鄭 蘇
(江蘇省徐州醫(yī)藥高等職業(yè)學(xué)校 制藥工程系,江蘇 徐州 221116)
?
藥物中間體4-芐氧基-3-氯苯胺的合成
鄭 蘇
(江蘇省徐州醫(yī)藥高等職業(yè)學(xué)校 制藥工程系,江蘇 徐州 221116)
選用無(wú)水碳酸鉀做縛酸劑,DMF做溶劑,由4-硝基-2-氯苯酚和氯芐制備4-芐氧基-3-氯硝基苯,進(jìn)而,4-芐氧基-3-氯硝基苯在催化劑六水合三氯化鐵/活性炭,還原劑80%水合肼,溶劑乙醇的作用下得到目標(biāo)產(chǎn)物,著重考察了反應(yīng)時(shí)間,反應(yīng)溫度,物料物質(zhì)的量配比對(duì)目標(biāo)產(chǎn)物收率的影響,確定了合成最佳條件為反應(yīng)溫度80 ℃,反應(yīng)時(shí)間3 h,n(4-芐氧基-2-氯硝基苯)∶n(水合肼)=8∶1,在此條件下,目標(biāo)化合物收率83.6%,兩步總收率收率77.8%,產(chǎn)物經(jīng)過1HNMR和MS確認(rèn).
4-芐氧基-3-氯苯胺;4-硝基-2-氯苯酚;合成
4-芐氧基-3-氯苯胺是一種重要醫(yī)藥中間體,可用于多種有生物活性的化合物的合成[1-4],例如可用于合成一種EGFR/HER-2酪氨酸激酶抑制劑,該類酪氨酸激酶抑制劑可抑制卵巢、乳腺癌、非小細(xì)胞肺癌等[3]. 本文作者僅對(duì)4-芐氧基-3-氯苯胺合成進(jìn)行研究,以4-硝基-2-氯苯酚起始原料,通過氯芐對(duì)酚羥基進(jìn)行芐基保護(hù)合成4-芐氧基3-氯硝基苯,然后選用水合肼作為還原劑,六水合三氯化鐵/活性炭作為催化劑將4-芐氧基-3-氯硝基苯還原成4-芐氧基-3-氯苯胺. 并且考察了芐基保護(hù)中縛酸劑的選擇,硝基還原中反應(yīng)溫度、反應(yīng)時(shí)間及物料物質(zhì)的量配比對(duì)收率的影響.
1.1 主要儀器和試劑
micrOTOF-Q型質(zhì)譜分析儀(德國(guó)Bruker公司);400 MHz型核磁共振儀、FA2004N型電子天平(上海菁華集團(tuán)公司);顯微熔點(diǎn)測(cè)定儀X-4(北京泰克儀器有限公司).
無(wú)水碳酸鉀(分析純,山東浩中化工科技有限公司);氯芐(分析純,中鹽常州化工股份有限公司);無(wú)水乙醇(分析純,上海翔圣化工有限公司);4-硝基-2-氯苯酚(分析純,武漢頂輝化工有限公司;DMF(分析純,濟(jì)南世紀(jì)通達(dá)化工有限公司),95%乙醇(分析純, 上海翔圣化工有限公司);六水合三氯化鐵(分析純,泰興市魯科化工有限公司);活性炭(分析純,深圳科天化玻儀器有限公司);80%水合肼(分析純,常州市啟迪化工有限公司).
1.2 實(shí)驗(yàn)方法
整個(gè)合成路線見圖1.
圖1 4-芐氧基-3-氯苯胺的合成Fig.1 Synthetic route of 4-benzyloxy-3-chlorobenzenamine
1.2.1 4-芐氧基-2-氯硝基苯(2)的合成
在一個(gè)裝有球形冷凝管、溫度計(jì)、機(jī)械攪拌器的三頸瓶中加入34.6 g(0.2 mol) 2-氯-4-硝基苯酚,100 mL DMF,41.4 g(0.3 mol) 碳酸鉀固體,開始攪拌,加熱,待溶解后,70 ℃下滴加30.2 g(0.24 mol)氯芐. 滴加完畢,升溫到80 ℃,TLC點(diǎn)板檢測(cè)跟蹤反應(yīng),約3 h反應(yīng)完全,停止反應(yīng). 反應(yīng)完畢后,將反應(yīng)液倒入冰水中,靜置,有固體析出,抽濾,固體用水洗2次,然后用乙醇洗一次得到4-芐氧基-3-氯硝基苯固體. 收率:93.1%.1H-NMR (DMSO-d6)δ: 8.09 (m, 1H, ArH), 7.96 (m, 1H, ArH), 7.19 (m, 5H, ArH), 6.97 (m, 1H, ArH), 5.20 (d, 2H, CH2). MS,m/z: (M+H)+:264;m/z(M+Na)+: 286; (M+K)+: 302.
