• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      帶有飽和發(fā)病率的離散SIR傳染病模型的穩(wěn)定性及分支問題

      2017-08-30 10:43:19許立濱李冬梅董在飛
      關(guān)鍵詞:分支閾值穩(wěn)定性

      許立濱+李冬梅+董在飛

      摘 要:考慮了飽和型發(fā)病率對SIR傳染病模型的影響,建立了一個具有飽和型發(fā)病率的離散SIR傳染病模型,利用Jury準則對線性化系統(tǒng)的特征根進行分析,并獲得了平衡點的局部穩(wěn)定性及分支點,通過選取適當(dāng)?shù)膮?shù),運用NeimarkSacker分支存在理論,討論了模型的分支問題。

      關(guān)鍵詞:飽和發(fā)病率;離散模型;閾值;穩(wěn)定性;分支

      DOI:10.15938/j.jhust.2017.03.021

      中圖分類號: O175

      文獻標志碼: A

      文章編號: 1007-2683(2017)03-0117-04

      Abstract:A discrete SIR model with saturation incidence is established to study the effect of saturation incidence. Local stability of the equilibrium and bifurcation points are obtained by using Jury criteria and investigating the linearized characteristic equation. Then bifurcation scenario is discussed by choosing the appropriate parameter and using the theory of Neimark-Sacker bifurcation.

      Keywords:saturation incidence;discrete model;threshold;stability;bifurcation

      參 考 文 獻:

      [1] BRAUER F, VAN DEN Driessche P. Models for Transmission of Disease with Immigration of Infective[J]. Math. Biosci., 2001, 171:143-154.

      [2] ELBASHA E H, GUMEL A B. Theoretical Assessment of Public Health Impact of Imperfect Prophylactic HIV-1 Vaccines with Therapeutic Benefits[J].Bull. Math. Biol., 2006, 68:577-614.

      [3] GUMEL A B, CONNELL McCluskey C, Van DEN Driessche P. Mathematical Study of Astagedprogression HIV Model with Imperfect Vaccine[J].Bull. Math. Biol., 2006, 68:2105-2128.

      [4] ENATSU Yoichi, NAKATA Yukihiko, MUROYA Yoshiaki. Global Dynamics of an SIRS Epidemic Model with A Class of Nonlinear Incidence Rates and Distributed Delays [J]. Preprint Submitted to Canadian Applied Mathematics Quarterly, 2010(25): 1-15.

      [5] 王穎, 滕志東.一類離散SIRS 傳染病模型的Lyapunov函數(shù)[J].新疆大學(xué)學(xué)報(自然科學(xué)版),2014,31(3):273-279.

      [6] ALLEN L.Some Discretetime SI, SIR, and SIS Epidemic Models[J]. Math. Biosci. , 1994(124): 83-105.

      [7] CAPASSO V, SERIO G. A Generalization of the KermackMckendrick deterministic epidemic model[J] .Math. Biosci., 1978(42):43-61.

      [8] FRANKE Je, ABDULaziz Y. Diseaseinduced Mortality in Densitydependent Discretetime SIS Epidemic Models[J]. J Math. Biol., 2008(57):755-790.

      [9] CASTILLOchavez C, ABDULaziz Y. Discretetime SIS Models with Complex Dynamics[J]. Nonlinear Anal., 2001(47):4753-4762.

      [10]ABDULaziz Y. Allee Effects in a Discretetime SIS Epidemic Model with Infected Newborns [J]. Journal of Difference Equation and Applications,2007,3(4):341-356.

      [11]LI Jianquan, Ma Zhien, Brauerf. Global Analysis of Discretetime SI and SIS Epidemic Models[J]. Math. Bioscieces and Engineering, 2007,4(4) :699-710 .

      [12]LIU W M, LEVIN S A, IWASA Y. Influence of Nonlinear Incidence Rates Upon the Behavior of SIRS Epidemiological Models[J]. J. Math. Biol., 1986(23):187-204.

      [13]LIU W M, HETHCOTE H W, LEVIN S A. Dynamical Behavior of Epidemiological Models with Nonlinear Incidence Rates[J], J. Math. Biol., 1987(25):359-380.

      [14]危敏劍,董福安.具有染病者輸入的離散SIR傳染病模型分析[J].高校應(yīng)用數(shù)學(xué)學(xué)報,2011,26(1):55-60.

      [15]郭志明,彭華勤.一類離散SIS 傳染病模型的穩(wěn)定性[J].廣州大學(xué)學(xué)報( 自然科學(xué)版),2012,11(4):5-8.

      [16]曹慧,周義倉.具有飽和發(fā)生率的離散SIR 模型的分支[J].工程數(shù)學(xué)學(xué)報,2014,31(3):347-360.

      [17]胡增運.離散SIRS傳染病模型的持久性和滅絕性分析[J].應(yīng)用數(shù)學(xué)學(xué)報,2014,37(3):547-556.

      [18]JURY E I. Theory and Application of the Ztransform Method[M].NewYork: John Wiley, 1964.

      [19]GUCKENHEIMER J,HOLMES P. Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields[M].New York: SpringerVerlag, 1983.

      (編輯:溫澤宇)

      猜你喜歡
      分支閾值穩(wěn)定性
      小波閾值去噪在深小孔鉆削聲發(fā)射信號處理中的應(yīng)用
      巧分支與枝
      基于自適應(yīng)閾值和連通域的隧道裂縫提取
      非線性中立型變延遲微分方程的長時間穩(wěn)定性
      一類擬齊次多項式中心的極限環(huán)分支
      比值遙感蝕變信息提取及閾值確定(插圖)
      河北遙感(2017年2期)2017-08-07 14:49:00
      半動力系統(tǒng)中閉集的穩(wěn)定性和極限集映射的連續(xù)性
      室內(nèi)表面平均氡析出率閾值探討
      模糊微分方程的一致穩(wěn)定性
      生成分支q-矩陣的零流出性
      高台县| 边坝县| 和静县| 余姚市| 宁波市| 交城县| 佛教| 深水埗区| 康保县| 都兰县| 郴州市| 大姚县| 横山县| 老河口市| 陇川县| 阳新县| 台北市| 南安市| 三亚市| 阿拉善左旗| 龙口市| 沛县| 永丰县| 新巴尔虎左旗| 杂多县| 宜兰县| 清水县| 秭归县| 竹山县| 梁河县| 武强县| 浪卡子县| 巴林右旗| 高要市| 弥勒县| 诏安县| 柳州市| 嘉义市| 东方市| 崇礼县| 锦屏县|