminal functional groups and triphenylphosphine moiety have been synthesized in high yield and characterized.Their photocatalytic activity for hydrogen evolution under visible light irradiation was investigated.The photocatalyst[Co(L2)(L2′)](BF4)2.5·H2O·0.5C2H5OH(2)(L2=2-(diphenylphosphino)benzylidene-2-(3,6-bis(ethylamino)-2,7-dimethyl-9H-xanthen-9-yl)benzothiohydrazide,L2′=2-(diphenylphosphinooxide)benzylidene-2-(3,6-bis(ethylamino)-2,7-dimethyl-9H-xanthen-9-yl)benzothiohydrazide) containing rhodamine groups exhibited activity in light driven hydrogen evolution with the TON and initial TOF reaching to 2 800 molH2·and 930 molH2··h-1,respectively,which is much higher than that of complex [Co(L1)(L1′)](BF4)·0.5H2O(1)(L1=2-(diphenylphosphino)benzylidene hydrazinecarbodithionate,L1′=2-(diphenylphosphinooxide)benzylidene hydrazinecarbodithionate)under similar conditions.The higher catalytic activity was attributed to the potential intermolecular π-π stack interactions between the catalyst 2 and photosensitizer fluorescein(Fl)benefiting the photoinduced electron transfer between the photosensitizer and the photocatalyst. CCDC:1523357;1,1523358,2.

    photoinduced electron transfer;cobalt;thiosemicarbazone;light driven H2production

    0 Introduction

    The global increase in CO2emissions due to uninhibited fossil fuel use has led to explore new renewable and clean energy resources.Photo-induced catalytic splitting of water to non-carbon-contain fuels, i.e.hydrogen,is a promising approach in converting solar energy into storable chemical energy[1-5].As a redox reaction,water splitting can be divided into two reactions:(i)water oxidation,to yield O2and(ii)water reduction,producing H2.In an artificial photosynthetic (AP)system,the reductive side of water splitting is the light-driven generation of hydrogen from aqueous protons.A variety of photocatalytic systems have been broadly investigated for solar hydrogen production[6-13]. MostofthephotocatalyticH2-productionsystems involve three important components:a light-absorbing photosensitizer(PS),a water-reducing catalyst(WRC), and a sacrificial reductant.While noble metal cocatalysts such as Pt and Pd were widely used for photocatalytic H2evolution,but the scarcity and high cost of precious metals pose serious limitations to wide use.Hence,the development of efficient catalysts for water reduction to H2made of inexpensive,earthabundant elements such as Fe,Co,Ni,and Cu has become a prime focus of research on light-driven hydrogen generation.

    In an effort to find stable earth-abundant WRCs, a few recent reviews on catalysts made of earthabundant elements for water splitting have been published[14-16].In particular,thiosemicarbazone ligands have been used as versatile molecules,arising from the possibility to act as N,S-donor systems[17-18].And the number of potential donor atoms can be increased by using carbonylic compounds that contain additional donorgroupsinsuitablepositionsforchelation. Moreover,they provide a conventional proton immigration path through the thiolate/thioamide resonance tautomer equilibrium[19-20],which have potential future for multi-electron transfer chemistry in H2reduction. And these cobalt thiosemicarbazone complexes have gainedmuchinterestandmightbepromising candidates for proton reduction,in the case that the redox potential of the complex was well modified[21-22]. In this article,we introduced a triphenylphosphine moietyastheadditionaldonortoenhancethe coordination ability and modify the redox potential of the metal centres(Scheme 1)[23-24].Recent advances have reported Ni-bis(diphosphine)complexes act as effectivereductioncatalystsforelectrochemical photocatalytical hydrogen production in homogeneous system[25-26].We expected that the presence of S and P donors would possibly facilitate the formation of reducing species and increase the catalytic efficiency for the H2evolution[27].Herein,we introduced the rhodamine-modifiedligandstoimprovethelight absorption efficiency and electron transfer ability between the catalyst 2 and photosensitizer Fl.The photocatalytic activity of catalyst 2 was higher than that of 1 under low catalyst concentration.The photoinduced electron transfer pathway mechanisms for the hydrogen evolution in these cobalt-thiosemicarbazone complexes were also proposed.

    Scheme 1Structures of thiosemicarbazone ligands L1 and L2

    1 Experimental

    1.1 Materials and physical measurements

    All chemicals were of reagent grade quality obtained from commercial sources and used without further purification.The elemental analyses of C,H and N were performed on a Vario ELⅢelemental analyzer.1H NMR spectra were measured on a Varian INOVA 400M spectrometer.ESI mass spectra were carried out on a HPLC-Q-Tof MS spectrometer.The fluorescent spectra were measured on a JASCO FP-6500.

    CyclicVoltammogrammeasurements:Electrochemical measurements of catalysts 1 and 2 were performed in CH3CN solutions with 0.1 mol·L-1TBAPF6workingonZAHNERENNIUMElectrochemical Workstation with ahomemadeAg/AgCl electrode as a reference electrode,a platinum silk with 0.5 mm diameter as a counter electrode,and glassy carbon electrode as a working electrode.The addition of NEt3HCl(0.1 mol·L-1in CH3CN)was carried out with syringe.

    Fluorescence quenching experiments:A solution (2.0 mL)of Fl at 10 μmol·L-1concentration in a EtOH/H2O solution(1∶1,V/V,pH=11.6)was prepared in a quartz cuvette fitted with a septum cap,and the solution was degassed under N2for 5 min.Aliquots of 20 μL of NEt3and the catalysts(2.5 μmol·L-1)were added,and the intensity of the fluorescence was monitored by steady state fluorescence exciting at 460 nmonaSpexFluoromax-Pfluorimeterwitha photomultiplier tube detector.

    Photocatalytic water splitting experiments:Varying amounts of the catalysts 1 and 2,Fl and NEt3in EtOH/H2O solution(1∶1,V/V)were added to obtain a total volume of 5.0 mL in a 20 mL flask.The flask was sealed with a septum and degassed by bubbling argon for 15 min.The pH value of this solution was adjusted to a specific pH value by adding HCl or NaOH and measured with a pH meter.After that,the samples were irradiated by a 500 W Xenon lamp with the 400 nm light filter,and the reaction temperature was maintained at 293 K by using a thermostat water bath.The generated photoproduct of H2was characterized by GC 7890T instrument analysis using a 5A molecular sieve column(0.6 m×3 mm),thermal conductivity detector,and argon used as carrier gas. The amount of hydrogen generated was determined by the external standard method.

