• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      分子印跡電化學傳感器制備及在蛋白質檢測上的應用

      2017-07-18 11:48:35劉艷麗李小軍賀曉榮李延斌李紅朝
      化工進展 2017年7期
      關鍵詞:印跡電化學電極

      劉艷麗,李小軍,賀曉榮,李延斌,李紅朝

      ?

      分子印跡電化學傳感器制備及在蛋白質檢測上的應用

      劉艷麗1,李小軍2,賀曉榮1,李延斌1,李紅朝1

      (1中北大學化學系,山西太原 030051;2中國五環(huán)工程有限公司,湖北武漢430223)

      分子印跡電化學傳感器是分子印跡技術與分析傳感器技術相結合的一種先進技術,它結合分子印跡的優(yōu)點,避免了傳統(tǒng)傳感器的缺點,提高了電化學傳感器的選擇性和靈敏度,并且縮短了響應時間,更因其設計簡單、經(jīng)濟實用等優(yōu)點受到越來越多領域的歡迎。本文介紹了分子印跡傳感器的5種常用的制備方法,包括涂層法、原位聚合法、電聚合法、溶膠-凝膠法和自組裝法以及這5種方法在實際中的應用,重點介紹了4種分子印跡傳感器(MIPs電容/阻抗型、MIPs電導型、MIPs電位型、MIPs電流型)在蛋白質檢測上的應用,并且其檢測方式以及時間都達到了預期的效果,相信隨著技術的更新發(fā)明與創(chuàng)造,分子印跡電化學傳感器的檢測領域會拓展到更多的領域。

      分子印跡;電化學傳感器;蛋白質

      分子印跡技術作為近年迅速發(fā)展起來的一門新的化學分析技術,主要過程就是形成與目標分子的化學功能互補的人工識別元素或者腔體[1]。如圖1所示,一個分子印跡的基本過程主要包括3個步驟:①形成功能單體——模板復合物;②功能單體間的聚合及交聯(lián);③將模板分子從聚合物中脫去。多次實驗結果表明,分子印跡技術在不同的條件下都表現(xiàn)出其易制備、選擇性及穩(wěn)定性良好的特點,并且可以建立特異的結合主位點[2],從而在傳感器[3]、色譜[4]、藥物的釋放[5]以及固相萃取[6]等方面有廣泛的應用,同時在化學和生物交叉的學術領域中得到了快速的發(fā)展和應用。

      分子印跡電化學傳感器是將分子印跡技術應用在傳感器上,該技術綜合二者的顯著優(yōu)點,在對生物大分子的分析檢測上,已經(jīng)表現(xiàn)出擁有簡單、低成本的設計以及合理的準確度和精密度等優(yōu)點[7-13]。而且與其他技術相比,電化學傳感器低敏感性的特征使其在檢測過程中減少了由于衍生化和提取步驟的時間,更加縮短了響應時間[14]。1990年電化學傳感器的出現(xiàn),更加引起人們對將分子印跡技術應用于蛋白質[15-17]、DNA[1,18-21]等關于生命的生物大分子研究的關注。而蛋白質是人身體組織、器官的重要構成,直接影響并參與大部分生命活動[22]。隨著社會進步、人類生命質量的提高以及科學技術的進步,各類有關蛋白質的檢測技術包括電泳、離子交換色譜法、高效液相離子交換層析(HPLC)、硼酸親和層析、免疫分析法等都快速推進,但這些方法都存在特異性差、穩(wěn)定性不足、測定時間長等劣勢。因此建立一種具有高效、專一、特異性強、方便快速的檢測方法也成為重點研究的對象。而分子印跡傳感器的出現(xiàn),不僅解決了傳統(tǒng)方法的缺陷,更是對醫(yī)學上蛋白質檢測的發(fā)展提供了更適宜的技術[23]。近幾年來,分子印跡技術與傳感器的結合已經(jīng)開始逐漸成為蛋白質檢測的可行的替代方案[24-28],且該新技術在保質期、穩(wěn)定性、穩(wěn)健性、成本以及制備工藝方面有著更為突出的優(yōu)點[29]。然而,蛋白質 這種大型的生物大分子因其本身易受各類因素 的影響,形成的諸多不穩(wěn)定的可變構象對印跡過程提出了各種挑戰(zhàn)[28,30-32]。這是由于在分子印跡合成的過程中,大尺寸的蛋白質和分子印跡網(wǎng)的密度一起影響著在本體和表面上的形成的分子印跡聚 合物[33]。

