陶輝 賴(lài)連花 陳清 白新征
(1.河海大學(xué) 淺水湖泊綜合治理與資源開(kāi)發(fā)教育部重點(diǎn)實(shí)驗(yàn)室, 江蘇 南京 210098; 2.河海大學(xué) 環(huán)境學(xué)院, 江蘇 南京210098; 3.蘇州立升凈水科技有限公司, 江蘇 蘇州 215152)
復(fù)配混凝劑去除地下水中溶解性硅酸鹽的試驗(yàn)研究*
陶輝1,2,3賴(lài)連花1,2陳清3白新征3
(1.河海大學(xué) 淺水湖泊綜合治理與資源開(kāi)發(fā)教育部重點(diǎn)實(shí)驗(yàn)室, 江蘇 南京 210098; 2.河海大學(xué) 環(huán)境學(xué)院, 江蘇 南京210098; 3.蘇州立升凈水科技有限公司, 江蘇 蘇州 215152)
為有效去除水中的溶解性硅酸鹽,以某溶解性硅酸鹽含量高達(dá)50~60 mg/L的地下水為對(duì)象,開(kāi)展復(fù)配混凝劑去除水中溶解性硅酸鹽的試驗(yàn)研究.結(jié)果表明:當(dāng)Ca(OH)2投加量為450 mg/L時(shí),對(duì)水中溶解性硅酸鹽和渾濁度的去除率分別為51.16%和74.8%;進(jìn)一步增加Ca(OH)2投加量可進(jìn)一步強(qiáng)化溶解性硅酸鹽的去除,但會(huì)引起出水pH值的大幅升高;FeCl3對(duì)水中溶解性硅酸鹽的去除率低于12.55%,但其對(duì)出水渾濁度具有明顯的控制優(yōu)勢(shì);MgO對(duì)水中溶解性硅酸鹽的最優(yōu)投加量為400 mg/L,此時(shí)去除率為14.53%,處理后出水渾濁度較高;FeCl3復(fù)配Ca(OH)2時(shí),對(duì)水中溶解性硅酸鹽的去除率超過(guò)60%,并且出水渾濁度低于0.65 NTU;FeCl3復(fù)配MgO時(shí),對(duì)水中溶解性硅酸鹽的去除率可達(dá)75%以上;Ca(OH)2復(fù)配MgO時(shí),對(duì)水中溶解性硅酸鹽的去除率最高達(dá)73.76%,較單獨(dú)使用Ca(OH)2除硅時(shí)(81.41%)有所下降.3種復(fù)配方案中,以FeCl3復(fù)配MgO的方案為佳,在此方案下,當(dāng)Fe3+質(zhì)量濃度為16.8 mg/L、MgO 質(zhì)量濃度為500 mg/L時(shí),硅的去除率達(dá)76.67%,濾后渾濁度為0.83 NTU,同時(shí)出水pH值最低,可節(jié)省后續(xù)調(diào)整pH時(shí)的酸用量.
地下水;溶解性硅酸鹽;混凝;復(fù)配混凝劑
硅是水體中的天然組分之一,其在水中主要以懸浮態(tài)、膠體態(tài)和溶解態(tài)的硅酸鹽形式存在[1].天然水中硅的含量根據(jù)地區(qū)及水體種類(lèi)不同約為6~120 mg/L,地下水中硅含量相對(duì)較高[2].研究發(fā)現(xiàn)高硅飲食的人群中出現(xiàn)局灶性腎小球腎炎、腎組織中含硅量明顯增高的現(xiàn)象[3].長(zhǎng)期過(guò)量攝取硅會(huì)導(dǎo)致人體抗氧化功能降低,有可能使硅在泌尿系統(tǒng)堆積,生成尿結(jié)石[4].天然水體中的硅元素含量一般尚不至于對(duì)人體產(chǎn)生危害,但有研究表明[5]:家庭用水點(diǎn)處的白斑及結(jié)垢主要由硅和少量碳酸鈣及其他礦物質(zhì)組成,嚴(yán)重影響生活飲用水的使用感受.隨著生活水平的提高,人們對(duì)飲用水也提出了越來(lái)越高的要求,因此對(duì)生活飲用水中硅的去除正引起重視.