    1.2 Synthesis of L1 and L2

    The ligand L1 was synthesized by using the reported methods[28].Anal.Calcd.for C21H19N2PS2(%): H,4.85;C,63.9;N,7.1;Found(%):H,5.10;C,63.3; N,7.2.1H NMR(CDCl3,400 MHz):10.2(s,1H),8.6 (d,1H),8.2(m,1H),7.1~7.5(m,13H),2.6(s,3H). API-MS m/z:393.07([M-H]+).

    The ligand L2 was synthesized according to procedures reported previously[29].Anal.Calcd.for C45H43N4SOP(%):H,6.03;C,75.2;N,7.8;Found(%): H,6.11;C,74.9;N,8.0.1H NMR(CDCl3,400 MHz): 9.37(s,1H),8.4(t,1H),8.11(d,1H),8.08(m,1H), 7.6~7.7(m,4H),7.4~7.6(m,10H),7.38(m,3H),7.3 (m,2H),6.5(s,2H),6.2(s,2H),3.1(m,2H),1.13(m, 3H);API-MS m/z:715.0([M-H]+).

    1.3 Synthesis of complex 1

    The ligand L1(0.6 mmol,0.236 g)and Co(BF4)2· 6H2O(0.3 mmol,0.1 g)was dissolved in 10 mL ethanol.The solution was refluxed for 2 h,and then slowly evaporated at room temperature.The red block crystals were obtained in several days.Yield:~55%. ESI-MS m/z:845.23 for the+1 charge cation.Anal. Calcd.for CoC42H37N4OP2S4BF4·0.5H2O(%):H,3.99;C, 52.6;N,5.84;Found(%):H,4.02;C,52.1;N,5.89. IR(KBr,cm-1):3 424(br),3 056(m),1 630(s),1 586 (s),1 480(m),1 460(m),1 436(m),1 313(s),1 127 (m),1 063(m),1 012(m),875(s),754(m),727(m), 696(m),562(m),526(m),498(m).

    1.4 Synthesis of complex 2

    Co(BF4)2·6H2O(0.05 mmol,0.017 g)and the ligand L2(0.05 mmol,0.035 g)was dissolved in 15 mL of dichloromethane/ethanol(1∶1,V/V).The solution was stirred at boiling temperature for 2 h to obtain a clear black red solution and allowed to stand at room temperature.Theredblockcrystalssuitablefor single-crystal X-ray diffraction were obtained.Yield:~40%.ESI-MS m/z:(2L2+Co)3+,497.16;(2L2+Co+BF4)2+, 789.76.Anal.Calcd.for CoC91H85.5N8O3P2S2B2.50F10·H2O ·0.5C2H5OH(%):H,5.15;C,61.7;N,6.33;Found(%): H,5.20;C,61.1;N,6.37.IR(KBr,cm-1):3 243(br), 2 973(s),1 647(m),1 606(m),1 560(m),1 527(m), 1 499(m),1 446(s),1 366(s),1 306(m),1 243(m), 1 186(m),1 124(m),1 083(m),944(s),882(s),748 (s),693(m),611(m),522(s).

    1.5 X-ray crystallography

    The data were collected on a Bruker Smart APEXⅡX-diffractometer equipped with graphite monochromatedMo Kα radiation(λ=0.071 073 nm) using the SMART and SAINT[30]programs at 296 K for complexes 1 and 2.Final unit cell parameters were based on all observed reflections from integration of all frame data.The structures were solved in thespace group by direct method and refined by the fullmatrix least-squares using SHELXTL-97 fitting on F2[31]. For complexes 1 and 2,all non-hydrogen atoms were refinedanisotropically.Exceptthesolventwater molecules,the hydrogen atoms of organic ligands were located geometrically and fixed isotropic thermal parameters.The BF4-groups in complex 2 were disordered; therefore,large thermal displacement parameters were foundfortheseatomsandrefinedwithpartialoccupancy. One of the benzene rings was disordered into two parts with the S.O.F.(sites occupied factor)of each part being fixed as 0.5.One ethylamine moiety and ethyl groups in complex 2 were disordered into two parts with the S.O.F.of each part being fixed as 0.5. The crystal data and details of the structure refinement of complexes 1 and 2 are summarized in Table 1.

    CCDC:1523357;1,1523358,2.

    Table 1Crystal data and structure refinements for complexes 1 and 2

    2 Results and discussion

    2.1 Crystal structural description

    Single-crystalstructurerepresentationforthe complexes 1 and 2 are shown in Fig.1.In the crystal of complex 1,each central cobalt environment can be described as a distorted octahedron,comprising two N, S atoms from thiosemicarbazone groups,one P atoms from the triphenylphosphine group and the O atom originated from oxidized P atom.One of the P atoms in the ligand L1 was oxidized under the synthesis process.The two ligands bind to a cobalt(Ⅱ)in a mer configurationasfoundintherelatedcobalt thiosemicarbazone complexes[32-33].The C-S,C-N and N-N bond distances are agreed well with the normal range of single and double bonds,resulting in the extensiveelectrondonationenvironmentoverthe entire molecular skeleton[34-35].Similar to the complex 1,in the crystal of complex 2,the metal center was octahedrally coordinated by two N,S atoms and a P or O chelator atom that originated from the different ligands L2 and L2′.And the distance between two xanthene rings of rhodamine ligands in adjacent complex was 0.36 nm.The presence of intermolecular strongπ-πstackinginteractionsbetweenthe rhodaminegroupsimpliedthepossibilityontheformation of π-π interaction between complex 2 and the xanthene rings within the photosensitizer Fl.As a result,the photogenerated electron would be easily immigratedbetweenthephotosensitizerandthe photocatalyst during the photoreduction processes, which was beneficial to achieve the high activity in the photocatalytic system[36].