      1 分子印跡電化學傳感器的制備方法

      分子印跡電化學傳感器的制備方法主要有涂附分子印跡聚合物法、原位引發(fā)聚合法、電聚合法、溶膠-凝膠法以及自組裝5種方法。

      1.1 涂附分子印跡聚合法

      涂層法是指通過蘸涂、滴涂、旋涂的方法將制備好的分子印跡聚合物修飾到電極表面上,待其表面溶劑蒸發(fā)掉后就在電極表面形成了分子印跡聚合物敏感膜。這種方法作為最簡單的制備方法不需要額外加入交聯(lián)劑和引發(fā)劑。FANG等[34]利用該方法在金電極的表面均勻涂附上光敏聚合物,待金電極表面溶劑蒸發(fā)以后就形成可以檢測葡萄糖的分子印跡電化學傳感器,但是該傳感器的選擇性略差,所以在實際制備中應用的較少。

      1.2 原位引發(fā)聚合法

      原位引發(fā)聚合法是指利用光或熱的作用下,將含有單體、模板分子、引發(fā)劑的混合溶液涂附到傳導裝置,并且在傳導裝置上引發(fā)聚合,然后在其表面形成分子印跡膜。例如,BAI等[35]利用原位聚合法以丙烯酰胺(AM)為功能單體,乙二醇二甲基丙烯酸酯(EGDMA)為交聯(lián)劑,在石墨烯表面修飾玻碳電極制作出青蒿素分子印跡膜(ART-MIMS),在最優(yōu)條件下優(yōu)化制作出的分子印跡傳感器ART-MIM/G/GCE在測定青蒿素以及青蒿素的類似物例時有較高的選擇性、靈敏性和抵抗性。RIBEIRO等[36]利用原位熱聚合法,以綠原酸為模板,將多壁碳納米管(MWCNT)與改性過后玻碳極與分子印跡硅氧烷結合起來,所制備的傳感器可以從一些高等植物如水果、蔬菜、紅茶或者某些中藥中檢測出綠原酸,其檢出限高達0.035μmol/L。

      1.3 電化學聚合法

      電化學聚合法是直接在傳感器的表面上制作分子印跡膜的一個過程,起初傳感器是充當一個模板的作用[37],隨后模板去除后就形成了與模板分子互補的分子印跡結合位點[38-39]。其中印跡膜的厚度控制著電荷的轉移,溶劑和電解質的選擇影響著表面形態(tài),而膜的剛性和孔隙度是由溶劑的溶脹度和電解質中離子含量的多少決定的[40]。例如YANG 等[41]以速滅威為模板,用電化學聚合法氧化還原氨基苯甲酸(P-ABA),通過結合有序介孔材料(CMK-3)提高修飾電極的結構促進電荷的轉移,并以普魯士藍(PB)作為固有的電化學活性探針,制備出具有三維結構的分子印跡電化學傳感器,見圖2。該傳感器具有高表面多孔結構,對目標分子——速滅威具有穩(wěn)定良好的特異性選擇吸附,其快速響應和可重復性利用的特點也使其在環(huán)境和安全檢測方面有很好的應用。龍芳等[42]在磁性石墨烯修飾的碳電極表面以辛基酚為模板分子,多巴胺為功能單體,利用電化學聚合法制備出對辛基酚有高靈敏度和高選擇性的分子印跡電化學傳感器,與傳統(tǒng)傳感器相比,該傳感器有較寬的線性范圍和檢出限,同時其磁性石墨烯的利用提高了穩(wěn)定性和重現(xiàn)性,為以后的制備技術提供了更好的思路。