目前,對(duì)水中硅的去除研究主要集中于工業(yè)水處理領(lǐng)域,如鍋爐用水、冶金、造紙和電子工業(yè)等,地下水中硅的去除研究較少.硅的去除技術(shù)主要有:混凝除硅[2,6- 7]、離子交換除硅[5,8- 9]、膜法除硅[2,9- 10]等.其中,混凝除硅是較為常用的方法,常用的除硅混凝藥劑有鎂劑[10- 12]、鋁劑[2]和鐵劑[13]等,其主要是利用某些金屬氧化物或氫氧化物與硅的吸附、凝聚或絮凝來(lái)達(dá)到除硅的目的.混凝對(duì)水中以懸浮態(tài)和膠體態(tài)形式存在的硅酸鹽具有良好的去除效果,但對(duì)以溶解態(tài)形式存在的硅酸鹽去除效果較差.
針對(duì)某地地下水中硅酸鹽含量高達(dá)50~60 mg/L且絕大部分硅酸鹽以溶解態(tài)形式存在的情況,文中選用氫氧化鈣、氧化鎂和三氯化鐵等混凝劑進(jìn)行復(fù)配試驗(yàn)開(kāi)展了溶解性硅酸鹽去除效果的研究.
1.1 試驗(yàn)材料
試驗(yàn)中所采用的主要化學(xué)試劑包括硅酸鈉、氫氧化鈣、三氯化鐵、氧化鎂、鉬酸銨和草酸等,其純度均為分析純.
某地地下水主要水質(zhì)為:溶解性硅酸鹽(以SiO2計(jì))含量約50~60 mg/L、pH值為7.0~7.5.試驗(yàn)過(guò)程中采用去離子水為本底,按前述水質(zhì)條件配制所需水樣,其硅含量為60~70 mg/L,渾濁度為2.0~2.2 NTU,pH值為7.0~7.5.
1.2 試驗(yàn)方法
使用ZR4-6型六聯(lián)混凝實(shí)驗(yàn)攪拌機(jī)(深圳市中潤(rùn)水工業(yè)技術(shù)發(fā)展有限公司生產(chǎn))進(jìn)行混凝、沉淀實(shí)驗(yàn).攪拌程序如下:第1階段以300 r/min快攪30 s,速度梯度G=180 s-1;第2階段以150 r/min慢攪15 min,G=72 s-1;第3階段為靜沉階段,靜沉?xí)r間為30 min.
向混凝試驗(yàn)杯中加入1.0 L預(yù)先配制好的水樣,并向混凝劑管中加入所需的混凝劑后,開(kāi)啟攪拌裝置.程序運(yùn)行結(jié)束后,從每個(gè)燒杯中取上清液200 mL,其中100 mL水樣用于測(cè)定靜沉后渾濁度和pH值指標(biāo);另外100 mL水樣經(jīng)定性濾紙模擬過(guò)濾過(guò)程后測(cè)定硅含量、渾濁度和pH值指標(biāo).
1.3 測(cè)試方法
水樣中的二氧化硅含量采用硅鉬黃分光光度法測(cè)定[14],渾濁度采用Hach 2100N臺(tái)式濁度儀測(cè)定,pH值采用賽多利斯PB-10型pH計(jì)測(cè)定.
2.1 Ca(OH)2除硅效果
圖1為不同Ca(OH)2投加量對(duì)水中溶解性硅酸鹽的去除效果及pH值的變化.由圖1可見(jiàn),Ca(OH)2對(duì)水中的溶解性硅酸鹽具有一定的去除效果.隨著Ca(OH)2投加量的增加,殘余SiO2質(zhì)量濃度逐漸減小.Ca(OH)2與水中溶解性硅鹽的反應(yīng)式如下:
圖1 Ca(OH)2投加量對(duì)溶解性硅酸鹽去除率的影響
Fig.1 Effect of Ca(OH)2dosage on the removal efficiency of dissolved silicate
圖2為不同Ca(OH)2投加量下水中渾濁度的變化.由圖2可見(jiàn),隨著Ca(OH)2投加量增加,渾濁度去除率出現(xiàn)先升高后降低的現(xiàn)象.這是因?yàn)樵笑齐娢粸樨?fù),當(dāng)大量 Ca2+涌入吸附層以致擴(kuò)散層變薄甚至消失導(dǎo)致ζ電位減小,膠體開(kāi)始產(chǎn)生明顯的聚集和沉淀,出水渾濁度降低.隨Ca(OH)2投加量的增加,混凝后的絮體電荷重新分布,小絮體表面電荷比混凝前均勻,小絮體之間自由電荷排斥,降低它們的碰撞機(jī)率[7];并且Ca(OH)2在水中的溶解度不大,隨著其投加量的增大,部分Ca(OH)2顆粒懸浮在水中,導(dǎo)致水中渾濁度增大.經(jīng)定性濾紙過(guò)濾后渾濁度大大降低,約在0.2~0.8 NTU之間.