    Fig.1 Single-crystal structure representations of 1(a)and 2(b)showing the coordination geometry of the metal ion

    2.2 Cyclic voltammetry of the complexes

    The cyclic voltammetry shows that the redox potential of Co(Ⅱ)/Co(Ⅰ)occurs at-1.0 V and-0.87 V for 1 and 2,respectively.And the complex 2 exhibits one inreversible Co(Ⅱ)/Co(Ⅰ)redox process at-0.6 V. To investigate the role of the Co complex as a WRC catalyst,cyclic voltammetry was performed in the presence of increasing amounts of NEt3HCl.Addition of NEt3H+with increasing amounts triggers the appearance of a new irreversible cathodic wave near the Co(Ⅱ)/Co(Ⅰ)response[37-38].Increasing the concentrationof NEt3H+raises the height of the new wave and shifts it to more negative potentials,indicating that complexes 1 and 2 are able to reduce the proton with a catalysis process.This observation indicates direct protonation of the reduced Co(Ⅰ)center and also shows that the protonation process is fast in the overall catalytic rate.

    Fig.2Cyclic Voltammogram of 1(a)and 2(b)(1 mmol·L-1)in CH3CN with 0.1 mol·L-1TBAPF6upon addition of NEt3HCl with different concentrations

    2.3 Complexes 1 and 2 as efficient quencher for the photosensitizer Fl

    Complexes 1 and 2 also serves as an efficient quencher for the photosensitizer Fl.To verify this hypothesisfurther,theStern-Volmerquenching constant Kqin this system was calculated as 1.9×104L·mol-1upon the addition of 1 into Fl solution in EtOH/H2O(1∶1,V/V).The quenching behavior can be considered as a photoinduced electron transfer process from excited state of Fl*to 1,providing possibilities for Fl to activate complex 1 producing H2in solution. Although the Kqfor the catalyst 1 was higher than that reported for NEt3(0.44 L·mol-1),the concentration of NEt3(1.08 mol·L-1,15%)in the actual photocatalytic reactions is much higher than the catalyst 1(10 μmol·L-1).A photoinduced electron transfer from the NEt3to the excited state of Fl(reduction quenching) dominated the homogeneous photolysis of the reaction mixture instead of direct quenching by 1.As the Stern-Volmer quenching constant of 2(9.85×104L· mol-1)is higher than that of complex 1(Fig.3).It indicates that the modified rhodamine group was in favor of the electronic transport between the catalyst 2 and photosensitizer Fl.When the concentration of NEt3was fixed at 0.5 mol·L-1(7%,V/V)and catalyst 2 was fixed at 10 μmol·L-1under the photocatalytic condition,the direct luminescence quenching of Fl by the catalyst 2 should be largely dominated by the oxidative quenching.The initial photochemical step was the formation of Fl+caused by 2[39-40].Because both the photosensitizer Fl and the rhodamine-based catalyst contain highly conjugated xanthene moieties, Fl molecules might have strong π-π stacking interact with the catalyst 2,which is beneficial to transfer electrons from the photoexcited Fl*to 2[41].This process led to a more efficient separation of the photogeneratedelectrons,thussuppressingthe combinationofelectronsthatwouldresultin undesired radiative transition.Therefore,the photoinduced electron transfer pathway obtained by the catalyst2couldpotentiallybebenefitforthe construction of efficient photocatalytic systems.

    2.4 Complex 1 as a WRC

    Protonreductioncatalyticactivityof1was evaluated by coupling it with Fl as a photosensitizer (PS)upon irradiation with visible light(λ>400 nm)in an EtOH/H2O(1∶1,V/V)solvent mixture containing NEt3at room temperature[42-44].The optimum pH value of the reaction mixture was maintained at 11.5, decreasing or increasing pH values resulted in both a lower initial rate and shorter system lifetime for hydrogen evolution(Fig.4a).The efficiency of thevisible light induced hydrogen evolution depends on the concentration of sacrificial reagent NEt3.The optimal concentration is 15%,with a decrease of activity at lower or higher concentration.Furthermore, the addition of two of the three components of the homogeneous systems could not give any further H2evolution which indicated that both the 1 and Fl were decomposed during the photolysis.

    Fig.3Family of the emission spectra of fluorescein solution(10 μmol·L-1)in EtOH/H2O(1∶1,V/V)solution upon addition of catalyst 1(a)and 2(b)with various concentration

    Fig.4Initial rates of H2production in systems containing 1,Fl and 15%(V/V)of NEt3with different pH values(a)and containing 1,Fl at pH 11.5 with different concentrations of NEt3(b);Photocatalytic hydrogen evolution of systems containing Fl,15%(V/V)NEt3with different concentrations of 1(c)and containing 1,15%(V/V)NEt3with different concentrations of Fl(d)

    In the system with Fl and NEt3at fixed concentrations,the initial rate of H2generation exhibits a first-order dependence on catalyst 1.At 10.0 μmol·L-1catalysts 1 and 2 mmol·L-1Fl,this system exhibits a TON of 2 267 molH2·after 10 hours and an initial TOF of 220 molH2··h-1.At higher catalyst concentrations,even though a larger amount of H2is evolved,the TON does not scale linearly with catalyst concentration due to the limited lifetime of the system. To determine the limit of this system,an additional experiment was carried out at different Fl concentrations shown in Fig.4d.At higher Fl concentration as 4 mmol·L-1,there is no continuous increased H2generation detected in 10 h.The TOF reaches a maximum at 2.0 mmol·L-1Fl,which indicates that the system is limited by the concentration of the catalyst.The system has a longer life time at higher Fl,thus suggesting that Fl decomposes during photolysis.This phenomenon also demonstrates that the reductive quenching path way dominates in the system of catalyst 1.

    2.5 Complex 2 as a WRC

    Through investigating the influence of different pH values and concentration of NEt3,we found thehighest efficiency of H2production could be achieved at pH 11.6 and NEt37%.For initial experiments,the Fl concentration in the reaction vials was kept at 2 mmol·L-1,while a 5 μmol·L-1catalyst concentration was chosen.The initial TOF calculated was 346.5 molH2··h-1in 5 h with the TON of about 1 732 molH2·To further probe the photocatalytic process, concentrations of both the Fl and the catalyst 2 were varied.Details of the effect of reactant concentration on H2evolution are depicted in Fig.5.In terms of catalyst turnovers,it was observed that the photocatalytic system performs better at high Fl concentration and low catalyst concentration.These results pointed toward high degradation degree of the catalyst 2,which was more notable at higher concentrations. As shown in Table 2,in the same reaction condition, catalyst 2 has a higher TON and TOF than catalyst 1 in the concentration of 5 μmol·L-1for catalyst. However,in the higher catalyst concentration of 20 μmol·L-1,the catalyst 1 showed the better photocatalytic activity than catalyst 2.It was attribute to the self-stacking interaction of rhodamine group in high concentration which reduced the electronic transfer ability between the catalyst 2 and Fl.And in the same catalyst concentration,catalyst 2 exhibited higher TON and TOF than catalyst 1 in different Fl concentration in 5 h.These results demonstrated that the fast electronic transfer in catalyst 2 was benifit for the photocatalytic system in low catalyst concentration. When the concentration of the catalyst was lowered from 5 μmol·L-1to 1 μmol·L-1,keeping the Fl at the optimalconcentration,thehydrogenevolution continued within 3 hours.Although the quantity of hydrogen production decrease,it ledtoalargeincrease in turnovers yielding up to 2 800 molH2·and the highest TOF 930

