許立濱+李冬梅+董在飛
摘 要:考慮了飽和型發(fā)病率對SIR傳染病模型的影響,建立了一個具有飽和型發(fā)病率的離散SIR傳染病模型,利用Jury準則對線性化系統(tǒng)的特征根進行分析,并獲得了平衡點的局部穩(wěn)定性及分支點,通過選取適當(dāng)?shù)膮?shù),運用NeimarkSacker分支存在理論,討論了模型的分支問題。
關(guān)鍵詞:飽和發(fā)病率;離散模型;閾值;穩(wěn)定性;分支
DOI:10.15938/j.jhust.2017.03.021
中圖分類號: O175
文獻標志碼: A
文章編號: 1007-2683(2017)03-0117-04
Abstract:A discrete SIR model with saturation incidence is established to study the effect of saturation incidence. Local stability of the equilibrium and bifurcation points are obtained by using Jury criteria and investigating the linearized characteristic equation. Then bifurcation scenario is discussed by choosing the appropriate parameter and using the theory of Neimark-Sacker bifurcation.
Keywords:saturation incidence;discrete model;threshold;stability;bifurcation
參 考 文 獻:
[1] BRAUER F, VAN DEN Driessche P. Models for Transmission of Disease with Immigration of Infective[J]. Math. Biosci., 2001, 171:143-154.
[2] ELBASHA E H, GUMEL A B. Theoretical Assessment of Public Health Impact of Imperfect Prophylactic HIV-1 Vaccines with Therapeutic Benefits[J].Bull. Math. Biol., 2006, 68:577-614.
[3] GUMEL A B, CONNELL McCluskey C, Van DEN Driessche P. Mathematical Study of Astagedprogression HIV Model with Imperfect Vaccine[J].Bull. Math. Biol., 2006, 68:2105-2128.
[4] ENATSU Yoichi, NAKATA Yukihiko, MUROYA Yoshiaki. Global Dynamics of an SIRS Epidemic Model with A Class of Nonlinear Incidence Rates and Distributed Delays [J]. Preprint Submitted to Canadian Applied Mathematics Quarterly, 2010(25): 1-15.
[5] 王穎, 滕志東.一類離散SIRS 傳染病模型的Lyapunov函數(shù)[J].新疆大學(xué)學(xué)報(自然科學(xué)版),2014,31(3):273-279.
[6] ALLEN L.Some Discretetime SI, SIR, and SIS Epidemic Models[J]. Math. Biosci. , 1994(124): 83-105.
[7] CAPASSO V, SERIO G. A Generalization of the KermackMckendrick deterministic epidemic model[J] .Math. Biosci., 1978(42):43-61.
[8] FRANKE Je, ABDULaziz Y. Diseaseinduced Mortality in Densitydependent Discretetime SIS Epidemic Models[J]. J Math. Biol., 2008(57):755-790.
[9] CASTILLOchavez C, ABDULaziz Y. Discretetime SIS Models with Complex Dynamics[J]. Nonlinear Anal., 2001(47):4753-4762.
[10]ABDULaziz Y. Allee Effects in a Discretetime SIS Epidemic Model with Infected Newborns [J]. Journal of Difference Equation and Applications,2007,3(4):341-356.
[11]LI Jianquan, Ma Zhien, Brauerf. Global Analysis of Discretetime SI and SIS Epidemic Models[J]. Math. Bioscieces and Engineering, 2007,4(4) :699-710 .
[12]LIU W M, LEVIN S A, IWASA Y. Influence of Nonlinear Incidence Rates Upon the Behavior of SIRS Epidemiological Models[J]. J. Math. Biol., 1986(23):187-204.
[13]LIU W M, HETHCOTE H W, LEVIN S A. Dynamical Behavior of Epidemiological Models with Nonlinear Incidence Rates[J], J. Math. Biol., 1987(25):359-380.
[14]危敏劍,董福安.具有染病者輸入的離散SIR傳染病模型分析[J].高校應(yīng)用數(shù)學(xué)學(xué)報,2011,26(1):55-60.
[15]郭志明,彭華勤.一類離散SIS 傳染病模型的穩(wěn)定性[J].廣州大學(xué)學(xué)報( 自然科學(xué)版),2012,11(4):5-8.
[16]曹慧,周義倉.具有飽和發(fā)生率的離散SIR 模型的分支[J].工程數(shù)學(xué)學(xué)報,2014,31(3):347-360.
[17]胡增運.離散SIRS傳染病模型的持久性和滅絕性分析[J].應(yīng)用數(shù)學(xué)學(xué)報,2014,37(3):547-556.
[18]JURY E I. Theory and Application of the Ztransform Method[M].NewYork: John Wiley, 1964.
[19]GUCKENHEIMER J,HOLMES P. Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields[M].New York: SpringerVerlag, 1983.
(編輯:溫澤宇)