      1.4 溶膠-凝膠法

      分子印跡溶膠-凝膠法制備出來的分子印跡聚合膜最顯著的特點是該膜除了具有特異性識別的膜之外,其孔大的特點允許無機或有機分子在里面自由穿透,并且剛性的結構在面對強酸、強堿、高溫、高壓時不易被破壞。該方法結合了分子印記技術和溶液-溶膠技術的基本上所有的優(yōu)點,使得該傳感器技術有更高的選擇特異性,并且大大消除了分子印跡技術在穩(wěn)定性、惰性和剛性方面的缺點。SANTOS等[43]用咖啡因和其他類似分子為模板,利用溶膠-凝膠技術將用多層碳納米管和乙烯基三甲氧基硅烷修飾的玻碳電極與分子印跡硅氧烷結合起來,其制備的傳感器對咖啡因及其他類似分子的檢出限達0.22μmol/L。DING等[44]通過該技術在Ru2+修飾后的玻碳電極表面沉積聚合成ECL-MIP(電化學發(fā)光分子印跡)傳感器,該傳感器可成功快速檢測到L-苯基丙氨酸,檢出限高達3.1×10–12mol/L。

      1.5 自組裝法

      自組裝法主要特點是借助單體和印跡分子之間以非共價鍵、氫鍵、范德華力、螯合力等弱作用力以及模板分子與功能單體之間的自組織排列,自發(fā)形成具有多重作用位點的單體模板分子復合物,經(jīng)交聯(lián)聚合后這種作用保存下來。該方法形成的傳感器具有穩(wěn)定性強、構造簡單且不受基地材料影響的特點[45]。例如PAN等[46]研究出以甲氟磷酸異丙基酯為模板,用環(huán)糊精自組裝的方法制作出具有高度選擇性和靈敏性的分子印傳感器,該傳感器在不同的溫度下都能夠檢測到低濃度的沙林。此外,該技術還可以與其他制備方法相結合,如張燕等[47]將自組裝法和電化學聚合法結合起來,在金電極的表面制備了對一種選擇性檢測鹽酸阿霉素的分子印跡電化學傳感器。LUO等[48]將分子自組裝法和分子印跡技術結合起來,以撲息通為模板分子,將納米粒子嵌入模板形成分子印跡的電活性納米顆粒后,在其表面形成一層穩(wěn)定的分子印跡膜的同時聚合一個咔唑單元,在移除模板撲息通模板分子以后,就形成一個對撲息通有選擇性的電化學傳感器,同時該傳感器優(yōu)越的穩(wěn)定性和重復性已經(jīng)能夠應用于藥物和人類尿液的檢測上,檢出限高達0.3μmol。

      GCE—玻碳電極;CMK-3/GCE—介孔有序材料玻碳電極;PB-CMK—3/GCE-普魯士藍-介孔有序材料-玻碳電極

      1.6 5種制備方法的優(yōu)缺點

      通過對5種制備方法的內容及應用的分析,其優(yōu)缺點的歸納如表1所示。

      表1 5種方法的優(yōu)缺點

      2 分子印跡電化學傳感器的應用

      分子印跡電化學傳感器有MIPs電容/阻抗型、MIPs電導型、MIPs電位型、MIPs電流型4種電化學傳感器。其中MIPs電流型傳感器的應用最為 廣泛。

      2.1 MIPs電容/阻抗型傳感器在蛋白質檢測上的應用

      該類型的傳感器不需要加入試劑或探針,以印跡膜識別前后電容或者阻抗的與慕白哦分析物的變化關系作為識別信號,操作簡單并且靈敏度高。在實際生產中制造超薄和超高的絕緣性能分子印跡薄膜是該類傳感器制造過程中的關鍵技術。CAI等[49]以苯酚為基體,在玻璃基板上生長碳納米管陣列,嵌入SU8-2002聚合材料,用以檢測人體鐵蛋白阻抗型傳感器。KHAN等[50]發(fā)明了一種檢測蛋白的阻抗型電化學傳感器,在制備過程中,先將單壁碳納米管放置在絲網(wǎng)印刷電極上用于制備分子印跡聚合物,然后再用循環(huán)伏安法以蛋白為模板,聚合3-對氨基苯酚里制備具有高選擇和高精確度的阻抗型傳感器,其中電化學阻抗譜會記錄隨著蛋白的濃度所引起的工作電極點特性的變化,檢出限高達16.3nmol/L。