    Fig.5Photocatalytic hydrogen evolution of systems containing Fl,NEt3with different concentrations of 2(a)and containing 2, NEt3with different concentrations of Fl(b)

    Table 2Data of hydrogen production test in 5 h for complexes 1 and 2

    The light induced H2evolution varied on the concentration of Fl,and the increasing of Fl amount caused the increasing of TON.These results suggest both the 2 and Fl were decomposed during the photolysis,but the decompose rate of Fl was much higher than that of the catalyst 2.The photocatalytic activity of catalyst 2 was decreased after 5 h,while catalyst 1 showed better activity in 10 h.The life time of the hydrogen evolution system was shorten,which could be due to the cooperation effect between rhodamine groups and Fl.This fast energy transfer process resulted the quick decompose of Fl and catalyst 2.Relative to catalyst 1,catalyst 2 has a higher hydrogen production rate in the beginning of the reaction process which also demonstrated the fast electron transfer in rhodamine-modified systems.A tentative mechanism proposed for the high activity of catalyst 2 for the production of H2has been deduced. Photogenerated electrons in Fl firstly transfer to the rhodamine groups in 2 under illumination with visible lightthroughthepossibleintermolecularπ-π interactions,and then the ligands transfer electrons to the Co center,where H2evolution reactions occur.At last,the electron donor NEt3restore the excited Fl+to the ground state to complete the catalytic cycle.

    3 Conclusions

    In summary,we reported a simple but effective method to gain cobalt-thiosemicarbazone complexes 1 and2astheefficientwaterreductivecatalyst. Structures of these complexes were determined by single crystal X-ray analysis.Electrochemical analysis demonstrated their WRC activity in presence of a protonsourceofNEt3HCl.Thewaterreduction properties of the catalyst were evaluated using Fl as PS with NEt3as the sacrificial donor.Introducing the rhodamine group which could cooperate with the photosensitizer makes the catalyst 2 more efficient with the TON and initial TOF reaching to 2 800 molH2·and 930 molH2··h-1.The higher photocatalytic activity in lower catalyst concentration and short time indicates the fast electron transfer ability between the catalyst 2 and photosensitizer Fl.The photocatalytic process is dominated by the oxidative quenching with the formation of Fl+caused by 2 which is benefit for the hydrogen evolution.All these workdeclarethebrightfutureofthethiosemicarbazone complex in hydrogen evolution.

    [1]Cook T R,Dogutan D K,Reece S Y,et al.Chem.Rev., 2010,110:6474-6502

    [2]Bard A J,Fox M A.Acc.Chem.Res.,1995,28:141-145

    [3]Chen X,Liu L,Yu P Y,et al.Science,2011,331:746-750

    [4]Wang F,Wang W G,Wang X J,et al.Angew.Chem.,Int. Ed.,2011,50:3193-3197

    [5]Yuhas A D,Smeigh A L,Douvalis A P,et al.J.Am.Chem. Soc.,2012,134:10353-10356

    [6]Kluwer A M,Kapre R,Hartl F,et al.PNAS,2009,106:10460 -10465

    [7]Zhang P,Wang M,Li C,et al.Chem.Commun.,2010,46: 8806-8808

    [8]McNamara W R,Han Z,Alperin P J,et al.J.Am.Chem. Soc.,2011,133:15368-15371

    [9]McCormick T M,Calitree B D,Orchard A,et al.J.Am. Chem.Soc.,2010,132:15480-15483

    [10]McLaughlin M P,McCormick T M,Eisenberg R,et al.Chem. Commun.,2011,47:7989-7991

    [11]Han Z,McNamara W R,Eum M S,et al.Angew.Chem.Int. Ed.,2012,51:1667-1670

    [12]Zhang W,Hong J,Zheng J,et al.J.Am.Chem.Soc.,2011, 133:20680-20683

    [13]WEN Fu-Yu(溫福宇),YANG Jin-Hui(楊金輝),ZONG Xu (宗旭),et al.Prog.Chem.(化學進展),2009,21(11):2285-2302

    [14]Artero V,Chavarot-Kerlidou M,Fontecave M.Angew Chem, Int Ed.,2011,50:7238-7266

    [15]Lin Y,Yuan G,Sheehan S,et al.Energy Environ.Sci.,2011, 4:4862-4869

    [16]Lobana T S,Sharma R,Bawa G,et al.Coord.Chem.Rev., 2009,253:977-1055

    [17]Beraldo H,Gambino D.Mini Rev.Med.Chem.,2004,4:31-39

    [18]Milunovic M N M,Enyedy E A,Nagy N V,et al.Inorg. Chem.,2012,51:9309-9321

    [19]Peng H,Liu G F,Liu L,et al.Tetrahedron,2005,61:5926-5932

    [20]AliM A,Bernhardt P V,Brax M A H,et al.Inorg.Chem., 2013,52:1650-1657

    [21]Chang T M,Tomat E.Dalton Trans.,2013,42:7846-7849

    [22]Credico A,de Biani F F,Gonsalvi L,et al.Chem.Eur.J., 2009,15:11985-11998

    [23]Zhang L Y,Xu L J,Zhang X,et al.Inorg.Chem.,2013,52: 5167-5175

    [24]Han Z J,Shen L X,Brennessel W W,et al.J.Am.Chem. Soc.,2013,135:14659-14669

    [25]Goff A L,Artero V,Jousselme B,et al.Science,2009,326: 1384-1387

    [26]Kilgore U J,Roberts J A S,Pool D H,et al.J.Am.Chem. Soc.,2011,133:5861-5872

    [27]Du P,Eisenberg R.Energy Environ.Sci.,2012,5:6012-6021

    [28]Jing X,Wu P,Liu X,et al.New J.Chem.,2015,39:1051-1059

    [29]Huang W,Song C,He C,et al.Inorg.Chem.,2009,48:5061 -5072

    [30]SMART,SAINT and XPREP,Bruker Analytical Instruments Inc.,Madison,WI,1995.