圖2 Ca(OH)2投加量對(duì)渾濁度去除率的影響Fig.2 Effect of Ca(OH)2 dosage on turbidity removal efficiency
2.2 FeCl3除硅效果
圖3為不同 FeCl3投加量對(duì)水中溶解性硅酸鹽的去除情況及pH值的變化.由圖3可見(jiàn),F(xiàn)eCl3對(duì)水中溶解性硅酸鹽的去除率最高僅為12.55%,遠(yuǎn)低于Ca(OH)2.在FeCl3投加量較小時(shí),隨FeCl3投加量的增加,其混凝作用不斷加強(qiáng),因而對(duì)水中溶解性硅酸鹽的去除率逐漸增加.而當(dāng)FeCl3投加量增加到16.8~22.4 mg/L以上時(shí),會(huì)導(dǎo)致水體pH值的快速下降(最低pH值僅為5.78),此時(shí)水中的溶解性硅主要以H2SiO3膠體形態(tài)存在,對(duì)水中溶解性硅的去除產(chǎn)生了不利影響.一般認(rèn)為,鐵鹽最有效的除硅pH值為9,這也是單獨(dú)使用鐵鹽除硅效果不明顯的原因之一.
圖3 FeCl3投加量對(duì)溶解性硅酸鹽去除率的影響
Fig.3 Effect of FeCl3dosage on the removal efficiency of dissolved silicate
圖4為不同 FeCl3投加量下水中渾濁度的變化情況.由圖可知,隨著FeCl3投加量的增加,沉淀后水樣渾濁度逐漸減小,而經(jīng)定性濾紙過(guò)濾后渾濁度均在0.5 NTU以下,表明FeCl3對(duì)水中渾濁度的去除效果明顯優(yōu)于Ca(OH)2.
圖4 FeCl3投加量對(duì)渾濁度去除率的影響Fig.4 Effect of FeCl3 dosage on turbidity removal efficiency
2.3 MgO除硅效果
不同MgO投加量對(duì)水中溶解性硅酸鹽和渾濁度的去除情況如圖 5和6所示.
圖5 MgO投加量對(duì)溶解性硅酸鹽去除率的影響
Fig.5 Effect of MgO dosage on the removal efficiency of dissolved silicate
圖6 MgO投加量對(duì)渾濁度去除率的影響Fig.6 Effect of MgO dosage on turbidity removal efficiency
2.4 FeCl3復(fù)配Ca(OH)2除硅試驗(yàn)結(jié)果
根據(jù)2.1和2.2節(jié)試驗(yàn)結(jié)果,選取除硅效果較好的條件(Fe3+質(zhì)量濃度ρ(Fe3+)為16.8和22.4 mg/L)作為不變因素,復(fù)配不同濃度的氫氧化鈣進(jìn)行除硅試驗(yàn)[13,16],試驗(yàn)結(jié)果如圖7所示.
圖7 FeCl3/Ca(OH)2復(fù)配混凝劑投加量對(duì)溶解性硅酸鹽去除率的影響
Fig.7 Effect of FeCl3/Ca(OH)2dosage on the removal efficiency of dissolved silicate
2.5 FeCl3復(fù)配MgO除硅試驗(yàn)結(jié)果
根據(jù)2.1和2.2節(jié)試驗(yàn)結(jié)果,選取除硅效果較好的Fe3+質(zhì)量濃度為16.8、22.4 mg/L作為不變因素,復(fù)配不同濃度的MgO進(jìn)行除硅試驗(yàn),試驗(yàn)結(jié)果如圖8所示.
圖8 FeCl3/MgO復(fù)配混凝劑投加量對(duì)溶解性硅酸鹽去除率的影響
Fig.8 Effect of FeCl3/MgO dosage on the removal efficiency of dissolved silicate
2.6 Ca(OH)2復(fù)配MgO除硅試驗(yàn)結(jié)果
根據(jù)2.3節(jié)試驗(yàn)結(jié)果,選取除硅效果較好的MgO質(zhì)量濃度(400 mg/L)作為不變因素,復(fù)配不同濃度的Ca(OH)2進(jìn)行除硅試驗(yàn),試驗(yàn)結(jié)果如圖9所示.