      2.2 MIPs電導型傳感器在蛋白質檢測上的應用

      該類型的傳導器只需簡單地將分子印跡膜固化在探頭表面,以被測分子與印跡膜鍵和引起的導電性能的變化作為識別信號。在實際應用中,盡量減少微量雜質的含量,以減少在膜的制備和沖洗過程中引起的電導性能的變化。LI等[51]采用光聚合法在絲網(wǎng)印刷電極表面原位聚合制備出含有琥珀酸氯霉素(ns—CAP)分子印跡位點的分子印跡膜。將修飾有分子印跡膜的絲網(wǎng)印刷電板與電導分析儀相連接,組裝可檢測牛奶蛋白樣品中氯霉素的電導型傳感器,結果表明,傳感器對該分子具有良好的特異性識別能力。檢出限高達0.05mg/L。

      2.3 MIPs電位型傳感器在蛋白質檢測上的應用

      該類型的傳導器對印跡分子的大小沒有限制,探針無需經(jīng)過印跡膜直接利用分子在短暫的識別過程前后電極電位的變化作為識別信號,其化學修飾后用于導入的電極直接影響著對目標物種的選擇性和靈敏度[52]。MOREIRA等[53]通過在硅珠表面自組裝有機硅烷單分子膜制備了對肌紅蛋白特異性選擇的電位型分子印跡傳感器。WANG等[54]用類似方法,在Au涂層表面自組裝多羥基硫醇單分子膜,建立起的電位型分子印跡傳感器對肌紅蛋白和血紅蛋白都有優(yōu)異的選擇性。

      2.4 MIPs電流型傳感器在蛋白質檢測上的應用

      該類型的傳感器是目前應用最多的一類傳感器,可以直接測定含有電活性的物質,通過底物分子特異性識別前后,印跡分子的濃度和固定電位下的響應電流的變化作為識別信號,也可以將沒有活性的物質在加入電活性物質如鐵氰化鉀[55]作為探針后再進行特異性識別后間接測定。目前該類傳感器經(jīng)常與納米材料相結合來提高對蛋白質的識別與測定[56]。LI等[57]就將二者結合起來,在玻璃電極表面加入了金納米顆粒和普魯士藍離子用來提高電化學傳感器的敏感性,在模板蛋白存在的基礎下通過電化學聚合的方法氧化還原丙烯酰胺。模板提取蛋白質后,印跡腔可以選擇性地重新綁定血紅蛋白,并且作為電極通道影響著普魯士藍的電流峰值,檢出限高達0.05mg/L。VICTORIA等[58]制備了一種可檢測人類血清中肌紅蛋白的分子印跡電化學傳感器,傳感器的制備方法如圖3所示,其血紅蛋白的濃度直接影響著電流的大小,檢出限高達9ng/mL,該檢測也可直接用于檢測心肌梗塞患者和健康的捐贈者血清中含有的血紅蛋白的多少,在醫(yī)學方面將會有更廣泛的應用領域。

      3 結語

      分子印跡電化學傳感器的高度特異性和對蛋白質的高親和性以及良好的穩(wěn)定性為其在其他生物大分子測定中的應用奠定了扎實的基礎。但是分子印跡電化學傳感器還存在很大的進步空間,比如將來更多的信號不單單只局限在二維上,應該更多地產生三維圖像,隨著該類技術的日益成熟,分子印跡電化學傳感器將不再只局限在蛋白質一類物質的測定上,還會應用在其他的一些大分子如核酸、DNA、多糖等分子上的測定。而且新型材料的應用,例如石墨烯、熒光技術、MOF等材料與磁性材料、納米材料的結合應用也會對該傳感器的性能產生更大的提升空間。

      -PD—鄰苯二胺;Mb—肌紅蛋白;Poly--PD—聚鄰苯二胺

      [1] Luan J,Liu K K,Tadepalli S,et al. PEGylated artificial antibodies:plasmonic biosensors with improved selectivity[J]. ACS Applied Materials & Interfaces,2016,8(36):23509-23516.