    [31]Sheldrick G M.SHELXS-97,Program for X-ray Crystal Structure Solution and Refinement,University of G?ttingen, Germany,1997.

    [32]Duan C Y,Liu Z H,You X Z,et al.Chem.Commun.,1997: 381-382

    [33]Li M X,Chen C L,Zhang D,et al.Eur.J.Med.Chem., 2010,45:3169-3177

    [34]Katti K V,Singh P R,Barnes C L.J.Chem.Soc.,Dalton Trans.,1993:2153-2159

    [35]ZhaoY G,Guo D,Liu Y,et al.Chem.Commun.,2008:5725-5727

    [36]Stewart M P,Ho M H,Wiese S,et al.J.Am.Chem.Soc., 2013,135:6033-6046

    [37]Razavet M,Artero V,Fontecave M.Inorg.Chem.,2005,44: 4786-4795

    [38]Kasunadasa H I,Chang C J,Long J R.Nature,2010,464: 1329-1333

    [39]Zhang P,Wang M,Dong J,et al.J.Phys.Chem.C,2010, 114:15868-15874

    [40]Li L,Duan L L,Wen F Y,et al.Chem.Commun.,2012,48: 988-990

    [41]Dong X Y,Zhang M,Pei R B,et al.Angew.Chem.Int.Ed., 2016,55:2073-2077

    [42]Lazarides T,McCormick T,Du P W,et al.J.Am.Chem. Soc.,2009,131:9192-9194

    [43]HAN A-Li(韓阿麗),DU Ping-Wu(杜平武).Chinese J.Inorg. Chem.(無機化學學報),2013,29(8):1703-1709

    [44]Zhang P,Wang M,Na Y,et al.Dalton Trans.,2010,39:1204 -1206

    氧雜蒽染料修飾鈷-硫脲配合物的光解水放氫性能

    楊林 林景旭 何成*段春迎
    (大連理工大學精細化工重點實驗室,大連116024)

    將具有不同端基的硫脲基團與三苯基磷組分結合,利用所得到的配體合成了2個具有NSP(氮硫磷)鰲合位點的鈷-硫脲化合物,并研究了其光解水產(chǎn)氫性能。配合物[Co(L2)(L2′)](BF4)2.5·H2O·0.5C2H5OH(2)(L2=(2-二苯基膦-苯烯基)-氨基硫脲腙-羅丹明6G,L2′=(2-二苯基膦氧-苯烯基)-氨基硫脲腙-羅丹明6G)通過引入羅丹明熒光團與光敏劑分子協(xié)同作用,其產(chǎn)氫TON值可以達到2 800 molH2·molcat-1,其初始TOF值可達到930 molH2·molcat-1·h-1。相同條件下,相比于配合物[Co(L1)(L1′)](BF4)·0.5H2O(1) (L1=(2-二苯基膦-苯烯基)-氨基硫脲腙-硫甲基,L1′=(2-二苯基膦氧-苯烯基)-氨基硫脲腙-硫甲基),提高了體系的催化活性,可能是由于熒光素分子與配合物2之間的分子間π-π堆積作用有利于光敏劑和光催化劑之間的光致電子轉移。