圖9 Ca(OH)2/MgO復(fù)配混凝劑投加量對(duì)溶解性硅酸鹽去除率的影響
Fig.9 Effect of Ca(OH)2/ MgO dosage on the removal efficiency of dissolved silicate
(1)Ca(OH)2對(duì)水中溶解性硅酸鹽的去除效果較好,當(dāng)Ca(OH)2投加量達(dá)到450 mg/L時(shí),硅去除率基本可以達(dá)到50%以上,但對(duì)水中渾濁度去除效果較差,不宜單獨(dú)使用;
(2)FeCl3對(duì)溶解性硅酸鹽的去除效果不明顯,但對(duì)渾濁度的去除有較好的效果,應(yīng)與其他混凝劑復(fù)配使用以達(dá)到更好的除硅效果;
(3)MgO對(duì)溶解性硅酸鹽的去除效果較差,并且其對(duì)渾濁度的控制效果較差;
(4)3種復(fù)配方案中,以FeCl3復(fù)配氧化鎂對(duì)溶解性硅酸鹽的去除效果較好:當(dāng)Fe3+質(zhì)量濃度為16.8 mg/L、MgO質(zhì)量濃度為500 mg/L時(shí),硅的去除效率達(dá)到76.67%,出水渾濁度為0.83 NTU.同時(shí),出水pH值在3種復(fù)配方案中最低,可減少后續(xù)調(diào)整pH值時(shí)的酸用量.因此,推薦FeCl3復(fù)配MgO作為處理方案.
[1] 張新玨,辛寶東,王曉紅,等.我國(guó)地下水污染研究進(jìn)展 [J].地球與環(huán)境,2011,39(3):415- 421. ZHANG Xin-yu,XIN Bao-dong,WANG Xiao-hong,et al.Progress in research on groudwater pollution in our country [J].Earth and Environment,2011,39(3):415- 421.
[2] 張國(guó)輝.電廠水處理除硅工藝完善 [D].杭州:浙江工業(yè)大學(xué),2008:1- 17.
[3] 侯建明.硅的生理作用研究近況 [J].河北中醫(yī)學(xué)院學(xué)報(bào),1995,10(4):38- 39. HOU Jian-ming.Progress in research on physiological function of silicon [J].Journal of Hebei University of Chinese Medical,1995,10(4):38- 39.
[4] 吳茂江.硅與人體健康 [J].微量元素與健康研究,2012,29(2):65- 67. WU Mao-jiang.The relationship between silicon and human health [J].Studies of Trace Elements and Health,2012,29(2):65- 67.
[5] STEPHEN Booth,MELINDA Friedman.Distribution system water quality evaluation:Finaltribution system water qlongview:city of longview [J].Silica White Paper,2014:1- 16.
[6] DAPHNE Hermosilla,RUTH Ordonez,LAURA Blanco,et al.pH and particle structure effects on silica removal by coagulation [J].Chem Eng Technol,2012,35(9):1632- 1640.
[7] 杜文婷,王兵,劉光全,等.化學(xué)混凝法同步除煉油污水中硅和濁度的研究 [J].石油與天然氣化工,2014,43(3):326- 329. DU Wen-ting,WANG Bing,LIU Guang-quan,et al.Removal of silicon and turbidity from oil refinery effluent by chemical coagulation progress [J].Chemical Engineering of Oil & Gas,2014,43(3):326- 329.
[8] 孫冬艷.地下水中膠體硅對(duì)除鹽設(shè)備的影響及去除 [J].科技資訊,2011,25:42. SUN Dong-yan.Removal of colloidal silica from ground-water and its effect on desalination equipment [J].Science & Technology Information,2011,25:42.
[9] SHENG Hsuhui,CHEN Shiaoshing,YANG Shuru.Irrline coagulation/ultration for silica removal from hrackish water as remembrane pretreatment [J].Separation and Purification Technology,2009(70):112- 117.
[10] 邵磊,宋存義,胡永平,等.工業(yè)用水中硅化合物的去除方法 [J].中國(guó)給水排水,2000,16(4):26- 28. SHAO Lei,SONG Cun-yi,HU Yong-ping,et al.Methods of removal silicon compounds from industrial water [J].China Water & Wastewater,2000,16(4):26- 28.
[11] ISABEL Latour,RUBEN Miranda,ANGELES Blanco.Silica removal with sparingly soluble magnesium compounds(Part I)[J].Separation and Purification Technology,2014(138):210- 218.