      [2] Pesavento M,D’Agostino G,Biesuz R,et al. Ion selective electrode for dopamine based on a molecularly imprinted polymer[J]. Electroanalysis,2012,24(4):813-824.

      [3] Nezhadali A,Mojarrab M. Fabrication of an electrochemical molecularly imprinted polymer triamterene sensor based on multivariate optimization using multi-walled carbon nanotubes[J]. Journal of Electroanalytical Chemistry,2015,744:85-94.

      [4] Zhang Y,Li Y,Hu Y,et al. Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomermicrowave heating initiated polymerization and their application to trace analysis of auxins in plant tissues[J]. Journal of Chromatography A,2010,1217(47):7337-7344.

      [5] Chasta H,Goyal R N. Molecularly imprinted sensor based on o-aminophenol for the selective determination of norepinephrine in pharmaceutical and biological samples[J]. Talanta,2014,125:167-173.

      [6] Sarafraz-Yazdi A,Razavi N. Application of molecularly- imprinted polymers in solid-phase microextraction techniques[J]. TrAC Trends in Analytical Chemistry,2015,73:81-90.

      [7] Molaakbari E,Mostafavi A,Beitollahi H,et al. Synthesis of ZnO nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa[J]. Analyst,2014,139(17):4356-4364.

      [8] Beitollahi H,Mostafavi M. Nanostructured base electrochemical sensor for simultaneous quantification and voltammetric studies of levodopa and carbidopa in pharmaceutical products and biological samples[J]. Electroanalysis,2014,26(5):1090-1098.

      [9] Foroughi M M,Beitollahi H,Tajik S,et al. Hydroxylamine electrochemical sensor based on a modified carbon nanotube paste electrode:application to determination of hydroxylamine in water samples[J]. Int. J. Electrochem,2014,9:2955.

      [10] Karimi-Maleh H,Biparva P,Hatami M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-4- ethylbenzene-

      1,2-diol as a mediator for simultaneous determination of cysteamine,nicotinamide adenine dinucleotide and folic acid[J]. Biosensors and Bioelectronics,2013,48:270-275.

      [11] Ensafi A A,Karimi-Maleh H. Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator[J]. Journal of Electroanalytical Chemistry,2010,640(1):75-83.

      [12] Hajian R,Mehrayin Z,Mohagheghian M,et al. Fabrication of an electrochemical sensor based on carbon nanotubes modified with gold nanoparticles for determination of valrubicin as a chemotherapy drug:valrubicin-DNA interaction[J]. Materials Science and Engineering:C,2015,49:769-775

      [13] Shahmiri M R,Bahari A,Karimi-Maleh H,et al. Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen[J]. Sensors and Actuators B:Chemical,2013,177:70-77.

      [14] ?ZKüTüK E B,Diltemiz S E,Avcl ?,et al. Potentiometric sensor fabrication having 2D sarcosine memories and analytical features[J]. Materials Science and Engineering:C,2016,69:231-235.

      [15] CAI D,REN L,ZHAO H,et al. A molecular-imprint nanosensor for ultrasensitive detection of proteins[J]. Nature Nanotechnology,2010,5(8):597-601.

      [16] Moreira F T C,Sharma S,Dutra R A F,et al. Smart plastic antibody material(SPAM)tailored on disposable screen printed electrodes for protein recognition:application to myoglobin detection[J]. Biosensors and Bioelectronics,2013,45:237-244.

      [17] OUYANG R,LEI J,JU H. Surface molecularly imprinted nanowire for protein specific recognition[J]. Chemical Communications,2008 (44):5761-5763.

      [18] Ogiso M,Minoura N,Shinbo T,et al. Detection of a specific DNA sequence by electrophoresis through a molecularly imprinted polymer[J]. Biomaterials,2006,27(22):4177-4182.

      [19] Ogiso M,Minoura N,Shinbo T,et al. DNA detection system using molecularly imprinted polymer as the gel matrix in electrophoresis[J]. Biosensors and Bioelectronics,2007,22(9):1974-1981.