    光致電子轉移;鈷;硫脲;光催化產(chǎn)氫

    O614.81+2

    A

    1001-4861(2017)06-0913-10

    2016-12-21。收修改稿日期:2017-04-25。

    10.11862/CJIC.2017.126

    國家自然科學基金(No.21531001)資助項目。

    *通信聯(lián)系人。E-mail:hecheng@dlut.edu.cn

    猜你喜歡
    二苯基產(chǎn)氫光敏劑
    ZnCoP/CdLa2S4肖特基異質結的構建促進光催化產(chǎn)氫
    二苯基二甲氧基硅烷中多氯聯(lián)苯的脫除研究
    山東化工(2019年7期)2019-04-27 07:39:28
    具有生物靶向和特異性激活光敏劑的現(xiàn)狀和發(fā)展趨勢
    山東化工(2019年2期)2019-02-16 12:38:10
    兩親性光敏劑五聚賴氨酸酞菁鋅的抗菌機理
    丁二酮肟重量法測定雙二苯基膦二茂鐵二氯化鈀中鈀的含量的研究
    第四周期過渡金屬催化硼氫化鈉分解制氫研究*
    二苯基甲烷二異氰酸酯擴鏈改性聚碳酸亞丙酯
    中國塑料(2017年2期)2017-05-17 06:13:27
    有機廢棄物生物制氫研究
    化工管理(2017年25期)2017-03-05 23:32:36
    四苯基卟啉鈀(Ⅱ)/9,10-二苯基蒽弱光上轉換體系的介質效應
    新型水溶性卟啉類光敏劑A1光動力治療黑色素瘤的實驗研究
    日日摸夜夜添夜夜添av毛片| 亚洲成人av在线免费| 99re6热这里在线精品视频| 亚洲国产日韩一区二区| 成人亚洲欧美一区二区av| av网站免费在线观看视频| 亚洲国产毛片av蜜桃av| 日本91视频免费播放| 国产精品久久久久久久久免| 极品少妇高潮喷水抽搐| 久久狼人影院| 国产精品一区二区在线观看99| .国产精品久久| 久久热精品热| 精品一区二区免费观看| 少妇裸体淫交视频免费看高清| 91久久精品国产一区二区三区| 综合色丁香网| 亚洲人与动物交配视频| 极品少妇高潮喷水抽搐| 少妇高潮的动态图| 亚洲精品自拍成人| av在线观看视频网站免费| 免费av不卡在线播放| 午夜福利网站1000一区二区三区| 亚洲成人av在线免费| 蜜臀久久99精品久久宅男| 亚洲国产av新网站| 色视频在线一区二区三区| 人妻人人澡人人爽人人| 亚洲精品中文字幕在线视频 | 大话2 男鬼变身卡| 亚洲欧洲国产日韩| 国产免费视频播放在线视频| 亚洲精品成人av观看孕妇| 丝瓜视频免费看黄片| 男人添女人高潮全过程视频| 国产精品.久久久| 国产精品一区二区性色av| 国产真实伦视频高清在线观看| 国产欧美另类精品又又久久亚洲欧美| 精品少妇内射三级| 如何舔出高潮| 亚洲精品一区蜜桃| 久久国产精品大桥未久av | 国产一区二区在线观看av| 狂野欧美激情性xxxx在线观看| 18禁在线无遮挡免费观看视频| 全区人妻精品视频| 亚洲激情五月婷婷啪啪| 69精品国产乱码久久久| 久久影院123| 中国国产av一级| 高清欧美精品videossex| 秋霞在线观看毛片| 免费黄频网站在线观看国产| 久久这里有精品视频免费| 国产91av在线免费观看| 国产日韩欧美视频二区| 狂野欧美激情性bbbbbb| 97精品久久久久久久久久精品| 国产乱人偷精品视频| 亚洲欧美成人精品一区二区| 黄色日韩在线| 美女大奶头黄色视频| 日韩av在线免费看完整版不卡| 国产欧美日韩综合在线一区二区 | 黄色怎么调成土黄色| 亚洲va在线va天堂va国产| 欧美3d第一页| 蜜桃在线观看..| 九九在线视频观看精品| 日日撸夜夜添| 中文字幕av电影在线播放| 水蜜桃什么品种好| 午夜免费观看性视频| 国产精品一区二区在线观看99| 国产黄频视频在线观看| 久久午夜综合久久蜜桃| 在线 av 中文字幕| 久久久久久久亚洲中文字幕| 九草在线视频观看| 69精品国产乱码久久久| 偷拍熟女少妇极品色| 在线 av 中文字幕| 99热这里只有是精品50| 黑丝袜美女国产一区| 精品国产一区二区三区久久久樱花| 亚洲精品视频女| 亚洲av.av天堂| 观看美女的网站| 精品人妻熟女av久视频| 日日摸夜夜添夜夜添av毛片| 日本wwww免费看| 最后的刺客免费高清国语| 精品亚洲成国产av| 人妻夜夜爽99麻豆av| 欧美少妇被猛烈插入视频| 狂野欧美白嫩少妇大欣赏| 97超碰精品成人国产| 我的老师免费观看完整版| av福利片在线| 视频中文字幕在线观看| 另类精品久久| 在线观看免费视频网站a站| 老司机影院毛片| 婷婷色综合大香蕉| 激情五月婷婷亚洲| 婷婷色综合www| 女的被弄到高潮叫床怎么办| 欧美日本中文国产一区发布| 亚洲av欧美aⅴ国产| 国产精品秋霞免费鲁丝片| 嫩草影院新地址| 国产 精品1| 涩涩av久久男人的天堂| 99精国产麻豆久久婷婷| 中国三级夫妇交换| 我要看黄色一级片免费的| 老熟女久久久| 女人久久www免费人成看片| 亚洲激情五月婷婷啪啪| 国产男女内射视频| 曰老女人黄片| 中文在线观看免费www的网站| 国产成人午夜福利电影在线观看| 午夜日本视频在线| 又粗又硬又长又爽又黄的视频| videossex国产| 18禁动态无遮挡网站| kizo精华| 亚洲美女黄色视频免费看| 亚洲内射少妇av| 国模一区二区三区四区视频| 新久久久久国产一级毛片| 国产探花极品一区二区| 中文欧美无线码| 亚洲自偷自拍三级| 美女内射精品一级片tv| 精品亚洲成a人片在线观看| 国产成人一区二区在线| 蜜臀久久99精品久久宅男| 久久午夜综合久久蜜桃| 妹子高潮喷水视频| 美女中出高潮动态图| 黄色日韩在线| 久久久久久久久大av| 午夜福利视频精品| 亚洲成人一二三区av| 亚洲精品一区蜜桃| 精品酒店卫生间| 亚洲中文av在线| 成人毛片a级毛片在线播放| 国产成人91sexporn| 久久韩国三级中文字幕| 精品亚洲乱码少妇综合久久| 黄色日韩在线| 国产一区二区在线观看av| 日韩强制内射视频| 久久人人爽人人片av| 国产一区有黄有色的免费视频| 九九在线视频观看精品| 久久久国产一区二区| 欧美3d第一页| 久久久久国产网址| 亚洲综合色惰| 