1.2.2 4-芐氧基-3-氯苯胺(3)的合成
在一個(gè)裝有球形冷凝管、溫度計(jì)、機(jī)械攪拌器的三頸瓶中加入26.3 g(0.1 mol) 4-芐氧基-3-氯硝基苯,80 mL 95%的乙醇,開動(dòng)機(jī)械攪拌,溶解后再加入六水合三氯化鐵4.05 g (0.015 mol),0.36 g(0.03 mol)活性炭,升溫75 ℃下,慢慢滴加80%水合肼50 mL(0.8 mol),滴加完畢,升溫至80 ℃回流. TLC點(diǎn)板檢測(cè)跟蹤反應(yīng),約3 h反應(yīng)完全,停止反應(yīng). 反應(yīng)完畢后,趁熱抽濾,將濾紙和三氯化鐵活性炭裝入瓶中封上,將濾液靜置待其析出固體,抽濾,然后用50%的乙醇-水溶液洗,得到4-芐氧基-3-氯苯胺固體,收率為83.6%. m.p. 108~109 ℃,1H-NMR (DMSO-d6)δ: 7.19 (m, 5H, ArH), 6.46 (m, 1H, ArH), 6.36 (m, 1H, ArH), 6.23 (m, 1H, ArH), 5.20 (d, 2H, CH2), 4.00 (m, 2H, NH2). MS,m/z: (M+H)+: 234;m/z(M+Na)+: 256; (M+K)+: 272.
2.1 還原方法的選用
硝基還原常用的還原方法有:電解還原法、鐵酸還原法、硫化堿還原法、催化加氫法和水合肼還原法等. 電解還原法和催化加氫法設(shè)備投資較大,能耗相對(duì)較高,生產(chǎn)成本高;鐵酸還原法產(chǎn)生的鐵泥造成污染;硫化堿還原法產(chǎn)生污水也會(huì)污染環(huán)境;水合肼還原法具有收率高,設(shè)備投資小,無(wú)廢氣廢渣,反應(yīng)條件溫和等特點(diǎn)[5-8]. 因此,2-氯-4-硝基苯胺選用水合肼還原法.
2.2 反應(yīng)溫度對(duì)4-芐氧基-3-氯苯胺(3)收率的影響
其他條件及操作與實(shí)驗(yàn)1.2.2節(jié)相同,考察溫度對(duì)4-芐氧基-3-氯苯胺收率的影響, 結(jié)果見表1.
表1 反應(yīng)溫度對(duì)3收率影響Table 1 Effect of reaction temperature on the yield of 3
由表1 中的數(shù)據(jù)可以看出, 4-芐氧基-3-氯苯胺的收率隨著反應(yīng)溫度的升高而增大, 當(dāng)反應(yīng)溫度達(dá)到75 ℃時(shí), 轉(zhuǎn)化率達(dá)83.6%, 但溫度過高, 水合肼分解所產(chǎn)生的初生態(tài)氫還沒有與硝基反應(yīng)便結(jié)合為氫氣逸出, 使收率反而降低[9]. 故反應(yīng)溫度75 ℃比較合理.
2.3 反應(yīng)時(shí)間對(duì)4-芐氧基-3-氯苯胺(3)收率的影響
其他條件及操作與實(shí)驗(yàn)1.2.2節(jié)相同,考察反應(yīng)時(shí)間對(duì)收率的影響, 結(jié)果見表2.
表2 反應(yīng)溫度對(duì)3的影響Table 2 Effect of reaction time on the yield of 3
由表3 中的數(shù)據(jù)可以看出,4-芐氧基-3-氯苯胺收率隨著反應(yīng)時(shí)間的增加而提高,反應(yīng)時(shí)間達(dá)到3 h后,收率增加不再明顯,因此,反應(yīng)時(shí)間3 h比較合理.
2.4 物料物質(zhì)的量比對(duì)4-芐氧基-3-氯苯胺(3)收率的影響
其他條件及操作與實(shí)驗(yàn)1.2.2節(jié)相同,考察物料物質(zhì)的量比對(duì)收率的影響. 結(jié)果見表3.
表3 反應(yīng)物物質(zhì)的量比對(duì)3的影響Table 3 Effect of mole ratios on the yield of 3
從表4 可以看出, 隨著水合肼的用量增加,4-芐氧基-3-氯苯胺的收率提高,但是當(dāng)n(水合肼)∶n(對(duì)氯硝基苯) =8.0∶1,繼續(xù)增加水合肼的用量,對(duì)產(chǎn)物收率的影響極小. 理論上n(4-芐氧基-2-氯硝基苯)∶n(水合肼)=1∶1.5, 但是實(shí)際上,按此比例操作中,收率甚小,原因是水合肼分解出來(lái)的活潑氫中有一部分結(jié)合為氫氣逃逸了[9]. 因此n(水合肼)∶n(4-芐氧基-2-氯硝基苯) =8.0∶1比較合理.
以4-硝基-2-氯苯酚、氯芐起始原料,DMF做溶劑,75 ℃下,選用碳酸鉀為敷酸劑,制得中間體4-芐氧基-3-氯硝基苯,產(chǎn)率93.1%;以然后選用80%水合肼做還原劑,六水合三氯化鐵,活性炭做催化劑,乙醇做溶劑,對(duì)4-芐氧基-2-氯硝基苯進(jìn)行還原,較合理的反應(yīng)條件為∶溫度80 ℃,時(shí)間3 h,n(4-芐氧基-2-氯硝基苯)∶n(水合肼)=8.0∶1下,在此條件下,收率83.6%,兩步總收率77.8%.