      [20] Ratautaite V,Topkaya S N,Mikoliunaite L,et al. Molecularly imprinted polypyrrole for DNA determination[J]. Electroanalysis,2013,25(5):1169-1177.

      [21] Slinchenko O,Rachkov A,Miyachi H,et al. Imprinted polymer layer for recognizing double-stranded DNA[J]. Biosensors and Bioelectronics,2004,20(6):1091-1097.

      [22] Whitcombe M J,Chianella I,Larcombe L,et al. The rational development of molecularly imprinted polymer-based sensors for protein detection[J]. Chemical Society Reviews,2011,40(3):1547-1571.

      [23] Reddy S M,Sette G,Phan Q. Electrochemical probing of selective haemoglobin binding in hydrogel-based molecularly imprinted polymers[J]. Electrochimica Acta,2011,56(25):9203-9208.

      [24] Zhou H,Baldini L,Hong J,et al. Pattern recognition of proteins based on an array of functionalized porphyrins[J]. Journal of the American Chemical Society,2006,128(7):2421-2425.

      [25] Chen H J,Zhang Z H,Cai R,et al. Molecularly imprinted electrochemical sensor based on amine group modified graphene covalently linked electrode for 4-nonylphenol detection[J]. Talanta,2013,115:222-227.

      [26] Khadro B,Sanglar C,Bonhomme A,et al. Molecularly imprinted polymers(MIP)based electrochemical sensor for detection of urea and creatinine[J]. Procedia Engineering,2010,5:371-374.

      [27] Kan X,Xing Z,Zhu A,et al. Molecularly imprinted polymers based electrochemical sensor for bovine hemoglobin recognition[J]. Sensors and Actuators B:Chemical,2012,168:395-401.

      [28] Reddy S M,Hawkins D M,Phan Q T,et al. Protein detection using hydrogel-based molecularly imprinted polymers integrated with dual polarisation interferometry[J]. Sensors and Actuators B:Chemical,2013,176:190-197.

      [29] Piletsky S A,Turner N W,Laitenberger P. Molecularly imprinted polymers in clinical diagnostics—Future potential and existing problems[J]. Medical Engineering & Physics,2006,28(10):971-977.

      [30] Byrne M E,Salian V. Molecular imprinting within hydrogels II:progress and analysis of the field[J]. International Journal of Pharmaceutics,2008,364(2):188-212.

      [31] Verheyen E,Schillemans J P,vanWijk M,et al. Challenges for the effective molecular imprinting of proteins[J]. Biomaterials,2011,32(11):3008-3020.

      [32] El-Sharif H F,Phan Q T,Reddy S M. Enhanced selectivity of hydrogel-based molecularly imprinted polymers(HydroMIPs) following buffer conditioning[J]. Analytica Chimica Acta,2014,809:155-161.

      [33] Ge Y,Turner A P F. Too large to fit? Recent developments in macromolecular imprinting[J]. Trends in Biotechnology,2008,26(4):218-224.

      [34] Fang C,Yi C,Wang Y,et al. Electrochemical sensor based on molecular imprinting by photo-sensitive polymers[J]. Biosensors and Bioelectronics,2009,24(10):3164-3169.

      [35] Bai H,Wang C,Chen J,et al. A novel sensitive electrochemical sensor based onpolymerized molecularly imprinted membranes at graphene modified electrode for artemisinin determination[J]. Biosensors and Bioelectronics,2015,64:352-358.

      [36] Ribeiro C M,Miguel E M,Silva J S,et al. Application of a nanostructured platform and imprinted sol-gel film for determination of chlorogenic acid in food samples[J]. Talanta,2016,156:119-125.

      [37] Lakshmi D,Bossi A,Whitcombe M J,et al. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element[J]. Analytical Chemistry,2009,81(9):3576-3584.

      [38] Li J,Zhao J,Wei X. A sensitive and selective sensor for dopamine determination based on a molecularly imprinted electropolymer of o-aminophenol[J]. Sensors and Actuators B:Chemical,2009,140(2):663-669.