亚洲欧美清纯卡通| 涩涩av久久男人的天堂| 亚洲精品日本国产第一区| 观看免费一级毛片| 人妻夜夜爽99麻豆av| 国产一区亚洲一区在线观看| 国产成人a∨麻豆精品| 亚洲av不卡在线观看| 看免费成人av毛片| 极品人妻少妇av视频| av卡一久久| 熟妇人妻不卡中文字幕| 日本黄色日本黄色录像| 美女国产视频在线观看| 一本大道久久a久久精品| 高清在线视频一区二区三区| 一级毛片黄色毛片免费观看视频| 七月丁香在线播放| 国产精品一区www在线观看| 亚洲国产毛片av蜜桃av| 欧美xxⅹ黑人| 夫妻午夜视频| 妹子高潮喷水视频| 久久久久视频综合| a 毛片基地| 高清视频免费观看一区二区| 亚洲av福利一区| 国产精品一二三区在线看| 久久女婷五月综合色啪小说| 久久久久人妻精品一区果冻| 乱人伦中国视频| 日韩av在线免费看完整版不卡| 久久韩国三级中文字幕| 亚洲精品一二三| 久久久久精品久久久久真实原创| 久久人人爽人人片av| 老司机影院毛片| 日韩强制内射视频| 夜夜爽夜夜爽视频| 人人妻人人澡人人看| 久久久久精品性色| 成年人免费黄色播放视频 | 亚洲国产成人一精品久久久| 男女啪啪激烈高潮av片| 午夜福利视频精品| 久久久欧美国产精品| 99热国产这里只有精品6| 曰老女人黄片| 色网站视频免费| 青春草亚洲视频在线观看| 乱码一卡2卡4卡精品| 婷婷色麻豆天堂久久| 成人无遮挡网站| 国产欧美日韩精品一区二区| 欧美日韩视频精品一区| 最近手机中文字幕大全| 成年人免费黄色播放视频 | 国产亚洲一区二区精品| 欧美三级亚洲精品| 日日摸夜夜添夜夜爱| 国产伦精品一区二区三区四那| 看非洲黑人一级黄片| 久久久久网色| 最近中文字幕2019免费版| 国产精品一区二区在线不卡| 在线观看一区二区三区激情| 亚洲av成人精品一二三区| 亚洲精品成人av观看孕妇| 九九在线视频观看精品| 美女福利国产在线| 国产毛片在线视频| 男女国产视频网站| 丝袜喷水一区| 成人国产麻豆网| 最近的中文字幕免费完整| 亚洲经典国产精华液单| 人人妻人人添人人爽欧美一区卜| 成人午夜精彩视频在线观看| 久久久久久伊人网av| 丰满饥渴人妻一区二区三| 精品熟女少妇av免费看| 99久久综合免费| 久久av网站| 五月玫瑰六月丁香| 精品亚洲成国产av| 国产一区二区在线观看av| a级毛色黄片| 亚洲国产精品一区二区三区在线| 高清不卡的av网站| 亚洲性久久影院| 日韩av免费高清视频| 伊人久久国产一区二区| 又大又黄又爽视频免费| 99热这里只有是精品在线观看| 精品国产一区二区三区久久久樱花| 七月丁香在线播放| 日韩 亚洲 欧美在线| 久久亚洲国产成人精品v| 女人精品久久久久毛片| 内地一区二区视频在线| av免费观看日本| 亚洲人与动物交配视频| 日韩欧美 国产精品| 亚洲婷婷狠狠爱综合网| 五月开心婷婷网| 欧美国产精品一级二级三级 | a级毛片免费高清观看在线播放| 日日啪夜夜爽| 日本wwww免费看| 国产无遮挡羞羞视频在线观看| 大话2 男鬼变身卡| 精品久久久精品久久久| 久久久久久久久久久免费av| 日日爽夜夜爽网站| 成年人免费黄色播放视频 | videos熟女内射| 亚洲真实伦在线观看| 一本大道久久a久久精品| 久久亚洲国产成人精品v| 日韩av免费高清视频| 十八禁高潮呻吟视频 | 丝瓜视频免费看黄片| 男女啪啪激烈高潮av片| 国产成人aa在线观看| 全区人妻精品视频| 国产在视频线精品| 久久久久久久久久人人人人人人| 亚洲,一卡二卡三卡| 99久久精品一区二区三区| 精品久久久久久电影网| 欧美 日韩 精品 国产| 国内少妇人妻偷人精品xxx网站| 一区二区三区乱码不卡18| 国产精品不卡视频一区二区| √禁漫天堂资源中文www| 国产一区有黄有色的免费视频| 欧美bdsm另类| 青春草国产在线视频| 大话2 男鬼变身卡| 美女福利国产在线| 黄色配什么色好看| 久久97久久精品| 国产伦在线观看视频一区| xxx大片免费视频| 新久久久久国产一级毛片| 国内揄拍国产精品人妻在线| 蜜桃久久精品国产亚洲av| 欧美精品一区二区免费开放| 少妇熟女欧美另类| 亚洲一区二区三区欧美精品| 亚洲精品第二区| 伊人亚洲综合成人网| 日韩免费高清中文字幕av| 少妇高潮的动态图| 国产免费视频播放在线视频| 中文字幕久久专区| 男人舔奶头视频| 在线观看免费高清a一片| 男女无遮挡免费网站观看| 精华霜和精华液先用哪个| 日韩,欧美,国产一区二区三区| 十分钟在线观看高清视频www | 伊人久久精品亚洲午夜| 一本色道久久久久久精品综合| 国产日韩欧美视频二区| 亚洲电影在线观看av| 亚洲精品国产成人久久av| 免费看av在线观看网站| 国产黄片美女视频| 亚洲欧洲日产国产| 熟妇人妻不卡中文字幕| 欧美日韩在线观看h| 免费黄色在线免费观看| 亚洲精品日韩在线中文字幕| 少妇 在线观看| 久久热精品热| 99热6这里只有精品| av网站免费在线观看视频| 五月天丁香电影| 制服丝袜香蕉在线| 亚洲国产精品成人久久小说| 精品人妻偷拍中文字幕| 久久久久网色| 日韩一本色道免费dvd| 简卡轻食公司| 22中文网久久字幕| 少妇 在线观看| 男女啪啪激烈高潮av片| 国产视频内射| 亚洲美女黄色视频免费看| 丰满饥渴人妻一区二区三| 国产亚洲5aaaaa淫片| 麻豆乱淫一区二区| 国产精品成人在线| 热re99久久精品国产66热6| 亚洲一区二区三区欧美精品| 建设人人有责人人尽责人人享有的| 亚洲精品自拍成人| 色视频www国产| 亚洲精品日韩在线中文字幕| 久久精品久久久久久久性| 欧美亚洲 丝袜 人妻 在线| 久久人人爽人人片av| 男人舔奶头视频| 99热全是精品| 国产黄频视频在线观看| 欧美成人精品欧美一级黄| 深夜a级毛片| 男人狂女人下面高潮的视频| 看非洲黑人一级黄片| 中文字幕制服av| 国产一区二区三区av在线| 97精品久久久久久久久久精品| 91久久精品电影网| 97精品久久久久久久久久精品| 这个男人来自地球电影免费观看 | 亚洲精品一二三| 青春草亚洲视频在线观看| 亚洲国产精品999| 免费大片18禁| 欧美激情极品国产一区二区三区 | 丰满迷人的少妇在线观看| 久久av网站| 视频中文字幕在线观看| 看十八女毛片水多多多| 99九九在线精品视频 | 三级国产精品片| 欧美亚洲 丝袜 人妻 在线| 色视频www国产| 哪个播放器可以免费观看大片| 久热久热在线精品观看| 亚洲欧洲国产日韩| videos熟女内射| 久久久久视频综合| 午夜视频国产福利| 色视频在线一区二区三区| 成年人免费黄色播放视频 | 国产精品99久久久久久久久| 国产高清有码在线观看视频| 国产男女超爽视频在线观看| 日日撸夜夜添| 观看免费一级毛片| 亚洲欧洲日产国产| 欧美+日韩+精品| 日本爱情动作片www.