[12] ISABEL Latour,RUBEN Miranda,ANGELES Blanco.Silica removal with sparingly soluble magnesium compounds(Part II)[J].Separation and Purification Technology,2015(149):331- 337.
[13] 劉桂秋,張鶴飛,趙振華.采用石灰-鐵鹽混凝沉淀法去除廢水中的As [J].化工環(huán)保,2008,28(3):226- 229. LIU Gui-qiu,ZHANG He-fei,ZHAO Zhen-hua.Removal of arsenic from wastewater by lime-molysite coagulation precipitation process [J].Environmental Protection of Chemical Industy,2008,28(3):226- 229.
[14] 二氧化硅(可溶性)的測(cè)定(硅鉬黃分光光度法):SL 91.1—1994 [S].
[15] 金若菲,王棟,周集體,等.混凝法處理含硅鹽廢水的實(shí)驗(yàn)研究 [J].工業(yè)水處理,2003,23(1):42- 44. JIN Ruo-fei,WANG Dong,ZHOU Ji-ti,et al.Study on the treatment of high silicate containing wastewater by coagulation [J].Industrial Water Treatment,2003,23(1):42- 44.
[16] 李婉青,樂(lè)昕朋,李洪畢,等.混凝除硅在采油污水回用鍋爐處理中的試驗(yàn)研究 [J].實(shí)驗(yàn)科學(xué)與技術(shù).2013,11(5):19- 22. LI Wan-qing,LE Xin-peng,LI Hong-bi,et al.Experimental study of coagulation silicon removal in production sewage reused in boiler [J].Experiment Science and Technology,2013,11(5):19- 22.
Experimental Investigation into Removal of Soluble Silicate in Groundwater by Using Compound Coagulants
TAO Hui1,2,3LAI Lian-hua1,2CHEN Qing3BAI Xin-zheng3
(1.Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of the Ministry of Education, Hohai University,Nanjing 210098,Jiangsu, China; 2.College of Environment,Hohai University,Nanjing 210098,Jiangsu, China; 3. Suzhou Litree Water Purification Technology Co., Ltd., Suzhou 215152, Jiangsu, China)
In order to effectively remove the soluble silicate in water, by taking the groundwater with a soluble silicate content of 50~60 mg/L as the research objective, coagulation experiments for the soluble silicate removal by using different compound coagulants were performed. The results show that (1) when the dosage of Ca(OH)2is 450 mg/L, the removal of soluble silicate and the turbidity reaches 51.16% and 74.8%, respectively; (2) with the increase of Ca(OH)2dosage (more than 450 mg/L), the removal of soluble silicate slightly increases while the pH value of the effluent greatly increases,too;(3) FeCl3has a poor removal on soluble silicate (less than 12.55%) but has an advantage in turbidity control; (4) MgO possesses poor efficiency for both soluble silicate removal (less than 14.53%) and turbidity control, and the optimal MgO dosage is 400 mg/L; (5) the compound of FeCl3and Ca(OH)2possesses good performance on both soluble silicate removal and turbidity control, more than 60% of soluble silicate is removed and the effluent turbidity is less than 0.65 NTU; (6) the compound of FeCl3and MgO also possesses good performance on both soluble silicate removal and turbidity control, more than 75% of soluble silicate is removed; (7) the compound of Ca(OH)2and MgO results in a soluble silicate removal up to 73.76%, which is relatively less than that contributed by Ca(OH)2only (81.41%); and (8) among the three above-mentioned compound approaches, the compound of FeCl3and MgO with a Fe3+dosage of 16.8 mg/L and a MgO dosage of 500 mg/L is the best because it results in a soluble silicate removal of 76.67% and an effluent turbidity of 0.83 NTU, and because it helps to obtain effluent with the lowest pH value, which saves the acid added in the later process.
groundwater; soluble silicate; coagulation; compound coagulant
2016- 09- 29
水體污染控制與治理科技專(zhuān)項(xiàng)基金資助項(xiàng)目(2014ZX07405);2015年江蘇省“雙創(chuàng)計(jì)劃”項(xiàng)目;江蘇省高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目 Foundation items: Supported by the Found of Major Science and Technology Program for Water Pollution Control and Treatment(2014ZX07405) and the Found of “Double Creation Plan” in Jiangsu Province
陶輝(1981-),男,副教授,主要從事飲用水處理研究.E-mail:taohui@hhu.edu.cn
1000- 565X(2017)06- 0139- 06
X 523
10.3969/j.issn.1000-565X.2017.06.021