      [39] Petcu M,Karlsson J G,Whitcombe M J,et al. Probing the limits of molecular imprinting:strategies with a template of limited size and functionality[J]. Journal of Molecular Recognition,2009,22(1):18-25.

      [40] Wang Z,Li F,Xia J,et al. An ionic liquid-modified graphene based molecular imprinting electrochemical sensor for sensitive detection of bovine hemoglobin[J]. Biosensors and Bioelectronics,2014,61:391-396.

      [41] Yang Y,Cao Y,Wang X,et al. Prussian blue mediated amplification combined with signal enhancement of ordered mesoporous carbon for ultrasensitive and specific quantification of metolcarb by a three-dimensional molecularly imprinted electrochemical sensor[J]. Biosensors and Bioelectronics,2015,64:247-254.

      [42] 龍芳,張朝暉,王晶,等. 磁性石墨烯修飾辛基酚印跡傳感器制備及應用研究[J]. 分析化學,2016,44(6):908-914.

      LONG Fang,ZHANG Zhaohui,WANG Jing,et al. Magnetic graphene modified imprinted electrochemical sensor for detection of 4-octylphenol[J]. Chinese Journal of Analytical Chemistry,2016,44(6):908-914.

      [43] Santos W J R,Santhiago M,Yoshida I V P,et al. Electrochemical sensor based on imprinted sol-gel and nanomaterial for determination of caffeine[J]. Sensors and Actuators B:Chemical,2012,166:739-745.

      [44] Ding Z Y,Li C Y,Song Q J. Determination of 1-phenylalanine with a molecularly imprinted electrochemiluminescence sensor[J]. Chin. J. Anal. Chem.,2013,41:1543-8.

      [45] 陳志強,李建平,張學洪,等. 分子印跡電化學傳感器敏感膜體系的構建及其研究進展[J]. 分析測試學報,2010,29(1):97-104.

      CHEN Zhiqiang,LI Jianping,ZHANG Xuehong,et al. Molecularly imprinted electrochemical sensor sensitive membrane system construction and its research progress[J]. Journal of Analysis Test,2010,29(1):97-104

      [46] Pan Y,Mu N,Shao S,et al. Selective surface acoustic wave-based organophosphorus sensor employing a host-guest self-assembly monolayer of β-cyclodextrin derivative[J]. Sensors,2015,15(8):17916-17925.

      [47] 張燕,鄭晶,王娟,等. 鹽酸阿霉素分子印跡傳感器的制備及識別特性[J]. 高等學?;瘜W學報,2016,37(5):860-866.

      ZHANG Yan,ZHENG Jing,WANG Juan,et al. Preparation and identification of doxorubicin hydrochloride molscularly imprintrd sensor features[J]. Journal of High School Chemistry,2016,37(5):860-866.

      [48] Luo J,Ma Q,Wei W,et al. Synthesis of water-dispersible molecularly imprinted electroactive nanoparticles for the sensitive and selective paracetamol detection[J]. ACS Applied Materials & Interfaces,2016,8(32):21028-21038.

      [49] Cai D,Ren L,Zhao H,et al. A molecular-imprint nanosensor for ultrasensitive detection of proteins[J]. Nature Nanotechnology,2010,5(8):597-601.

      [50] Khan M A R,Moreira F T C,Riu J,et al. Plastic antibody for the electrochemical detection of bacterial surface proteins[J]. Sensors and Actuators B:Chemical,2016,233:697-704.

      [51] Li X,Zhang L,Wei X,et al. A sensitive and renewable chlortoluron molecularly imprinted polymer sensor based on the gate:controlled catalytic electrooxidation of H2O2on magnetic nano-NiO[J]. Electroanalysis,2013,25(5):1286-1293.

      [52] Kiss L,David V,David I G,et al. Electropolymerized molecular imprinting on glassy carbon electrode for voltammetric detection of dopamine in biological samples[J]. Talanta,2016,160:489-498.

      [53] Moreira F T C,Dutra R A F,Noronha J P C,et al. Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction[J]. Biosensors and Bioelectronics,2011,26(12):4760-4766.