在线观看| 日本黄色日本黄色录像| 午夜91福利影院| 精品熟女少妇av免费看| 久久久久国产精品人妻一区二区| 国产一区二区三区av在线| 纯流量卡能插随身wifi吗| 最新中文字幕久久久久| 国产亚洲av片在线观看秒播厂| 各种免费的搞黄视频| 美女中出高潮动态图| 91久久精品国产一区二区三区| 午夜福利,免费看| 啦啦啦中文免费视频观看日本| 黄色配什么色好看| 亚洲欧美清纯卡通| 一级,二级,三级黄色视频| 国产69精品久久久久777片| 国产 一区精品| 国产爽快片一区二区三区| 国产成人免费观看mmmm| 久久精品熟女亚洲av麻豆精品| 免费av中文字幕在线| 亚洲精品一二三| 嫩草影院新地址| 免费av不卡在线播放| 亚洲综合精品二区| 天天躁夜夜躁狠狠久久av| 麻豆精品久久久久久蜜桃| 免费观看a级毛片全部| 九九爱精品视频在线观看| 一本—道久久a久久精品蜜桃钙片| 日韩电影二区| 丰满迷人的少妇在线观看| 岛国毛片在线播放| 一本大道久久a久久精品| 伊人亚洲综合成人网| 性色av一级| 最黄视频免费看| 亚洲精品一区蜜桃| 有码 亚洲区| 久久亚洲国产成人精品v| 国精品久久久久久国模美| 人体艺术视频欧美日本| 狂野欧美激情性bbbbbb| 日韩中字成人| 久久久国产欧美日韩av| 久久久精品94久久精品| 国产探花极品一区二区| 亚洲欧美清纯卡通| 最新的欧美精品一区二区| 亚洲av不卡在线观看| 十分钟在线观看高清视频www | 亚州av有码| 精品一品国产午夜福利视频| 观看美女的网站| 久久国产精品大桥未久av | 69精品国产乱码久久久| 国产一区有黄有色的免费视频| 精品一区在线观看国产| 国产精品99久久久久久久久| 最后的刺客免费高清国语| 22中文网久久字幕| 亚洲国产成人一精品久久久| 大码成人一级视频| 国产伦理片在线播放av一区| 美女福利国产在线| 中文天堂在线官网| 亚洲精品中文字幕在线视频 | 亚洲国产成人一精品久久久| 亚洲自偷自拍三级| 人妻一区二区av| 精品国产国语对白av| 久久99一区二区三区| 免费在线观看成人毛片| 亚洲欧美成人综合另类久久久| 观看免费一级毛片| 丰满迷人的少妇在线观看| 欧美成人午夜免费资源| 国产精品秋霞免费鲁丝片| 日韩电影二区| 啦啦啦啦在线视频资源| 国产一区二区在线观看av| 亚洲丝袜综合中文字幕| 日韩成人av中文字幕在线观看| 人人妻人人澡人人爽人人夜夜| 精品一区二区三区视频在线| 欧美日韩视频精品一区| 国产一区有黄有色的免费视频| 久久影院123| 欧美最新免费一区二区三区| 人妻少妇偷人精品九色| 少妇丰满av| 男女无遮挡免费网站观看| 人人澡人人妻人| 国产av精品麻豆| 91精品国产九色| 久久亚洲国产成人精品v| 99久久综合免费| 美女大奶头黄色视频| 国产无遮挡羞羞视频在线观看| 亚洲美女视频黄频| 国产色婷婷99| 午夜免费鲁丝| 美女脱内裤让男人舔精品视频| 精品人妻熟女av久视频| 免费播放大片免费观看视频在线观看| 精品视频人人做人人爽| 一区二区三区四区激情视频| 亚洲av日韩在线播放| 另类精品久久| 大码成人一级视频| 欧美日本中文国产一区发布| 国产老妇伦熟女老妇高清| 成人黄色视频免费在线看| 国产爽快片一区二区三区| 色哟哟·www| 国产在线免费精品| 水蜜桃什么品种好| 国产精品秋霞免费鲁丝片| 少妇被粗大的猛进出69影院 | 少妇人妻 视频| 99久久精品一区二区三区| 国产黄片视频在线免费观看| 亚洲欧美精品自产自拍| 欧美成人精品欧美一级黄| 午夜激情久久久久久久| 不卡视频在线观看欧美| 性色avwww在线观看| 亚洲精品视频女| 高清在线视频一区二区三区| 久久影院123| 日本免费在线观看一区| 另类精品久久| 大片电影免费在线观看免费| 免费看光身美女| 老司机亚洲免费影院| 亚洲天堂av无毛| 国产乱人偷精品视频| 青春草亚洲视频在线观看| 日本免费在线观看一区| 国产精品久久久久久久久免| 啦啦啦在线观看免费高清www| 国产探花极品一区二区| 曰老女人黄片| 久久国产乱子免费精品| 美女中出高潮动态图| 91精品国产国语对白视频| 22中文网久久字幕| 伊人久久国产一区二区| 亚洲情色 制服丝袜| 精品熟女少妇av免费看| 女的被弄到高潮叫床怎么办| √禁漫天堂资源中文www| 老司机影院毛片| 建设人人有责人人尽责人人享有的| 一本色道久久久久久精品综合| 一个人看视频在线观看www免费| 一本一本综合久久| 国产一区二区在线观看日韩| 成年女人在线观看亚洲视频| 91久久精品国产一区二区成人| 亚洲国产精品一区二区三区在线| 久久久久久久国产电影| 国产精品三级大全| 国产成人freesex在线| 99久久精品国产国产毛片| 国产精品无大码| 99热这里只有是精品50| 国产黄片视频在线免费观看| 天天躁夜夜躁狠狠久久av| 中文字幕人妻熟人妻熟丝袜美| 国产高清国产精品国产三级| 精品熟女少妇av免费看| 午夜精品国产一区二区电影| 日韩强制内射视频| 国产熟女欧美一区二区| 久久精品久久久久久久性| 国产亚洲欧美精品永久| 尾随美女入室| 国内精品宾馆在线| 少妇人妻 视频| 久久av网站| av不卡在线播放| 精品国产乱码久久久久久小说| 国产又色又爽无遮挡免| 中文字幕精品免费在线观看视频 | 亚洲精品视频女| 国产高清三级在线| av国产精品久久久久影院| 亚洲精品亚洲一区二区| 欧美精品高潮呻吟av久久| 高清不卡的av网站| 一级,二级,三级黄色视频| 一个人免费看片子| 久久青草综合色| 夜夜看夜夜爽夜夜摸| 最近的中文字幕免费完整| 69精品国产乱码久久久| 午夜影院在线不卡| 黄色怎么调成土黄色| 亚洲激情五月婷婷啪啪| 99热这里只有是精品50| 热re99久久国产66热| 国产一区二区三区av在线|