[1] ZHU J S, HANN L,DIAO Y Y, et al. Design, synthesis, X-ray crystallographic analysis, and biological evaluation of thiazole derivativesas potent and selectiveinhibitors of human dihydroorotate dehydrogenase[J]. Journal of Medicinal Chemistry, 2015, 58(3): 1123-39.
[2] MOTOYAMA Y, TANGUCHI M, DESMIRA N, et al. Chemoselective hydrogenation of functionalized nitroarenes and imines by using carbon nanofiber-supportediridium nanoparticles[J]. Chemistry An Asian Journal, 2014(9): 71-74.
[3] ABD EI HADI S R, LASHEEN D S, HASSA M A, et al. Design and synthesis of 4-anilinothieno[2, 3-d]pyrimidine-based compounds as dual EGFR/HER-2 inhibitors[J]. Archiv Der Pharmazie, 2016, 349(11): 827-847.
[4] PETRY K G, ZHANG Y M, CARTER M, et al. Optimization and SAR for dual ErbB-1/ErbB-2 tyrosine kinase inhibition in the 6-furanylquinazoline series [J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(17): 4686-4691.
[5] 邢錦娟, 劉琳, 秦金蘭, 等. 水合臍法還原芳香硝基化合物制備芳胺的技術(shù)進(jìn)展[J]. 化學(xué)工業(yè)與工程技術(shù), 2008, 29(6): 30-32.
XING J J, LIU L, QIN J L, et al. Progress in preparation of aromatie amine from aromatic nitro compounds by hydrazine hy drate [J]. Journal Chemical Industry & Engineering, 2008, 29(6): 30-32.
[6] 蔡可迎. 樹脂催化水合肼還原芳香族硝基化合物[J]. 江漢大學(xué)學(xué)報(bào)(自然科學(xué)版), 2009, 37(4): 37-39.
CAI K Y. Resin-catalyzed reduction of Aromatic nitro compound with hydrazine hydrate [J]. Journal Chemical Industry & Engineering(Natural Sciences), 2009, 37(4): 37-39.
[7] 周建平, 莊冬蓉, 顧曉妤, 等. 異丙醇還原芳硝基化合物制備芳胺[J]. 化工技術(shù)與開發(fā), 2013, 42(10): 22-24.
ZHOU J P, ZHANG D R, GU X Y, et al. Reduction of aromatic nitro compound to anilinesw with 2-propanol [J]. Technoloy & Development of Chemical Industry, 2013(10): 22-24.
[8] 呂榮文, 張竹霞, 石奇勛, 等. 芳硝基物水合臍催化氫轉(zhuǎn)移還原研究[J]. 染料與染色, 2005, 42(3): 43-46.
LYU R W, ZHANG Z X, SHI Q X, et al. A study on the reduction of aromatic nitro compounds with hydrazine hydrate in presence of H-transfer catalyst [J]. Dyestuffs and Coloration, 2005, 42(3): 43-46.
[9] 鄧洪, 廖齊. 復(fù)合催化劑催化水合肼還原對(duì)氯硝基苯制備對(duì)氯苯胺[J]. 貴州化工, 2004, 29(5): 21-22. DENG H, LIAO Q. Synthesis ofp-chloroaniline by catalytic reduction ofp-chloronitrobenzene with hydrazine hydrate in the presence of complex catalyst [J]. Guizhou Chemical Industry, 2004, 29(5): 21-23.
[責(zé)任編輯:張普玉]
Synthesis of drug intermediate 4-benzyloxy-3-chlorobenzenamine
ZHENG Su
(DepartmentofPharmaceuticlEngineering,JiangsuXuzhouVocationalCollegeofPharmaceutics,Xuzhou221116,Jiangsu,China)
Firstly, 4-benzyloxy-3-chloro-1-nitrobenzene was synthesized from benzyl chloride and 2-chloro-4-nitrophenol using potassium carbonate as an acid binding agent in DMF. Seondly, with FeCl3·6H2O-Pd/C as a catalyst and 80% NH2·NH2as an reducing agent in ethanol, 4-benzyloxy-3-chlorobenzenamine was synthesized from 4-benzyloxy-3-chloro-1-nitrobenzene. The reaction temperature, reaction time and mole ratios on the yield of the target product were investigated. The optimum condition was given as follows: the reaction temperature of 80 ℃, reaction time of 3 h, the mole ratio of 80% hydrazine to 4-benzyloxy-3-chloronitrophenoxyl=8∶1, and the yield of target compound was 83.6%. the total yield was about 77.8% with two steps. The target compound was determined by1H-NMR and MS.
4-benzyloxy-3-chlorobenzenamine; 2-chloro-4-nitrophenol; synthesize
2017-01-17.
鄭 蘇(1981-),女,講師,主要研究方向?yàn)樗幬锘瘜W(xué). E-mail:zhengsu2001@163.com.
O622.4
A
1008-1011(2017)03-0310-04