      [54] Wang Y,Zhou Y,Sokolov J,et al. A potentiometric protein sensor built with surface molecular imprinting method[J]. Biosensors and Bioelectronics,2008,24(1):162-166.

      [55] Li L,Yang L,Xing Z,et al. Surface molecularly imprinted polymers-based electrochemical sensor for bovine hemoglobin recognition[J]. Analyst,2013,138(22):6962-6968.

      [56] Novoselov K S,Geim A K,Morozov S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.

      [57] Li Y,Li Y,Hong M,et al. Highly sensitive protein molecularly imprinted electro-chemical sensor based on gold microdendrites electrode and prussian blue mediatedamplification[J]. Biosensors and Bioelectronics,2013,42:612-617.

      [58] Shumyantseva V V,Bulko T V,Sigolaeva L V,et al. Electrosynthesis and binding properties of molecularly imprinted poly--phenylenediamine for selective recognition and direct electrochemical detection of myoglobin[J]. Biosensors and Bioelectronics,2016,86:330-336.

      The fabrication of molecularly imprinted electochemical sensorand its application in protein detection

      LIU Yanli1,LI Xiaojun2,HE Xiaorong1,LI Yanbin1,LI Hongchao1

      (1Department of Chemistry,North University of China,Taiyuan 030051,Shanxi,China;2China Rings Engineering Co.,Ltd.,Wuhan 430223,Hubei,China)

      Molecular imprinting electrochemical sensor is a combination of molecular imprinting technology and analytical sensor technology,which possess the advantages of molecular imprinting technique,avoids the disadvantages of traditional sensors,improves the electrochemical sensor sensitivity and selectivity,and shortens the response time. Because of its simple design,economical and practical advantages,this technology becomes popular in more and more areas. In this paper,five commonly used preparation methods for molecular imprinting sensors include coating method,polymerization method,electric polymerization method,sol-gel method and self-assembly method are introduced,and the application of these five methods are discussed. The application of four molecular imprinted sensors(MIPs capacitance/impedance type,MIPs conductivity type,MIPs potential type,MIPs current type)in protein detection was introduced,and its detection methods and time to achieve the desired results. Believe that with the technical update of the invention and creation,molecular imprinting electrochemical sensor detection field will be expanded to more areas.

      molecular imprinting;electrochemical sensors;protein

      TQ317

      A

      1000–6613(2017)07–2533–07

      10.16085/j.issn.1000-6613.2016-2080

      2016-11-14;

      2017-03-17。

      國家自然科學基金青年基金項目(21404093)。

      劉艷麗(1990—),女,碩士研究生。E-mail:707933269@qq.com。

      聯(lián)系人:李延斌,博士,副教授。E-mail:lyb2010@nuc.edu.cn。

      猜你喜歡
      印跡電化學電極
      馬 浩
      陶瓷研究(2022年3期)2022-08-19 07:15:18
      走進大美滇西·探尋紅色印跡
      云南畫報(2021年10期)2021-11-24 01:06:56
      電化學中的防護墻——離子交換膜
      關于量子電化學
      成長印跡
      電化學在廢水處理中的應用
      Na摻雜Li3V2(PO4)3/C的合成及電化學性能
      三維電極體系在廢水處理中的應用
      三維鎳@聚苯胺復合電極的制備及其在超級電容器中的應用
      Ti/SnO2+Sb2O4+GF/MnOx電極的制備及性能研究
      電源技術(2015年2期)2015-08-22 11:28:02
      乌拉特中旗| 南丰县| 青海省| 巩留县| 东丽区| 婺源县| 北流市| 道孚县| 卢湾区| 德昌县| 施秉县| 卢湾区| 林州市| 湘阴县| 平阴县| 清镇市| 电白县| 乐清市| 台前县| 阿城市| 碌曲县| 常宁市| 威信县| 韶关市| 平定县| 浮山县| 青田县| 嵩明县| 梅河口市| 岢岚县| 宁远县| 吴忠市| 理塘县| 南漳县| 临安市| 辰溪县| 肥城市| 闻喜县| 浠水县| 鄂州市| 文昌市|